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What is the ‘recipe’ for OAE (occurrence)e oxygen perturbations
Outline
* "“Take one whole fresh super-continent and break into 1 continental
pieces. Pick out the rock phosphate and place to one side. topology/
Immerse the continental fragments in seawater until the topography
shelves and interior seaways are thoroughly flooded.” N

-1 femperature
* “Add a pinch of CO, and heat gently.” ¥ /

—  strafification

* “While the ocean is warming and de-oxygenating,
gradually stir in the phosphate that was put aside earlier.
Keep stirring and adding CO, and phosphate unfil a thick

black carbon crust suddenly forms. Remove the crust.
Repeat to create as many carbon layers as possible before
the cake starts to cool and the ocean re-oxygenates.”

* The primary question is then ...
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http://www.climate-lab-book.ac.uk/
ocean bathymeftry & 2014/end-of-the-rainbow/
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ocean surface [PO,]

Biological export calculated by
restoring nutrient concenftrations ro zero.

No ‘spices’ or ‘flavourings’ (e.g. iron) considered.
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mean water column [PO,]

A measure of nutrient-trapping.

Contour represents concentrations equal to
the prescribed whole ocean mean (2.1 umol kg™).
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#* An ‘estuarine-like’ circulation, bringing in relatively
nutrient-rich water at depth and removing relatively
nutrient-depleted waters at the surface, will fend to lead
to the trapping of nutrients and hence regional anoxia.

#* Conversely, a circulation pattern in which water is net
exported at depth will tend to act against the
occurrence of regional OAE-like conditions.

* However, the late Permian Tethys appears to have .
had an anfi-estuarine circulation. meﬂ(I@ 5
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Importance of oven temperature oxygen perturbations
(warm == stratified) && (stratified == anoxic) == .true.
??77°

( ‘stratified’ || ‘sluggish’ || ‘stagnant’ )
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x8 CO, @ 10,000 yrs

(started from end of the x4
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Depth (km)

Depth (km)

Temperature (°C)
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Carbon cycle and
oxygen perturbations

x1 CO, pre-
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simulation
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Importance of oven temperature oxygen perturbations

zonal mean latitude-depth [PO,] distribution

A measure of the partitioning of PO, and hence oxygen consumption,
in the water column.

Contour overlay is the global mean overturning stream-function.
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#* Strong (vigorous) ventilation of the deep ocean, rather
than acting against the tendency towards OAE-like
conditions, may actually be a pre-requesite as PO, is
more rapidly returned to shallow and intfermediate
depths .

* Conversely, weak ventilation and PO, trapping in the
deep ocean may tend to act against the occurrence of
OAE-like conditions.
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Bacterial metabolism and hence
rate of dedregation of seftling
parficulate organic matter (POM)
should be temperate sensitive
(e.g. Q,, ca. ~2).

It is reasonable to posit that @
warmer ocean interior will have
an on-average shallower depth

C.,., gxidation . . .
N of POM remineralization and

C,, gxidation hence more rapid nutrient
recycling.

Evidence for this¢

From: John ef al. [2014] (PPP 413)
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Conclusions

#* The mid Cretaceous had a tfendency towards the occurrence of OAE-like
condifions because of:

(I) nutrient trapping in the North Atlantic region,

(ii) vigorous ventilation of the deep ocean that helped recycle nutrients
back towards the surface,

(i) warm ocean temperatures and a shallow recycling depth-scale.

#* The Paleocene-Eocene did not experience the occurrence of OAE-like
conditions because of poorer deep ocean ventilation. However, otherwise,
ocean circulation and temperature were relatively favourable.

#* The end Permian appears anomalous in that the Tethys should have been
nutrient poor. However, the Panthalassic ocean may have been well
ventilated at depth with a pan-global concentration of nutrients at relatively
shallow depths, then aided by progressive greenhouse warming. (i.e. not a
situation of ‘spreading’ out from the Tethys but occurring fruely globally)
(analogous to the relationship of the PETM to the smaller Paleocene-Eocene
hyperthermals?)

* Or ... differences in atmospheric pO,, efc efc ... ¢



European Research Council .55z,

Established by the European Commission "%

University of

BRISTOL




	AGU.131215.PART0_title
	1: TITLE

	AGU.131215.PART1_intro
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	AGU.131215.PART2_caketin1
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

	AGU.131215.PART3_caketin2
	Page 1
	Page 2
	Page 3
	Page 4

	AGU.131215.PART4_Tcirculation1
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	AGU.131215.PART5_Tcirculation2
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	AGU.131215.PART6_Tremin
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

	AGU.131215.PART7_conclusions
	Page 1

	AGU.131215.PART99_end
	Page 1


