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Challenges (model world):

¥ Bringing model output and data sufficiently close together to allow for a
correct interpretation.

#* Cretaceous ocean circulation — how can we constrain it
(proxies, model physics/resolution)
And surface climate and lack of polar warmth in many GCMs, whilst we are about it ...

#* Are we looking at steady states or dynamical transients and can we
(numerically afford to) model eithere

#* Can we adequately constrain the bulk chemistry of the ocean (e.g. DIC,
ALK, Ca®, Mg”) and hence carbonate chemistry (e.g. pH).
Also: time-scale of change.

#* How finely can we resolve ocean redox2 Can we do rather better than
‘significant vs. no’ euxinia¢

#* Can we (develop and ) use models to help interpret the
micropaleontological record?

¥* Where do the ‘wiggles’ (in §°C / §"°O / wit% CaCQO,) come from<e What do
they ‘'mean?

#* Who can drive models? Is a driving test necessarye Can it all be made
much easier and models more accessible¢



Consider:

Global mean annual average surface air temperature
(n-steps removed from the ‘data’)

T = 23.776831°C



Consider:
Global mean annual average surface air temperature
(n-steps removed from the ‘data’)

T = 23.776831°C

T = 23.77683083691290°C



Meanwhile, in the ocean ...

Western Atlantic GEOSECS &'°C (PDB)
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Spatial patterns, but still (n-1)-steps removed from the ‘data’
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Meanwhile, in the ocean ...
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Closer ... 2-steps removed from the ‘data’
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Closer ... 2-steps removed from the ‘data’
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The data ...
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Sediments spanning the Palaeocene-Eocene boundary recovered from ODP Leg 208 (Walvis Ridge)
Picture courtesy of Daniela Schmidt (University of Bristol)




Can we bring sufficient process-based ‘realism’ to models that they

can be contrasted unambigeousy with data?




What do we know about ...



ocean circulation (in a warm climate)?

(warm == stratified) && (stratified == anoxic) == .true.
?°7°?
( ‘stratified’ || ‘sluggish’ || ‘stagnant’ )




ocean circulation (in a warm climate)?




Is either view at all applicable?
Are we missing key physics in models and/or critical insights into
ways in which the Cretaceous climate system might have operated

differently?
(We already know that coupled GCMs tend not to obtain adequate warm
poles.)
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Depth (km)
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ocean circulation (in a warm climate)?
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Depth (km)

ocean circulation (in a warm climate)?
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Depth (km)

ocean circulation (in a warm climate)?
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Depth (km)
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ocean circulation (in a warm climate)?
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Can we (numerically) afford always to run our ‘best’ models to
steady state?

Are all the phenomena of interest necessarily with respect to
steady state ocean circulations?




data constraints on circulation?
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data constraints on circulation?

Model bottom-water §°C with benthic
foraminiferal §°C overlain (Cramer ‘09)
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data constraints on circulation?
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data constraints on circulation?

salinity
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data constraints on circulation?
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Barotropic streamfunction

data constraints on circulation?
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Can we make better use of existing but less ‘sexy’ data such as
5°C?

Are there key ocean locations that can be drilled/sampled for e.g.
Nd that might decide between competing hypotheses?




What do we know about ...




What do we know about ...
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What do we know about ...
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MailOnline

Rising carbon emissions could wipeout marine
species with oceans acidifying at fastest rate

By Daily Mail Reporter
Last updated at 12:10 PM on 2nd March 2012

How can anyone believe any thing these proven Liers have to say..just look at globle warming not one shread
of Real proof that people have any thing to do with it..and now this...
If they want to keep there jobs that badly ,Do some real work...before starting to make up scare stores

green_hackle, LONDON/ENGLAND, 03/3/2012 12:41

Alarmist garbage.
This is all just guesses made from tiny samples of imperfect information by people
they want to find.

None of them have any real evidence for what happened 300 years ago, neverr '
finest. They also always fail to mention that the causes of mass extinctions in prehig, !
that those extinctions fook place over millions of years.
Any sense of any kind of impending disaster is just Hollywood hyperbole and fundgses
they say is frue, there won't be any serious impact for the human race for millions ¢
plenty of engineering and technological solutions before then.

dave, Dystopia, UK, 1/3/2012 23:54

More dodgy science, all the records show that CO2 levels in the Atmosphere follow temperature not the other
way round, CO2 is only soluble in water at lower temperatures so as the temperature rises more is released to
the air. To prove it to yourself take some cold fizzy drink from the fridge and pour it info a mug, heat a spoon in
hot water and put it in the mug. You will see bubbles of Carbon dioxide released as the spoon heats the liquid.
That is why we all like cold soft drinks and beer they do not go flat as quickly. So the myth of more temperature
causing acidification cannot happen because there would be less CO2 in the ocean not more.

ChrisM, Ashford, England, 2/3/2012 12:07






carbonate chemistry (and dynamics)?
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Royer et al. [2004]
atmospheric CO, (ppm)

Haq et al. [1988
sea-level (m)
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What do we know about ...
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What do we know about ...
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Mean ocean surface Q. gonite

carbonate chemistry (and dynamics)?
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Can we adequately constrain the bulk chemistry of the ocean (e.g.
DIC, ALK, Ca*, Mg”) and hence carbonate chemistry (e.g. pH)?

Alternatively: constrain global carbonate deposition and the CCD?
Also: the time-scale of change.




What do we know about ...



ocean oxygenation?

filled symbols: >1 wt% TOC %

empty symbols: <1 wi%
T0C

(caveats as per reference)
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Monteiro et al [2012]



ocean oxygenation?

filled symbols: >1 wt% TOC %
empty symbols: <1 wi%

N
TOC N
(caveats as per reference) 0 g
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Monteiro et al [2012]



filled symbols:
biomarker evidence for
photic zone euxinia
empty symbols: no
evidence for PZE
(caveats as per reference)

Monteiro et al [2012]
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ocean oxygenation?

Pre-OAE2 analog

- OAE2 minimum analog
1xPO4, 2xC0O2

2xP0O4, 4xCO2

. above 250
c [ 225-250
) [ 200-225
o 175-200  _
= 9 150-175
S 5 125-150 O
o) = g
g - 5
®
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n
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Photic-zone
hydrogen sulfide
Latitude

umol H S I
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Longitude Longitude

® (m) Evidence for seafloor dysoxia/anoxia
A Evidence for photic-zone euxinia

x (+) Evidence against

? Questionable evidence

Monteiro et al [2012]



ocean oxygenation?

Pre-OAE1a analog - OAE1a analog
1xPO4 2xCO2

2xP0O4 8xCO0O2

| 4 above 250
I 0>5-250

I 200-225

B 175-200

B 150-175 ~

[ 125-150

- [E1100-125
75-100

[ 150-75
25-50

[ 110-25

[__1< 10 (anoxic)

|—1

Seafloor oxygen
Latitude
pumol O
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- I 30-90
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Naafs et al [in prep]



Sub-challenges:

¥ Mechanistically modelling wi% Corg in marine sediments.
(Or identifying an appropriate biologically limiting concentration of H2S.)

#* Accounting for sub-gridscale topography, e.g. many e.g. IODP cores
tend to be on topographic features rather on the seafloor per se ...

#* Improved statistical techniques for presence-absence, and incorporating
fuzziness(?¢)

#* Simultaneously addressing other forms of uncertainty including alternative
possible states of ocean circulation (and constraints thereon).



ocean oxygenation?

Adding further proxies: here |/Ca in biogenic carbonates
2 species: iodide (reduced) and iodate (oxidized)

iodate is the only form incorporated into the carbonate lattice, and it
reduced in dysoxic/anoxic conditions

iodide is kinetically-limited in its re-oxidation back to iodate, hence providing
a tracer of the oxygenation statu of local/regional source waters

(there is also biological update and release of | ...)

blue symbols: high I/Ca %

red: low |/Ca

variable |/Ca through OAE2
with a general decrease across
Mmost sites

northern proto-Atlantic sites
retain high I/Ca

/hou et al [in prep]



pre-OAE2: average [O,] (0-560m)

syn-OAE2: average [O,] (0-560m)

pre-OAEZ2: regional mean profile

Latitude (° north)

Latitude (° north)

100 150 200 250
[O,] (umol kg™)

50

Zhou et al [in prep]



How can we constrain the changing patterns of ocean redox?

How can we distinguish different levels of suboxia and low
oxygenation rather than e.g. extremes in euxinia?

Can we incorporate new proxies infto models as and when they are
developed such that mechanistic interpretation always goes hand-
in-hand with the data?




What do we know about ...
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Can we use (ecosystem) models to help interpret the

micropaleotological record and deduce species and ecosystem
sensitivities to environmental change?




environmental sensitivities of ecosystems?

model with measured properties
of ~2-5 cultured strains encoded

predominantly short-term laboratory
perturbation experiments

strain #2 in vitro _

strain #1 in vitro
35
Ot




‘PALEOGENIE’ Marine ecosystems in silico:

#* n =1,000-10,000 randomly-

# #2 #3 #4 #S ... #n generated frait vectors ('plankton’).
“8 H Pa Bl b K 9 ¥ Plankton frait vectors set
= | RE Y [ B » according to physiological ‘rules’,
2 L Lea| el v e.g. larger cells have a higher nutrient
SECCROECRT N limitation threshold, the ability to fixed
T O O O N
N, comes at the expense of reduced
‘paleo growfth ratfe, etc.
assembledde #* Plankton compete and the
model’ ecosystem is an emergent rather
# than prescribed property.
But ...

... the geochemical environment
ferrestrial l and climate co-evolves as global
‘? nufrient cycles are modified.

- E ==L, Z X ~:§.

; .= terrestrial ~“;~§

AN weathering [‘
/ <\\

Q ‘

terrestrial
sea-ice

#* At very high resolved diversity, we
can explore questions of adaptation
and rates of evolutionary change by
spawning new plankton with
perturbed characteristics.
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What do we know about ...
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ocean depth (m)

ocean depth (m)

orbltal changes

Minimum seasonality

paleo-wiggles?
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Can we use (biogeochemical-climate) models to understanding

the mechanistic driver of observed orbital-scale variability?
(The challenge partly being running a sufficient model for >1 Myr ...)




What do we know about ...



What do YOU know about using models?
Why are numerical models not more widely used to test

hypotheses, as a device to explore plausibilities (within physical
constraints), and treated as ‘just another’ piece of analytical

instrumentation?




using numerical models?

‘cGENIE" Earth system model re-grided for the
latest Maastrichtian following simulations from the
HadCM3L fully-coupled GCM.
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https://svn.ggy.bris.ac.uk/subversion/
genie/tags/cgenie.Harvard2014

! calculate carbonate alkalinity

loc ALK DIC = dum_ALK &
& - loc H4BO4 - loc _OH - loc HPO4 - 2.0*loc_PO4 -
& + loc_H + loc HSO4 + loc HF + loc_H3PO4

loc_H3SiO4 - loc NH3 - loc_HS &

! estimate the partitioning between the aqueous carbonate species

loc_zed = ( &

& (4.0*loc_ALK DIC + dum DIC*dum carbconst(icc_k) -

loc . ALK DIC*dum carbconst(lcc k))**2 + &

& 0*(dum carbconst (icc_k) - 4.0)*loc_ ALK DIC**2 &

& )**0.5 loc_conc_HCO3 = (dum DIC*dum carbconst(lcc k) -
loc zed)/(dum carbconst(lcc k) - 4.0)

loc_conc_CO3 = &

& (&

& loc ALK DIC*dum carbconst(icc_k) - dum DIC*dum carbconst(icc_k) - &
& 4.0*loc_ALK DIC + loc_zed &

&) &

&

/(2.0*(dum_carbconst(icc_k) - 4.0))

loc_conc_CO2 = dum DIC - loc_ALK DIC + &

& (&

& loc ALK DIC*dum carbconst(icc_k) - dum DIC*dum carbconst(icc_k) - &
& 4. 0*loc ALK DIC + loc_zed &

&) &

& /(2.0* (dum _carbconst(icc_k) - 4.0))

loc Hl = dum carbconst(icc_kl)*loc _conc_CO2/loc_conc_ HCO3

loc_H2 = dum carbconst(icc_k2) *loc_conc_HCO3/loc_conc_CO3
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/branches
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cGENIE ClimaTea 2014 version: README

Andy Ridgwell
April 23, 2014

1. To get an exact (read-only) copy of the (‘mulin’ development branch)cGENIE source code used
for the ClimaTea presentation — in linux, (ideally from your home directory) type:
svn co https://svn.ggy.bris.ac.uk/subversion/genie/tags/cgenie.Harvard2014
--username=genie-user cgenie.muffin
NOTE: All this must be typed continuously on ONE LINE, witha S P A C E before ‘--username’,
and before ‘cgenie’. You will be asked for a password — it isg3n1e-user.

2. You need to set a couple of environment variables — the coniler name, netCDF library name,
and netCDF path. These are specified in the fileuser.mak (genie-main directory). If the cgenie
code tree (cgenie.muffin ) and output directory (cgenie output) are installed anywhere other
than in your account HOME directory, paths specifying this will have to be edited in: user.mak
anduser.sh (genie-main directory). Installing the model code under the default directory name
(cgenie.mulln) in your HOME directory is hence by far the simplest and avoids incurring addi-
tional/unnecessary pain (configuration complexity) ...

You will also need to have installed or linked to an appropriate FORTRAN compiler and netCDF
library (built with the same FORTRAN compiler). The GNU FORT RAN compiler (gfort) version
4.4.4 or later is recommended. The netCDF version needs to be 4.0 (more recent versions require
a little work-around, not documented here ...).

3. To test the code installation — change directory tocgenie.muffin/genie-main and type:

make testbiogem
This compiles a carbon cycle enabled configuration cfGENIE and runs a short test, comparing the
results against those of a pre-run experiment (also downladed alongside the model source code). It
serves to check that you have the software environment coriely configured. If you are unsuccessful
here ... double-check the software and directory environme settings in user.mak (or user.sh)
and for a netCDF error, check the value of theNETCDF DIRenvironment variable. (Refer to the
User Manual for addition fault-finding tips.) If environment variables are changed: before re-trying
the test, you will need to type:
make cleanall

That is is for the basic installation. To run the model it is a simple matter of calling the ‘runmuffin.sh

shell script fromgenie-main and supplying a couple of parameter values, e.g.:

J/runmuffin.sh cgenie.eb_go_gs_ac_bg.worjh2. ANTH / EXAMPLE.worjh2.Caoetal2009.SPIN 10000

Refer to thecGENIE User manualfor more information regarding installing, running, and analyzing
model output, and cGENIE Examplesfor more information on this specific example! Also read the
cGENIE README

Highly recommended ... is in order to have a working appreciation of the structure of the model and
output, plus the format of the model output and how to visualize it — to read through:

http://www.seao2.info/cgenie/labs/EC4.2013/GEOGM1110andM1404.2013-14.cGENIE_LAB.0000.pdf

(which serves as a basic introduction to the model and how to use it).
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using numerical models?
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The challenge now being to YOU - what would it take for

(climate/Earth system) models to be used more widely and
become a more commonplace and standard methodology?




using numerical models?
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Challenges (model world):

¥ Bringing model output and data sufficiently close together to allow for a
correct interpretation.

#* Cretaceous ocean circulation — how can we constrain it
(proxies, model physics/resolution)
And surface climate and lack of polar warmth in many GCMs, whilst we are about it ...

#* Are we looking at steady states or dynamical transients and can we
(numerically afford to) model eithere

#* Can we adequately constrain the bulk chemistry of the ocean (e.g. DIC,
ALK, Ca®, Mg”) and hence carbonate chemistry (e.g. pH).
Also: time-scale of change.

#* How finely can we resolve ocean redox2 Can we do rather better than
‘significant vs. no’ euxinia¢

#* Can we (develop and ) use models to help interpret the
micropaleontological record?

¥* Where do the ‘wiggles’ (in §°C / §"°O / wit% CaCQO,) come from<e What do
they ‘'mean?

#* Who can drive models? Is a driving test necessarye Can it all be made
much easier and models more accessible¢
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