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The global carbon cycle: Present-day
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The global carbon cycle: Present-day
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The global carbon cycle: Present-day

atmosphere

pCO,,

H,O + CO

surface ocean

The stability of CaCO, (or energetic
‘ease’ of precipitation of shells and skeletons)

is defined by the ‘saturation state’:

where >1 represents ‘over-saturated’
conditions and CaCO, will precipitate, and

<1 ‘under-saturation’ and dissolution of

CaCo,.

deep ocean




The global carbon(ate) cycle: In the beginning ...
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The global carbon(ate) cycle: In the beginning ...
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The global carbon(ate) cycle: In the beginning ...

The stability of CaCO, (or energetic

‘ease’ of precipitation of shells and skeletons)
is defined by the ‘saturation state’:

Inorganic-physiochemical ‘whitings’
(Arp et al. [1999])

Spontaneous (homogeneous) calcite nucleation
(Morse and He [1993) |l

Tufas and carbonate encrustation

(Arp et al. [2001]; Merz-Preiss and Riding [1999]) -- I I "
Coral growth
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The global carbon(ate) cycle: Early ‘evolution’
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The global carbon(ate) cycle: Early ‘evolution’

The stability of CaCO, (or energetic
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The global carbon(ate) cycle: Control of ocean saturation
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The global carbon(ate) cycle: Control of ocean saturation

The stability of CaCO, (or energetic
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The global carbon(ate) cycle: Control of ocean saturation
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The global carbon(ate) cycle: Confrol of ocean safuration

Distribution of area
with elevation

Hypsometric curve

4000

2000

>
(paleo) coral habitat

-2000 -

Elevation (m)

_4000 B ?

6000 +== j j

0 1.0x10"

2.0x10" 3.0x10" O 20 40 60 80 100

Area per m elevation (m?) Cumulative area (%)



The global carbon(ate) cycle: Control of ocean saturation

Su rface Qcalcite

11.0_
10.0:
9.0+

8.0-

7.0+

6.0

5.0+

4.0-

N,

pmatolites

(7))
~—
=

1 ‘
N
...
s

biomineralization

MESOZOIC PALEOZOIC PRECAM.

| | | | | |
»{0]0) c10]0) Z10]0)
Time (millions of years before present)

|
100

| | : >
600



The global carbon(ate) cycle: Control of ocean saturation
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The global carbon(ate) cycle: Control of ocean saturation
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The global carbon(ate) cycle: Control of ocean saturation
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Deep-sea sedimentary buffering
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CO, dissolution

2(aq

+H,0 <> H'+HCO, <> 2H'+CO, /&,

The addition of CO, to seawater
results in a decrease in carbonate ion
(C0O,*) concentrations and ocean
acidification:

CO, + CO,>+ H,0 — 2HCO,
A decrease in CO,” in turn suppresses
the stability of CaCO,,:

Q=[Ca”x[CO 1k




Deep-sea sedimentary buffering

pCO,,

)]

fossil fuels

CO, dissolution

< CO,,,+H,0 <> H+HCO, < 2H+CO;’

As CaCQO, in deep-sea sediments
dissolves, CO, ., is transformed into

bicarbonate, rendering it no longer
available for exchange with the
atmosphere:

CO,..,, + H,0 + CaCO,
e e




Deep-sea sedimentary buffering
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Sediments spanning the Palaeocene-Eocene boundary recovered from ODP Leg 208 (Walvis Ridge)
Picture courtesy of Dani Schmidt (University of Bristol)




Deep-sea sedimentary buffering

carbonate compensation

An imbalance is induced between inputs
to the ocean from (mainly carbonate rock)
weathering and carbonate burial losses.
Because the carbonate weathering
reaction consumes CO,:

(EO. tHO*CaCo. - €a ' ¥2HCO.)
on a time-scale of 10" years, fossil fuel
CO, is further removed from the
atmosphere and locked up in the ocean.




Deep-sea sedimentary buffering
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Deep-sea sedimentary buffering
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Deep-sea sedimentary buffering
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The importance of worms (metazoans)



The importance of worms (metazoans)

As CaCQO, is dissolved form the surface sediments, previously-

deposited carbonate is mixed upwards and brought to the
surface.

This process can continue until the sediments are composed of
refractory detrital material throughout the depth of the
bioturbated zone..

CaCoO, dissolution
Detrital rain flux

CaCOoO, rain flux

i
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The importance of worms (metazoans)

With no bioturbation, dissolution of CaCQO, still continues until the
surface sediments are composed purely of refractory detrital
material, but now the depth of the clay layer is set by the diffusive
limit for CaCQO, dissolution (ca. 1 cm).

CaCoO, dissolution
Detrital rain flux

CaCOoO, rain flux

i




The importance of worms (metazoans)
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The importance of worms (metazoans)

1600
i —— with bioturbation
------- without bioturbation
1400 +

= |

o

2

OC\I

O

O

)

e

o

(7))

@)

£

i 6000 PgC
4000 PgC
2000 PgC

200IIIIIIIIIIIIIIIIIIIIIIII
0 25 50 75 100 125

time (kyr)



University

BRISTOL

THE ROYAL
SOCIETY

CELEBRATING 350 YEARS




	1: TITLE
	LifeandthePlanet.110505.PART1_.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	LifeandthePlanet.110505.PART2_.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

	LifeandthePlanet.110505.PART3_.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

	LifeandthePlanet.110505.PART4_.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	LifeandthePlanet.110505.PART99_.pdf
	Page 1


