
ANDY RIDGWELL

∼isempty(intersect(’models’,MATLAB))

UC-RIVERSIDE / DEPT. OF EARTH AND PLANETARY SCIENCES 2019/20

Copyright © 2020 Andy Ridgwell

http://www.seao2.info/teaching.html

Except where otherwise noted, content of this document is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license (CC BY-NC-SA 3.0)
(http://creativecommons.org/licenses/by-nc-sa/3.0/)

Current printing, December 2020

http://www.seao2.info/teaching.html

Contents

How to use this Textbook 11

0.1 Fonts and highlighting 11

0.2 Help(!) and keyword definitions 11

0.3 Side notes and other distractions from the main text 12

0.4 What and when to type 12

0.5 Code structure 13

0.6 ’Answer’ codes 14

1 Introduction to numerical modelling 15

2 Numerical modelling – zero-D / equilibrium 17

2.1 Zero-D Energy-balance model of the climate system 18

2.1.1 The basic EBM 20

2.1.2 The EBM as a function 23

2.1.3 Creating a function for the evolution of solar constant through geological time 24

2.1.4 Putting it all together – using multiple functions to calculate global surface temperature as a
function of geological time 26

2.1.5 Parameter sensitivity experiments using the EBM – #1 28

2.1.6 Parameter sensitivity experiments using the EBM – #2 32

2.2 ’Daisy World’ 34

2.2.1 ’fixed daisy’ daisy-world 35

2.2.2 ’dumb daisy’ daisy-world 37

2.2.3 ’clever daisy’ daisy-world 41

2.2.4 Efficient and ’clever daisy’ daisy-world 42

4

3 Numerical modelling – Dynamic (time-stepping) 43

3.1 Catch the ball (ballistics and simulating trajectories) 47

3.2 Dynamics in the zero-D Energy-balance climate model 57

4 Numerical modelling – To infinity (1D) and beyond(!) 63

4.1 1-D energy-balance climate model 64

4.2 1-D reaction-transport model 70

5 Numerical modelling meets GUIs (and prettier games!) 81

5.1 GUI Pokémon game 82

6 Example codes 99

6.1 Chapter 1 codes 100

6.2 Chapter 2 codes 101

Bibliography 103

Index 105

List of Figures

1 Schematic for a generic script. 13
2 Schematic for a generic function. 13

2.1 The pattern of absorption bands generated by various greenhouse
gases and aerosols (lower panel) and how they impact both incom-
ing solar radiation (upper left) and outgoing thermal radiation from
the Earths surface (upper right). (Figure prepared by Robert A. Ro-
hde for the Global Warming Art project.). 20

2.2 Form of the basic EBM model. 21
2.3 Form of the basic EBM model as a function. 23
2.4 Schematic structure of code for calculating the solar constant (out-

put) as a function of time (input). 24
2.5 Schematic of the evolution of surface temperature over geological

time program, and relationship between main program script, and
solar constant and EBM functions. Note – in this schematic, the code
contents of the two functions remain in their respective m-files. The
function code does not get copy-pasted into the scr_4.m script file. The
red arrows indicate the passing of variable values ... from scr_4.m into
each function, with the functions returning variable values back to scr_4.m. 26

2.6 Simple EBM projection of the evolution of Earth surface tempera-
ture with time. Time at the present-day is highlighted by a vertical
line (drawn using the MATLAB line function). 27

2.7 Schematic structure of the model configured to carry out a single pa-
rameter sensitivity study. 31

2.8 Sensitivity of global mean surface temperature vs. solar constant (mean
surface albedo held constant at an albedo value of 0.3). 32

2.9 Schematic structure of the model configured to carry out a double
(in terms of solar constant AND now albedo) parameter sensitivity
study. 32

2.10 Global mean surface temperature (°C) as a function of solar constant
and surface albedo grid point number. 33

2.11 Global mean surface temperature (°C) as a function of the value of
solar constant and surface albedo. 33

6

2.12 Daisy World 34
2.13 Schematic of the evolution of surface temperature over geological

time program, and relationship between main program script, the
solar constant and EBM functions, and now the ’daisy’ albedo func-
tion. 35

2.14 Evolution of global surface temperature and the two populations of
daisies with time ... but with no change allowed in the daisy pop-
ulations (d’uh!). The fractional coverage of white daisies is shown
by large empty circles, and for black, by small filled black circles. Data
points for mean surface temperature are color-coded by temperature
(color scale not shown). 36

2.15 Schematic of the evolution of surface temperature over geological
time program, and relationship between main program script, the
solar constant, EBM, and ’daisy’ albedo functions. Note the creation
of an inner loop, with EBM, and ’daisy’ albedo functions called from
within this, while the solar constant remains called form the start of
the outer loop as before. 39

2.16 Evolution of global surface temperature and the two populations of
daisies with time ... but now assuming that the growth of each de-
pends on the global mean surface temperature. 40

2.17 Evolution of global surface temperature and the two populations of
daisies with time. 42

3.1 Schematic of the thrown-ball system. 47
3.2 Schematic of the code for simulating the horizontal movement of a

ball. 47
3.3 Schematic of the code for simulating the vertical movement of a ball. 50
3.4 Trajectory of a ball!! 54
3.5 Trajectory of a ball (with a poor time-step choice). 55
3.6 Trajectory of a ball (even poorer time-step choice). 55
3.7 Schematic of the dynamic EBM. 57
3.8 Schematic of the script for the basic dynamic EBM 57
3.9 100 yr spin-up of the basic EBM. 58
3.10 Schematic of the script for the basic dynamic EBM – now with added

loop count(!) 58
3.11 100 yr spin-up of the basic EBM, but with a poor choice of time-step

... 59
3.12 Schematic of the dynamic EBM driven by a history of CO2 (read in

from a file). 60
3.13 Transient EBM response to observed changes in atmospheric CO2.

For reference, the pre-industrial equilibrium global temperature is
shown as a horizontal black line. 61

3.14 Transient EBM response to (fake) changes in atmospheric CO2. 61

7

4.1 Basic 1-D EBM with no latitudinal heat transport and for a single hemi-
sphere only. 66

4.2 Basic 1-D EBM with no latitudinal heat transport (red filled circles).
Overlain is the zonal mean observational data for January (blue cir-
cles). 67

4.3 As per Figure 4.2 but for July. 67
4.4 1D EBM with an initial guess as to the value of k. 69
4.5 1D EBM with a x10 larger value of k. 69
4.6 Idealized schematic of the soil-CH4 system. 70
4.7 Slightly less idealized schematic of the soil-CH4 system. 70
4.8 Even less idealized and almost realistic, schematic of the soil-CH4

system. 70
4.9 Soil profile of CH4 after 10.0s of simulation. 77
4.10 Soil profile of CH4 after 100.0s of simulation. 77
4.11 Soil profile of CH4 after 100.0s of simulation with an extremely marginal

choice of time-step length. 78
4.12 Soil profile of CH4 after 100.0s of simulation, with CH4 uptake at

the base of the profile with a rate constant of 1.0 per s. 79
4.13 Equilibrium soil profile of CH4, with CH4 uptake throughout the

soil column with a rate constant of 0.1 per s. 79
4.14 Example equilibrium soil profile of CH4 with production at depth. 80

5.1 Screen-shot of he Pokémon game App. 82
5.2 Trajectory model, with a Pokéball image replacing the scatter point.

Here show without deleting the image once displayed. 84
5.3 Trajectory model (exactly the same trajectory as per the Figure 5.2),

frozen mid-flight at t = 1s with the Pokéball passing over UC-Riverside. 85
5.4 Template App with background image. 90
5.5 Template App with background image plus Pokémon. 91
5.6 Template App with background image plus small Pokémon at bot-

tom right. 92
5.7 Template App with background image plus small Pokémon at bot-

tom right, now with its transparency applied. 92
5.8 App with ball trajectory trail. 94

List of Tables

How to use this Textbook

A brief guide as to how to interpret and make best use of this book,
follows.

0.1 Fonts and highlighting

Throughout ... but also be aware (because it is probably not imple-
mented particularly consistently ...): the following formatting is used
in the text to distinguish the specific context of the word:

• Bold – indicates program/software names (e.g. MATLAB).
• Italics – indicates technical/jargon words, particularly specific
to MATLAB (but not command words or functions themselves) or
programming concepts, e.g. loop.
• Sans-serif font family typeface – indicates keyboard keys (e.g. F5),
program menu items (e.g. Save as ...), program window names,
and filenames (except where they appear in MATLAB code).
• Typewriter font family typeface – indicates MATLAB
commands and functions, and lines of code (see examples below).
• Color highlights in the text are used to reflect the colors em-
ployed by MATLAB at the command line, or in the code editor.
• Math is hi-lighted in a different font, e.g:
a = 10 × b + c2

and hence differs from the MATLAB code version:
a = 10 * b + c ∧2

or writing it out ’normally’:
a = 10 x b + c2

0.2 Help(!) and keyword definitions

MATLAB help is not always especially helpful! In the course text,
for each function that MATLAB provides a comprehensive help text
on, such as help , a simple summary version will be displayed in
the right hand margin in a grey box. For example – the box headed
FUNCTION.

FUNCTION
A simple and/or summary usage

of particular MATLAB commands
and functions is provided in a grey-
background box in the margin.

...

...

12

Also appearing in grey boxes in the margin are overviews and
summaries of MATLAB commands or functions as well as ways to
do things in MATLAB. For example – the box headed loops.

loops
There are a number of differ-

ent ways of constructing loops in
MATLAB ...

...

...

0.3 Side notes and other distractions from the main text

1 sort of things will appear in the text – side notes2 and there will 1 I am a Side note!
2 I am also a Side note!be some corresponding text or comment in the margin (as closely

aligned vertically as possible). Most side notes are helpful and offer
additional guidance or suggestions, and on balance, you should read
them.3 In fact, the format of the book gives over substantial space 3 Some are trivial and a little worthless

educationally, but you wont know
which is which until you have read
them ... They might also just brighten
up your day a little.

to Side notes, explanation boxes, and figures, so be prepared that
important information may frequently appear in the margins.

0.4 What and when to type

Examples of MATLAB code/commands are indicated by text in a
’Typwriter ’ font, e.g.

A = [1 2 3 4]

When the given examples additionally illustrate how they are typed
in, and/or, requires you to actually type in the lines at the command
line, the text again appears in the ’Typwriter ’ font, but in addition,
the command line prompt (») is shown at the start of a line (you do
not actually type in the prompt itself ...), e.g.

» hello

is asking you to type in hello at the command line, and

» hello

Undefined function or variable ’hello’.

is then showing you what happens (you to type in hello at the
command line)!

Lines of code that goes with the discussion in the text and which is
not necessarily intended for you to type in (although you may still
want to, simply to try it out), is given in a light Courier font:

% light font lines of code

Lines of code that are intended for you to type in – either at the
command line ...

» disp(’hello’)

13

or place in an m-file ...

% place in a file

are given in a bold Courier font. Additionally, code to type in, where
possible/appropriate, will include the same context-colors as MAT-
LAB.

Instructions where you should do or try something out, rarher
than read and digest, where possible are given in bold. (Note that
you might want to try out other (light font) code to get a complete
picture of the art of programming.)

When you see a string or variable name in all CAPITAL LETTERS
– this is a ’placeholder’ and is indicating that you should substitute
in an appropriate string or variable name in its place, e.g.

load(’FILENAME’,’-ascii’);

is in fact indicating that you substitute the name of your actual file in
place of FILENAME. i.e., if your actual filename was exciting_data.txt,
then your code would read:

load(’exciting_data.txt’,’-ascii’);

Alternatively:

plot(MYARRAY(:,1),MYARRAY(:,2));

would indicate that you should substitute your actual variable name
(holding the data to plot in this example) in place of MYARRAY.

In general, you should use all lower-case characters for names of
variables, functions and scripts, or files.

0.5 Code structure

A visual guide to the structure of your programs is given by schematic
figures in the page margin4. For example, a generic script (yellow

4 Not all code fragments and programs
are given a schematic.

box) is shown by Figure 1, and a generic function (green box) by Fig-
ure 2. 5

5 Don’t worry about the terms function
and script for now

Figure 1: Schematic for a generic script.

Figure 2: Schematic for a generic
function.

In these schematics, the flow (sequence) of the code is indicated by
the red arrow.

For the function, that information is passed into the function, and
then returned back to where the function was called from, is indi-
cated by the red arrows entering the top of the box and leaving the
bottom of the box, respectively. (But note that there is no line of code
at the end that tells the model to return values ... this is simply to
illustrate the flow of the program, particularly when things get more
complicated and there are multiple scripts and functions involved.)6

6 All this should hopefully all become
apparent later.

14

For the script, the code file starts with a comment (%program

description) summarizing what the script does, although after the
function definition header line, so to should the function (somewhere
have comment lines describing what it does).

The black left-pointing filled triangles and associated text to the
right, indicate categories of code content, and occurring in what
order, that the programs might contain.

The purpose of these cartoons is to help you when faced with a
blank page and the question: ’Where do I start’ or ’What do I write’
appears prominently in your mind7. It is to give you some sort of 7 Also surrounded by flashing neon

lights.idea what bits might go where, and what general content is required
in the file. The cartoons do not (and are not intended) to show the
exact details of the code content. Nor do they necessarily indicate
all the different sections needed. Conversely, not all the sections
illustrated may be strictly necessary and in come examples there
may be nothing to ’initalize’ and there may be no constants of local
parameters to define the values of at the program start.

So please – use the cartoons as a simple visual guide to the ap-
proximate structure of your program, but do not over-interpret them.

0.6 ’Answer’ codes

For some of the more complex codes you will be expected to write,
in addition to step-by-step instructions in the text, complete ’answer’
codes will be provided at the back of the text. These are provided
as guides to help you structure the code and see the ’bigger picture’
of where all the parts fit together. The complete codes are obviously
NOT provided for you simply to copy ... else you’ll learn nothing.
Except how to use the CTRL-C and CTRL-V key combinations.

Please use this provision as intended and for guidance only should
you find yourself completely stuck.

1

Introduction to numerical modelling

2

Numerical modelling – zero-D / equilibrium

18 ∼isempty(intersect(’models’,matlab))

2.1 Zero-D Energy-balance model of the climate system

In this Section, you are going to create, and then use in a series of
applications, a zero-D equilibrium global ’climate model’ – the sim-
plest representation of the energy-balance of the Earth’s climate that
it is possible to make. The model assumes that the climate system
is always in balance, with no net gain or loss of energy, and hence
that the energy absorbed from incoming (short-wave) solar radiation
equals the (long-wave) radiative loss from the Earth’s surface (or top-
of-the-atmosphere) (Figure 2.1). The equations are outlined in the
Box in the margin, and you’ll need to rearrange them in terms of T
(mean global surface temperature).

Energy balance modelling (1)
The surface energy budget at the

Earths surface, to a zero-th order
approximation, can be thought of
as a simple balance between in-
coming, sort-wave radiation that is
absorbed, and out-going, infra-red
radiation.

On average (over the Earths surface
and annually), the energy flux per
unit area received from the sun, can
be written:

Fin = (1−α)∙S
4

where S is the solar ’constant’ which
has a present-day value (given the
notation S0) of 1368Wm−2

(NOTE: the 1
4 appears because the

cross-sectional area of the Earth is
1
4 of its total surface area – i.e. you
take energy intercepted by the Earth,
which has an effective area of π ∙ r2,
and spread it out over the entire
surface – an area of 4 ∙ π ∙ r2.)

Albedo (α), is the fraction of
incoming solar radiation that is
reflected back to (-wards) space –
varies hugely across surface types
(and angle of incoming radiation).
A commonly used mean global
approximation is to set: α = 0.3.

Net outgoing infrared radiation
proceeds according to black body
emissions:

Fout = ε ∙ σ ∙ T4

where ε is the emissivity, σ is the
Stefan-Boltzmann constant (in units
of Wm−2), and T the temperature in
Kelvin (K) (273.15K == 0.0°C).

For a perfect black body radiator,
we would set ε=1.0. However, it
turns out that the Earth is not a
smooth and perfectly matt black
sphere radiating directly from the
surface to space ... there is an atmo-
sphere and water surface over ∼70%
of its surface etc etc. A common
modification is then to reduce the
effective emissivity of the surface to
less than 1.0. A value of 0.62 is given
in Henderson-Sellers [2014], making
the expression for the out-going flux:

Fout = 0.62 ∙ σ ∙ T4

See Figure 2.1.

The exercises that follow are structured and you need to pay
attention to which m-files you are creating from scratch, which ones,
having been created and coded up, you do not then further edit, and
which are functions and which are script files ...

The sequence of work is as follows:

2.1.1 In this first Subsection (’The basic EBM’), you’ll create a script (#
scr_1 1) m-file containing the Energy Balance Model (EBM), and

1 This is not a suggested name of the
m-file, but an ID to help you not get
confused as to which script or function
is being referred to in the text ...

test it.

(See Figure 2.2.)

2.1.2 Next, you’ll turn your EBM script (scr_1) into a function (fun_1)2

2 Once the EBM function has been
created, you do not at any point edit it
any further!

– passing in the solar constant and albedo as parameters, and
returning the surface temperature. (And test it.)
(See Figure 2.3.)

2.1.3 In the penultimate Subsection (’Calculating the evolution of the solar
constant’), you’ll create a new function (fun_2), which will take
time (counted forward from the time of formation of the Sun) in
Ga, and return the value of the solar constant at that time (S(t)
(Wm−2)).
(See Figure 2.4.)

And then ...

2.1.4 ... finally (Subsection ’Evolution of Earth’s surface temperature’), you’ll
create one last script (scr_4), with a loop in time in it, and from
within this loop, you’ll call first the solar constant function (fun_2),
taking time as an input and returning the value of S(t), which you
will then pass into the EBM (# fun_1), taking the value of S(t) as
input (along with albedo) and returning the surface temperature at
time t – T(t).

(See Figure 2.5.)

numerical modelling – zero-d / equilibrium 19

OPTIONAL – model parameter sensitivity / loop exercises:
You can also take the EMBM function (now ignoring the solar con-
stant function), and play some theoretical games with it in order to
understand how sensitive global surface temperature is to key vari-
ables (solar constant and albedo):

2.1.5 In the Subsection ’Parameter sensitivity experiments using the EBM –
#1’, you will create a new script (scr_2) with a single loop in
it. Within the loop, you will make a call to the EBM function (#
fun_1) that you created.3 3 DO NOT put code the loops into the

EBM function – leave the function alone
...

(See Figure 2.7.)

2.1.6 Then, in ’Parameter sensitivity experiments using the EBM – #2’ – an ex-
tension to the previous Subsection work, you will create another
new script (scr_3), this time with a double (nested) loop in it. As
before – within the loop, you will make a call to the EBM func-
tion. Note that there is going to something of a diversion in this
Subsection that will further help illustrate nested loops for you.
(See Figure 2.9.)

20 ∼isempty(intersect(’models’,matlab))

2.1.1 The basic EBM

Figure 2.1: The pattern of absorption
bands generated by various greenhouse
gases and aerosols (lower panel) and
how they impact both incoming solar
radiation (upper left) and outgoing
thermal radiation from the Earths
surface (upper right). (Figure prepared
by Robert A. Rohde for the Global
Warming Art project.).

To kick off – create a new script (m-file) (’scr_1 ’ in the summary
notation) and code up the analytical solution to the basic global mean
energy budget at the surface of the Earth (see Box) in a program
structure illustrated schematically in Figure 2.2.4 The equations for

4 Note that the code is relatively simple
and does not involve (yet) loops or
conditionals or anything like that.
Although ... I am sure it will involve
lots of nice juicy comments and sensible
variable names(?)

Simply set up the values of the
various constants and parameters
you need at the start of the code, then
solve for T at the end of the code. The
structure (omitting % comments) of
your code may look like:

% section for constants
(variables you do not
expect ever to change)
...
% section for parameters
(variables you might
adjust)
...
% solve for T
T = . . .

in-coming and out-going radiation (energy) were given previously.
You simply need to re-arrange these in terms of T (i.e. T = ...) and
write them as code. This will form the basis of subsequent, more
complex (and later, time-stepping) models. In detail:

You are given:

Fin = (1−α)∙S
4

and

Fout = ε ∙ σ ∙ T4

and are told at at equilibrium:

Fin = Fout

You can then write:

(1−α)∙S
4 = ε ∙ σ ∙ T4

You task is then to re-arrange this equation in terms of T – do this
first on paper before worrying about any code.
How to write the math down as MATLAB code? For the first part
(Fin), we could e.g. write:

Fin = ((1-albedo) * solar_constant)/4;

This pretty well much as you would write as math (on paper) with
the exception of the variables having much longer names than you
would typically use in math (where often Greek characters, with
or without sub- or super-scripts, are used). Here, albedo and
solar_constant are variables holding the values of planetary
albedo and solar constant, and the result of the calculation is as-
signed to a variable Fin . For completeness, you would define these
values, e.g.

albedo = 0.3; % initial albedo assumption

solar_constant = 1368.0; % set modern solar constant

Fin = ((1-albedo) * solar_constant)/4; % energy in

(and you might add to the comments, to include the units for each
variable).
For writing out the Fout part of the equation in code, you will need
to find (from the Internet?) the value of the (Stefan-Boltzmann) con-
stant. When you have found this, assign this value5 to a variable, 5 Obviously, in this example, this is

NOT the actual value ...e.g.

numerical modelling – zero-d / equilibrium 21

sb_constant = 9.9999E19;

... and you will need to be careful with units of this (Wikipedia, for
example, will provide the Stefan-Boltzmann in a variety of units).
Use a ’dimension’ check to see if you have the units correct. This
works as follows:

In the equation:

Fout = ε ∙ σ ∙ T4

– on the left hand side we have units of Wm−2, and on the right hand
side ε, the emissivity, is dimensionless, and T4 has units of ... K4. The
Stefan-Boltzmann constant, σ, must be in units that balance this, i.e.
Wm−2K−4, such that:

Wm−2 == [] ∙ Wm−2K−4 ∙ K4

(where [] is indicating no dimension (units) for ε).
Also note in the context of the Stefan-Boltzmann constant, σ, how

scientific notation (floating point) numbers are dealt with in MAT-
LAB. For example, while in normals maths speak, you might write:

x = 9.9999 × 1019

in MATLAB you would write:

x = 9.9999E19

although, you could also write this out long-hand and more like the
maths speak version x = 9.9999 × 1019, if you prefer, e.g.

x = 9.9999 * 10∧19

(There are equivalent representations, although the 1st one is more
compact and hence less prone to errors (bugs).)

Figure 2.2: Form of the basic EBM
model.

So coming back to what exactly you need to do in your m-file – writ-
ing down in MATLAB an equation for T (temp) – you can either
write this out in full in a single line, or make use of the code for Fin ,
and build on that. For the latter option, knowing that Fin = Fout, you
should be able to see from the equation for Fout, that if you divide Fin

by (ε ∙ σ) (or divide by ε, then divide by ε), that you will be left with
the 4th power of T. You then need to take the 1

4 root of that, which
you can write in MATLAB as:

temp = temp4 ∧0.25;

or if you prefer:

temp = temp4 ∧(1/4);

22 ∼isempty(intersect(’models’,matlab))

(where I am assuming that temp4 is the partially re-arranged equa-
tion that gives the 4th power of T).

For now in your script m-file – prescribe the value of S (variable:
solar_constant) – for which the modern value is 1368 Wm−2 (S0)
as well as the value of planetary albedo (α = 0.3, variable: albedo) –
somewhere near the start of the program (see Figure 2.2).

Now run it.
If you did not screw-up the units on the Stefan-Boltzmann con-

stant, then you should have an equilibrium (global, annual mean)
surface temperature of around 14°C6 ... If not – debug. Assuming 6 Remembering to convert from Kelvin

(K) to degrees Centigrade (°C). In the
equation you have re-arranged, T is in
units of Kelvin (K).

that the code ran without errors but gave a nutty answer, try the
following fault-finding sequence:

1. Check that the units are correct!!!
2. Check that the equation has been re-arranged correctly – a
common source of errors is incorrect placement of parentheses
... or not placing parentheses around multiple variables you are
divining something all by.
If it helps you to avoid confusion and potential errors and bugs
by breaking down calculations into multiple steps using tempo-
rary/intermediate variables and partial calculations ... then do
it!
3. If still ’no’ – maybe take the 2 component equations (for Fin and
Fout), plug S into the equation for Fin and then play with different
values of T to find a value for Fout that is approximately equal – is
the value for T sane? If not, double-check the units and values in
both component equations.

Once it is working, have a quick play about, changing the value of S
and albedo (α) (saving the m-file each time and re-running) to get a
vague feel for how sensitive the surface temperature is to these two
parameters.

numerical modelling – zero-d / equilibrium 23

2.1.2 The EBM as a function

Figure 2.3: Form of the basic EBM
model as a function.

We’ll now make your model more flexible so that it can be applied
to the subsequent Examples. So – turn it into a function7 that takes in

7 Refer to earlier in the text and also
help on the required structure/syntax
of a function. Recall the basic structure
of a function m-file, has as its VERY
FIRST LINE:

function [OUT] = ...
FUNCTION_NAME(IN)

where OUTrepresents one (or more)
variables that are passed out (the ’re-
sult’ of the function), FUNCTION_NAME
is the name of your function, and IN is
the name (or names, comma-separated)
of one (or more) variables (parameter
values) that are passed into the func-
tion. (The very last line of the function
should have an end.)

For example, to pass in two variables,
IN_1 and IN_2 , you’d have:

function [OUT] = ...

FUNCTION_NAME(IN_1,IN_2)

2 parameters – the solar constant (S) and the mean global planetary
albedo (α) (see hint in the margin!!). The function should return the
global mean surface temperature, T.8 (See Figure 2.3) Remember that

8 Note that the parameters passed
into, and returned by, the function,
can be called anything you want. As
long as they are useful (and clearly
defined/explained in a comment
somewhere).

you can directly replace the symbols in an equation with variable
names in MATLAB, e.g.

S → solar_constant

α → albedo

T → temp

(or whatever you like, as long as the names help you in the coding
and debugging). Or if you prefer – create a new (empty) function
(select New and then Function from the MATLAB toolbar/menu-bar)
and then copy-paste in the contents of scr_1.m. Note that in your new
function version of the program, you no longer define the values for
solar_constant and albedo in the m-file – instead, these values
are passed into the function when you call it. For instance, if at the
top of the function (see side-note) you defined:

function [temp] = fun_1(solar_constant, albedo)

then when you call the function at the command line:

» fun_1(1368.0,0.3)

you are passing in the value 1368 (Wm−2) – assigned to the variable
solar_constant (in fun_1.m), and the value 0.3 (dimensionless) –
assigned to the second variable in the function definition (albedo).
The function then returns whatever value you have calculated and
assigned to the variable temp , back to you (and which then appears
at the command line).

Try playing with the function in the same way as before, but now
passing the different values of S and α (rather than having to edit the
m-file, save, and re-run each time). To use the function (assuming you
called it e.g. fun_1), and assuming the 2 passed parameters are in
the order: S, α and are given their default values, you’d write (at the
command line):

» temp = fun_1(1368.0,0.3);

(and get a value close to 14°C returned and assigned to the variable
temp , and if not – debug it ...).

24 ∼isempty(intersect(’models’,matlab))

2.1.3 Creating a function for the evolution of solar constant through ge-
ological time

In this sub-subsection, and as a precursor to simulating how Earths
surface temperature may have changed through geological time, you
are going to code up a new function that calculates (and returns) the
value of the solar constant as a function of time.

So far you only have a function equating solar constant (S) to
temperature (T). What you need is some way of equating time (t) to
the value of the solar constant at that time S(t) (which you can then
turn into temperature). We’ll remedy this toot sweet.

Start by creating a new (blank) m-file and define it as a function
that takes in a variable for time, t (in units of Ga) and spits out (aka,
returns) the calculated value of S(t) (Wm−2) (this function will be
’fun_2 ’ in the on-going notation and obviously saved as fun_2.m).
i.e., your function definition (at the top of the m-file) will look some-
thing like:

function [St] = fun_2(t)

where now I am shortening the variable name for the solar con-
stant (to ’S’) and then adding a ’t ’ to remind me that it is a time-
dependent value (hence St rather than e.g. solar_constant_time).
The code structure you are aiming for is illustrated in Figure 2.4.

Solar constant
The long-term evolution of solar

luminosity Lt as a function of time t
can be approximated [Gough [1981];
Feulner [2012]) by:

Lt
L0

= 1
1+ 2

5 ∙(1− t
t0

)

where t0 is the age of the sun –
4.57 Gyr (4.57×109 yr) and L0 is
the present-day solar luminosity
(3.85×1026 W).

The value of L0 is equivalent to a
flux (Wm−2) of 1368 Wm−2 incident
at the top of the atmosphere at Earth
– the present-day solar ’constant’
S0. In the equation, L can hence be
substituted for S to give the value of
S (Wm−2) at any time (S(t)), i.e.

S(t)
S(t=0)

= 1
1+ 2

5 ∙(1− t
t0

)

or, in terms of the value of S at time
t and using using the notation S0 in
place of S(t=0):

S(t) = S0

1+ 2
5 ∙(1− t

t0
)

Note that in the formula, t is
counted (in Gyr) relative to the
formation of the Sun (i.e. present-
day would be: t = 4.57).

The reference value of t: t0, is t0 =
4.57 Gyr.

The reference value of S: S0 = 1368
Wm−2.

Figure 2.4: Schematic structure of
code for calculating the solar constant
(output) as a function of time (input).

The background to the equation that will go into your function is
given in the Solar constant Box. In this, you’ll first need to substitute
the modern value of the solar constant (S(t=0) or S0) into the equation
to leave it in terms of S(t) (the solar constant value at time t).

Your function, aside from the all-important 1st line (and end at
the end) and appropriate % comments, need have little more in
than a definition for any constant you might want to use, such as the
modern value of S(t=0) and perhaps the reference time9 (t0) (4.57 Ga)

9 Which is also equal to the current time
(since the formation of the Sun).

... followed by a single line for the equation giving the value of S(t):

S(t) = S0

1+ 2
5 ∙(1− t

t0
)

As before – your primary task is to convert this equation into
MATLAB code.

To do this, you could either create parameters (variables) contain-
ing the values of S0 and t0 (better), e.g.

ref_S0 = 1368.0;

ref_t = 4.57;

and use the variable names in the code in place of actual (constant)
values, e.g.:

St = ref_S0 / (...)

numerical modelling – zero-d / equilibrium 25

or (less good from a programming perspective), plug them directly
into the code, e.g.

St = 1368.0 / (...)

Regardless of which approach you take, remember that the variable t

that is is passed in as per defined in the function header (see above),
will need to appear in your equation.

The result of the equation – the value of the solar constant at that
time, is then assigned to the variable St and passed out as the result
of the function (again, as per the function definition/header).

In the code and in general – use as many pairs of (nested) paren-
theses as you need to help make the equation clear. You can also use
spaces to help make it clearer which end parenthesis corresponds to
which opening parenthesis

When you think you have done this – check it – plug in some
values of time into your function, i.e.

» St = fun_2(4.57);

In this example, should return a value of 1368 (Wm−2) which is as-
signed to the variable St .

OPTIONAL – As a test – see if you can adjust your function (but
save it under a different/new name so as to retain a copy of the origi-
nal) so that rather than passing in time, measured since the formation
of the Sun, you pass in time relative to now (i.e. » fun_2(0.0)

would then give you a value of 1368). Hint: the time used in the
equation, must be as Gyr following the formation of the sun, but the
value you are passing in, has had a value of 4.57 (Ga) removed from
it to make it relative to now. Hence, before the calculation in the func-
tion, you need to add this value back to the time variable passed in,
to make it absolute rather than relative time again.

26 ∼isempty(intersect(’models’,matlab))

2.1.4 Putting it all together – using multiple functions to calculate global
surface temperature as a function of geological time

Finally ... you are going to bring it all together and plot the evolution
of the surface temperature of the Earth, at 100 Myr intervals, span-
ning approximately the age of the Earth and much of its potential
long-term future.

Start by creating a new (yet another blank m-file) script (’scr_4 ’)10. 10 The structure of the overall program
is shown in Figure 2.5.You are going to need a loop in time (e.g. with the variable name t),

perhaps looping from 0.0 (the age of formation of the Sun) to 10.0 Ga
(with the step size being 0.1 Ga). Within the time loop, you will:

1. Pass to your solar constant function (fun_2.m) your variable
containing the current value of time (t), and obtain the corre-
sponding value of the solar constant (S(t)), and assign to a variable
e.g. St .
Note that you do not copy-paste the fun_2.m code into scr_4.m ...
you simply call the function within the loop exactly as per you did
at the command line (but assign the result to a variable), e.g.

St = fun_2(t);

(NOTE: The summary figure (Figure 2.5) is intended to indicate
the flow of information (variable values) and relationship between
the script and two functions m-files, rather than that the code for
the 2 functions should be embedded (which it should not) within
the actual script file itself ...)

2. Call your zeroD EBM function (fun_1.m) to calculate the corre-
sponding surface temperature, passing it the value of S(t) that you
have just calculated and assigning the result to e.g. temp :

temp = fun_1(St,albedo);

(or simply replace albedo with a fixed value, e.g. 0.3).

3. Store in an array, or pairs of vectors, the current time in the
loop alongside the corresponding value of T. For hints on the
various different possibilities in doing this see earlier in the text,
but you might e.g. do something like:

vt = [vt t];

vtemp = [vtemp temp];

(having first (before the loop) initialized these vectors as empty,
e.g. vt=[]; and vtemp=[];), which will append the current time
to vectorvt , and at the same row number, the current temperature
to vector vtmp .

Once the loop has completed, plot surface temperature (y-axis) as a
function of time (x-axis).

Figure 2.5: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, and solar constant
and EBM functions. Note – in this
schematic, the code contents of the
two functions remain in their respective
m-files. The function code does not get
copy-pasted into the scr_4.m script file.
The red arrows indicate the passing
of variable values ... from scr_4.m
into each function, with the functions
returning variable values back to
scr_4.m.

numerical modelling – zero-d / equilibrium 27

Likely bug possibilities include mistakes with nested parentheses
(()) , units (e.g. K vs. °C), and time, which should run forward from
zero (the formation of the Sun). A schematic of the program structure
is shown in Figure 2.5 to aid you.

Assuming that you have managed something like Figure 2.611 –

11 Note that a line has been added to
highlight t = 0 (i.e. the present-day) –
see line (see earlier). This plot also has
an altered time-axis and time is plotted
relative to now – see below.

what strikes you, in light of (hopefully) what you know about the
past history of climate and evolution of life on this planet, about your
model projection (for the past)? What is ’missing’?

-4 -3 -2 -1 0 1 2 3 4

Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

Figure 2.6: Simple EBM projection of
the evolution of Earth surface tempera-
ture with time. Time at the present-day
is highlighted by a vertical line (drawn
using the MATLAB line function).

As an additional step and noting that the time-scale is not entirely
helpful in terms of knowing when ’now’ is, you could:

1. Draw on a vertical line (hold on) at 4.57 (’now’, relative to the
time of formation of the Sun).

2. Transform the x-axis time scale to time relative to now (as shown
in Figure 2.5).
To do this – as you loop through time relative to the formation of
the Sun, when you save the current time for plotting, you could
subtract 4.57 from the loop value before passing it to fun_2.m .

3. Or ... you could save the time as given in the loop, but transform
the x-axis time scale to time relative to now by subtracting a value
of 4.57 when you come to plot it, e.g.:

» plot(x-4.57,y);

or more explicitly so you can see what is going on:

» plot((x(:)-4.57),y(:));

Note that you do not have to plot the entire dataset and could set the
x-axis limits to e.g. −4 → +4 Gyr relative to present (again as per
the example in Figure 2.5)..

28 ∼isempty(intersect(’models’,matlab))

2.1.5 Parameter sensitivity experiments using the EBM – #1

[Note that in this section, variables names are shortened and simpli-
fied as compared to before, with S replacing solar_constant , and
T replacing temp (and then a replacing albedo). Feel free to retain
the previous (or whatever you like) naming convention.]

Common in numerical modelling is quantifying how sensitive a
system is to the choice of parameter values – called a sensitivity exper-
iment. You may already have gotten a feel for roughly how sensitive
T was to changing S on its own, or changing α on its own, but what
about when both parameters vary together? In this exercise you are
going to utilize your energy-balance model function (’fun_1 ’ in the
summary notation) to explore this.

Create a new blank script (’scr_2 ’) and define 2 parameters near
the start of the m-file – one for the value of S and one for the albedo,
α, then further down the code, call your function (fun_1), passing
it these 2 parameters but remembering that you need to assign the
result of your function (fun_1) to some variable12. So far so boring, 12 i.e.

T = fun_1(S,a);

assigns the result of your temperature
calculation to the variable T.

as this is in effect what you had been doing previously in ’playing’
with the energy balance function.

Starting with a simple 1-D case and considering a progression of
different values of S, you are going to need to create a loop13. There 13 You are going to put the loop in the

script (# scr_2), NOT the function (#
fun_1).

An entire plane of Hell is reserved
for anyone coding the loop in the
function.

are two/three ways of constructing the loop14:

14 In both cases a for ... loop.

loop option #1 You could loop directly through the range of values of S
that you are interested in, e.g.

for S = 1000:100:1500

% CODE GOES HERE

end

in which case, S will go from 1000 to 1500 (Wm−2) in steps of 100
(Wm−2) 15. 15 You can pick a different range and

increment ... this is just a quasi-random
example to illustrate ...

Perhaps a little inconveniently, this does not pass exactly through
the modern value (1368 Wm−2), although when you plot as a con-
tinuous line (e.g. in plot), maybe this does not matter. Remember,
you could also interpolate the result later (e.g. on a new vector of
solar constant values that include 1368).

You could have addressed this by constructing a slightly less
convenient form of the loop, e.g.:

for S0 = 1068:100:1568

% CODE GOES HERE

end

which now passes exactly through the modern value of S.
Or ... you could have made the loop go around in steps of 1

(and hence passing through a value of 1368) for a total of 501 loop

numerical modelling – zero-d / equilibrium 29

iterations(!) But this is over-kill in terms of data generation if the
calculated equilibrium is not particularly sensitive to the value of
solar constant (i.e. not highly non-linear).

loop option #2 Alternatively, you could have an integer count for the
loop, and then derive a value of S0 from this. For example:

S_modern = 1368.0;

for m=-5:5

S = S_modern + 100 * m

% CODE GOES HERE

end

Look carefully through this code and follow what is going – as
mcounts from -5 to 5 (in steps of 1), 100 times the value of m

is added to the modern value of S (S0) 16, meaning that S ends 16 The variable definition S0_modern =
1368.0 at the top of the code fragment.up going from S0_modern - 500, to S0_modern + 500 Wm−2 (in

steps of 100 Wm−2).

loop option #3 Or ... as a variant on #2:

S_modern = 1368.0;

for m=1:11

S = S_modern + 100 * (n - 6)

% CODE GOES HERE

end

which does exactly the same (do a mental check on this) but now
counts mstarting from a value of 1.

To practice your coding skills – try coding up all 3 variants and sat-
isfy yourself that you are happy how they all work, and how they are
all equivalent to each other.

So what does it matter, and/or is one ’better’ than the others?
Although the all are in effect equivalent, the advantage with the
second (and third versions) is that you explicitly have an integer
counter. For the first version, you’d have to add lines, e.g.:

count = 0;

for S = 1068:100:1568

count = count + 1;

% CODE GOES HERE

end

in order to have a loop count.
And why might we want some sort of an integer counter in the

first place? Well, you might want to save the data, i.e. the calculated
(by your function) value of T vs. the inputted value of S. This data
will need to go into an array, with one row corresponding to each
value of S.

As per constructing the loop itself, there are also multiple (two-
and-a-bit) obvious alternative ways of saving the data (and assigning
calculated values to sequential locations in an array):

30 ∼isempty(intersect(’models’,matlab))

save option #1 In this, you create the necessary array(s) beforehand,
e.g. using the zeros function. For instance, to create a vector with
11 rows (and 1 column), suitable for saving the value of T calcu-
lated by each call to your EBM function (fun_1.m), you could write:

data_T = zeros(11,1);

which would create a (single) column vector with 11 rows. You’d
also need an equivalent vector (e.g. data_S in this example) for
storing the corresponding value of S used in the temperature
calculation. These vectors are created before the loop starts.
Then, within the loop (and after the calculation of T), you’d assign
your values of S and T by using whichever index you created17: 17 i.e. which of the loop OPTIONS you

chose earlier.
data_S(m) = S;

data_T(m) = T;

or:

data_S(count) = S;

data_T(count) = T;

where mand count are integers, starting at a value of one, and
incrementing by a value of one on each successive execution of the
loop. m(or count) represents an index that allows you to store the
result of each successive calculation (as well as the corresponding
input value) in a vector.

save option #2 Related to the above – you should recognise that creat-
ing 2 sperate vectors is messy, when you could easily create just
a single matrix instead. To create the blank array, we would now
write:

data = zeros(11,2);

which creates a matrix of zeros of 11 rows by 2 columns.
Within the loop, data is now assigned:

data(m,1) = S;

data(m,2) = T;

(where the first column is used to store the solar constant value,
and the second the corresponding temperature value).

save option #3 Or ... MATLAB will allow you to ’grow’ a vector, one
element at a time (but not for matrices).18 The the code within

18 The vector automatically grows in
length as you add values to it. If you
don’t believe me, try the following:

» A=1;
» A(2) = 2;
» A(3) = 3;

You could instead define at the start f
the code (before the loop) a vector of
zeros of the correct length, the ’correct
length’ being the number of time
around the loop. See function zeros .
Or even NaNs ...

the loop actually looks identical, but instead of creating a pair of
vectors (or a matrix) of a size (number of rows) that matches the
number of iterations of the loop, you create an empty vector (or
matrix)19: 19 Try the code without creating empty

vectors at the start, and see what
happens? Why is MATLAB unhappy?data_S = [];

data_T = [];

and then within the loop:

numerical modelling – zero-d / equilibrium 31

data_S = [data_S; S];

data_T = [data_T; T];

Note that you cannot grow a matrix by adding data for a single
cell, as a matrix always has to have a complete number of rows
and columns. Instead, you’d have to write:

data = [];

during initialization before the loop starts, and then with the loop:

data = [data; S T];

i.e. concatenating a vector [S T] (and hence a complete row) to
the end of the matrix data.

Figure 2.7: Schematic structure of the
model configured to carry out a single
parameter sensitivity study.

Pick one of these (i.e. a way of saving a pair of values each time
around the loop) and code it up (or better, try all of them in turn!).

Finally, at the end of your program (after the end of the loop), you
can now plot (plot or scatter) how T varies as a function of S0,
having saved all the values of S you tested, plus the corresponding
calculated temperatures, in a handy matrix (or pair of vectors).

The structure of your code should look like Figure 2.7. and your
resulting figure (depending on the range you assume for S), some-
thing like Figure 2.8.

32 ∼isempty(intersect(’models’,matlab))

2.1.6 Parameter sensitivity experiments using the EBM – #2

In this final sub-subsection, we’ll extend the parameter sensitivity
analysis of your model to 2D, assuming for instance that you are now
interested in how T varies both as a function of solar constant as well
as, as a function of α (surface albedo). You’ll need to vary both S and
α, and in all combinations of the two in order to achieve this. In fact,
you’ll do this in a grid pattern, with S increasing in steps on one axis
(as before), and α on the other.

1100 1200 1300 1400 1500 1600 1700

Solar constant (W m -2)

-5

0

5

10

15

20

25

30

T
em

pe
ra

tu
re

 (
de

gr
ee

 C
)

Figure 2.8: Sensitivity of global mean
surface temperature vs. solar constant
(mean surface albedo held constant at
an albedo value of 0.3).

Hopefully, you might have guessed that you’ll need a nested loop(?)
– one loop going through all possible values of α, for each and every
possible value of S?? i.e. in a structure like:

for ...

for ...

% CODE GOES HERE

end

end

Start with a new (script) m-file (’scr_3 ’). For constructing the
loop – you have already seen the 1D example of parameter sensitivity
code, and also an example of creating a nested loop for a 2D grid.
Chose whether to use counters (e.g. n and m) in the for loops and
then derive the values of S and α from these counters (better), or loop
through the values of S and α directly and create counters (as per for
the 1D case). Call your function (fun_1) for solving the global surface
temperature within the innermost loop (passing it the values of S
and α generated in the loop). A schematic of the program structure is
shown in Figure 2.9.

Figure 2.9: Schematic structure of the
model configured to carry out a double
(in terms of solar constant AND now
albedo) parameter sensitivity study.

For saving the data (within the loop), you cannot simply index
the locations you want in a 2D array (matrix) that did not previously
exist and expect it to ’grow’ as before, because a matrix must have all
complete rows and columns and you are generating the results (value
of T), one cell at a time, while you’d need a complete row or column
of results in order to append to the results array. Instead, near the
start of the code (before the loop), create a matrix of the size of the
parameter grid. For example, if you were going to loop through 10
different values of S and 10 different values of α, you could write:

data_output = zeros(10);

(creating a 10 × 10 array of zeros). Or if for example, you had 20
different values of S, and 10 of α:

data_output = zeros(10,20);

(20 columns times 10 rows).
Within an (e.g. n,m loop if you did it that way), you then assign

your calculated value of T to the appropriate location in the array:

numerical modelling – zero-d / equilibrium 33

data_output(n,m) = T;

Don’t forget that you’ll also need to know the values of S and α that
correspond to the column and row numbers. Perhaps save these as
2 individual vector (as per before), or create 2D arrays for them with
each element corresponding to an element in the data_output

array, or simply just ignore them for now.
One slight complication if you chose to employ a pair of counters

for indexing the results array, and increment their value each time
around their respective loops (rather than having a integer count for
the loop itself (i.e. n and m) and derive the actual values of S and α

from that) – the innermost counter must be reset in value each time
the outer loops starts. This would look like:

count_outer = 0;

for ...

count_outer = count_outer + 1;

count_inner = 0;

for ...

count_inner = count_inner + 1;

% CODE GOES HERE

end

end

2 4 6 8 10

Solar constant (W m -2)

1

2

3

4

5

6

7

8

9

10

11

A
lb

ed
o

-20

-10

0

10

20

30

40

50

Figure 2.10: Global mean surface
temperature (°C) as a function of solar
constant and surface albedo grid point
number.

Be careful here that you increment the value of the count variable
before using it to index the position in an array – an index of zero is
invalid in MATLAB. Or, you could initialize the count variable to a
value of 1 before the start of the loop and increment its value after
you use its value to index a location in the results array.

When you *think* you have this working and have generated
a matrix of T values20, plot the resulting surface of T vs. the two

20 HINT: create a 2D array of the appro-
priate size first, before the loop starts,
using zeros , and then populate it with
the values of T as the loop loops.

parameters. Rather than using e.g. imagesc (Figure 2.11)21, try

21 Note that the temperature grid points
are plotted as a function of column and
row number and that the plots ends
up ’up-side-down’ compared to the
coutourf version.

contour 22 or contourf (e.g. Figure 2.10). 22 You’ll need to employ meshgrid
based on the same 2 vectors of values
that the loop creates for S0 and α.

-25

-20
-15

-15

-10

-10

-10

-5

-5

-5

0

0

0

5

5

5

10

10

10

15

15

15

20

20

20

25

25

25

30

30

30

35

35

40

40 45

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

Solar constant (W m -2)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
lb

ed
o

-20

-10

0

10

20

30

40

50

Figure 2.11: Global mean surface
temperature (°C) as a function of the
value of solar constant and surface
albedo.

34 ∼isempty(intersect(’models’,matlab))

2.2 ’Daisy World’

Figure 2.12: Daisy World

There is an absolutely classic paper from the early 1980s – Watson et
al. [1983] – that illustrates how simple (biological) feedback on the
climate system can lead to a close regulation of global climate over an
appreciable span of the Earths past (and future). The premise for this
model is a planet covered in bare soil (essentially, as per in the earlier
EBM), but on which 2 different species of daisies (could be any pair
of plants with contrasting properties) can grow – one white (high
albedo) and one black (low albedo) as per Figure 2.1223. Because the

23 As pointed out in Watson and Lovelock
[1983], the actual ’colors’ are immaterial
– just that their albedos differ.

two species modify their local (temperature) environment and their
net growth depends on how close the local temperature is to their
optimum growth temperature, a powerful climate feedback operates
and as the solar constant increases, the abundance of daisies switches
from black to white – driving an increasing cooling tendency of the
planet surface in the face of increasing solar-driven warming. This
regulation emerges as a property of the dynamics of the population
ecology and interaction with climate and does not require an explicit
regulation of climate to be specified. Just dumb daisies doing their
day-to-day stuff.

We’ll code up this model ... but as before, in discrete stages (aka,
the following Subsections).24 24 Note that what immediately fol-

lows is just a summary list ... not the
instructions themselves ...8.2.1 This will be the simplest addition to your previous model25. You’ll
25 i.e. the one comprising a loop
through time, and within this loop,
calls to your function to convert time
to solar constant, and take the solar
constant (and albedo0 and solve for
mean global surface temperature. This
was ’# scr_4 ’ in the previous Section
notation.

create a new ’fixed daisy’ function (here called fun_3) which
will take no(!) inputs, and return a value for mean global albedo.
You’ll also copy-rename yourself a new script (’scr_5 ’ – based
on your previous m-file scr_4) and in it, take the albedo value
generated by the call to the daisy function, and pass it into your
EBM function (m-file fun_1).
(See Figure 2.13.)

8.2.2 Now, in the next stage it gets a little more complicated, because in a
further new function (’fun_4 ’ – copy-renamed-and-edited from
fun_3), you’ll modify the equations such that the relative abun-
dance of each daisy type is now responsive to the value of global
temperature and incorporates some population dynamics of the
daisies.

In the main (time since the Sun formed) loop (in scr_5), the
situation thus becomes – the relative fractions of dark and light
colored daisies is now a function of global surface temperature,
yet ... global surface temperature, through the mean (fractional
area weighted) albedo of the daisies, is a function of the relatively
fractions of dark and light colored daisies – a circularity (feedback
loop). We’ll resolve this circularity (i.e. come to a steady state

numerical modelling – zero-d / equilibrium 35

solution) by creating an inner loop in scr_5 that comprises only
the daisy (abledo) function (fun_4) and the EBM function and
keeps looping until ... well, we’ll start by simply prescribing a
fixed number of iterations of the loop.
(See Figure 2.15 for a schematic of the code setup.)

8.2.3 Finally (almost) – we’ll allow the daisies affect their *local * (temper-
ature) environment. Now it gets more interesting (honest!). Al-
though the code structure is exactly the same as in the last step26, 26 A loop through geological time, as

per in the previous Section. Within this
main loop, you’ll have a sub-loop with
just the daisy function followed by the
EBM function.

you will require a further copy-rename-and-edit of the previous
daisy function (’fun_4 ’ → ’fun_5 ’) and one further copy-rename-
and-edit of the previous script (’scr_6 ’ → ’scr_7 ’) that calls the
daisy function.

8.2.4 In a minor extension to the previous work, we can modify the loop
involving the daisy function and EBM function such that it will
proceed until an adequately accurate solution (f0r global tem-
perature) has been converged upon (rather than looping a fixed
number of times).

OK then – here goes ...

2.2.1 ’fixed daisy’ daisy-world

To start: read Watson and Lovelock [1983]. You should be able to take
away from this some of the essential information that you need to
specify and keep track of. For now, we’ll just concern ourselves with
defining the albedo of bare ground (soil) and the albedo of each daisy
together with how much area is covered by each species of daisy.

As summarized above – create a new function (fun_3) and con-
figure it so that it returns a single parameter – albedo. For now it has
no inputs.27 How it relates to your previous program and code for

27 A funny sort of function, although
pretty well much like pi .

how the Earth’s surface temperature evolves over geological time, is
illustrated in Figure 2.13.

Figure 2.13: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant
and EBM functions, and now the ’daisy’
albedo function.

In the daisy/albedo function (fun_3) near the top, define yourself
some parameters for the daisy model:

% define model parameters - daisy albedo

par_a_s = 0.3; % albedo - bare soil

par_a_b = 0.1; % albedo - black daisies

par_a_w = 0.5; % albedo - white daisies

% define model parameters - daisy land fraction

fb = 0.01; % (land) fraction - black daisies

fw = 0.01; % (land) fraction - white daisies

(or using whatever parameter names you prefer). Here, the albedo
values associated with each daisy type are fixed and will be used
regardless of what the model does. The values have been chosen,

36 ∼isempty(intersect(’models’,matlab))

assuming equal proportions of black and white daisies, to given an
average of 0.3 – the albedo of bare soil and also the assumed value
in the previous EBM. You’ll modify and play with this value all too
soon enough. The surface area fraction values are just initial values to
start the model off with.28 28 As you’ll come to see subsequently,

these cannot be zero. Or rather, a daisy
species can start with a fractional area
of zero, but you’ll never ever get any
of that species growing, regardless of
the environmental conditions (because
there are none to start with!).

These parameters relate to the symbols in the equations that fol-
low, as follows:

αs – par_a_s (albedo – bare soil)
αb – par_a_b (albedo – black daisies)
αw – par_a_w (albedo – white daisies)
Fb – fb (land) fraction – black daisies
Fw – fw (land) fraction – white daisies

Next, and actually the only line of any note in the function – you
need to calculate the average albedo29 – calculated based on the area

29 Note that it is very easy to accidently
prescribe a total area covered by daisies
of >100%. You should ideally put a
check (if ... end) in the code
before it tries to calculate anything for
whether the total area initially covered
by daisies exceeds what is possible. If
this is the case, your code might spit
out a warning message (a simple disp
command would do). You might also
terminate your program (see exit).

weighted average of: bare soil, white daisies, black daisies. The cal-
culation is simple and you already have the areas of the two species
of daisy as fractions. You weight the contribution to global albedo by
the albedo of each daisy by its fractional area. You then just need to
calculate the fraction of the Earths surface that is bare soil – the area
fraction not covered by daisies. In maths-speak, the mean albedo is
given by:

α = Fw ∙ αw + Fb ∙ αb + (1.0 − Fw − Fb) ∙ αs

where αw, αb, and αs, Fw, and Fb are as defined above. Bare soil is
simply whatever the fraction of the planet is not covered by daisies,
i.e. (1.0 − Fw − Fb).

You simply need to translate all this into MATLAB code using
the parameters you defined earlier (for αw, αb, and αs, and Fw and
Fb). The code will look pretty well much like the equation, but you
substituting whatever variable/parameter names you have chosen for
the symbols in the maths:

% calculate mean albedo

albedo = Fw * par_a_w + Fb * par_a_b + (1.0 - Fw - Fb) * par_a_s;

To be neater, we could also pre-calculate the fraction of bare ground,
Fg, and make ourselves a slightly shorter (and easier-to-debug) mean
albedo calculation, e.g.

% calculate fractional area of bar ground

Fg = (1.0 - Fw - Fb);

% calculate mean albedo

albedo = Fw * par_a_w + Fb * par_a_b + Fg * par_a_s;

Add these lines of code, which will be the one and only calcu-
lation that this particular MATLAB function ((fun_3), Figure 2.13)
carries out, just before the end of the function.

-4 -3 -2 -1 0 1 2 3 4
Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- fixed daisies

Figure 2.14: Evolution of global surface
temperature and the two populations of
daisies with time ... but with no change
allowed in the daisy populations
(d’uh!). The fractional coverage of
white daisies is shown by large empty
circles, and for black, by small filled
black circles. Data points for mean
surface temperature are color-coded by
temperature (color scale not shown).

numerical modelling – zero-d / equilibrium 37

That is actually it. All the variable/parameter values are specified
and fixed in the daisy function (see above), so nothing particularly
exciting is going to happen ... Regardless – run the the complete
model with the value of albedo now depending on the fraction of
white and black daisies – it should look identical to before in terms
of the evolution of surface temperature with time (it must, because
the default parameters above ensure that the mean albedo is always
0.3 and the daisies don’t even know anything about growing (or
dying) yet). Model (surface temperature) output, including how the
populations of the 2 species of daisy also vary with time, is shown in
Figure 2.14).

You might play briefly with the prescribed daisy area fractions
(Fb and Fw) and albedo values (par_a_b and par_a_w) and e.g.
check that when you specify a configuration with 100% of land area
covered by black daisies, the climate is much warmer throughout
the simulation, and when white daisies are assigned an initial value
of 1.0, the climate is always much cooler compared to in the default
simulation.

2.2.2 ’dumb daisy’ daisy-world

Step #2 in the evolution of the Daisy World model, and for a modifi-
cation which will actually make something ’happen’ (i.e. the simula-
tion will be different to that of the default EBM based simulation of
mean global temperature response to increasing S0). The daisy popu-
lation is now going to grow and die (but unlike Southern California,
not burn), with their relative fractions changing over time until an
equilibrium is reached (for a particular specified value of S0). Watson
and Lovelock [1983] give a simple population model formulation for
the change in area fraction covered by both sorts of daisy with time
(also see Box) that we will implement here.

Daisy population dynamics (1)
For an area fraction occupied by

white and black daisies of Fw and Fb,
respectively, the change in occupied
fractional area with time (t) can be
written:

dFw/dt = Fw ∙ (x ∙ βw − γ)
dFb/dt = Fb ∙ (x ∙ βb − γ)

where x is the free (i.e. not occu-
pied by daisies of any color) area of
(fertile) ground, equal to:

x = 1.0 − Fw − Fb

(assuming here, unlike the more
general case in Watson and Lovelock
[1983], that all the land area is po-
tentially fertile), β is a temperature-
dependent growth function (one
for each species of daisy), and γ the
mortality rate (as a proportion of
the area covered by that species of
daisy per unit time). The value of γ
given in Watson and Lovelock [1983]
is 0.3, but this could be a parameter
that you could play about with and
investigate its effects.

To simplify things to start with,
growth is a function only of the
global mean temperature (in °C):

βw = 1.0 − 0.003265 ∙ (22.5 −
T)2

βb = 1.0 − 0.003265 ∙ (22.5 −
T)2

(where the value of 22.5 °C is a ref-
erence temperature and represents
where optimal (maximum) growth
occurs).

The unit of population in Daisy World is fractional area covered
(rather than an absolute number of individuals as we had before,
but these are pretty much completely interchangeable). So from
generation-to-generation (or on each subsequent time step, if you
prefer to think of it that way), the fractional area of each species
will grow or shrink, depending on whether mortality is higher than
growth. Both growth and mortality are formulated as being depen-
dent on the fractional area (at the previous time-step), i.e. growth in
covered area depends on how much is already covered.30 Similarly,

30 Note the parallels with before – the
new fractional area is dependent on the
previous area, whereas before it was
the new population size (number of
individuals) that was dependent on the
previous population size.)

mortality also depends on the current areas of daisies. The growth
rate is further modified by the available fractional area, such that as
the area left shrinks, the growth rate shrinks. (Effectively, this is per-
haps trying to account perhaps for shrinking resources available for

38 ∼isempty(intersect(’models’,matlab))

further growth. It also has the effect of adding numerical stability to
the model and helps presents over-shoots where the total fractional
area covered by daisies far exceeds 1.0 ...). ?

How then to implement changing areas and growth of daisies in
code? (We’ll come to how to translate the equations into code after
ensuring we have the basic structure of the program built. A general
programming Plan of Action is given in the margin.)

Figure 2.15 gives a schematic of the overall code structure for this
model. The new difficulty here is that the relative fractions of dark
and light colored daisies is a function of global surface temperature,
yet ... global surface temperature, through the mean (fractional area
weighted) albedo of the daisies, is a function of the relatively frac-
tions of dark and light colored daisies – a circularity (feedback loop).
We resolve this circularity (i.e. come to a steady state solution) by
creating an inner (nested) loop that comprises only the daisy function
and EBM function.

DON’T PANIC. There are actually only 2 (or 3-ish), relatively in-
cremental changes, compared to previously. Start off by noting what
is the same – both the function for calculating the solar constant as
a function of time (fun_2) and the EBM model (fun_1) (tempera-
ture as a function of solar constant and albedo) are exactly the same
as before. The loop in (geologic time) and hence some of the script
(scr_6) is also the same. What is different and yet to-do?

Programming strategy:

• In general – start by identifying
any constants – i.e. fixed and invari-
ant, fundamental values, such as π
or the Stefan-boltzmann constant.
These values could be hard-coded
into the equation as numbers, but
better is to replace them with vari-
ables that you’d define at the top of
the m-file as this makes for neater
and easier-to read MATLAB code.
• Next identify any parameters

– values that are not fundamental
properties of the universe, but
may be considered invariant for
sequential uses of the equation.
The characteristic albedos of the
two species of daisies is a good
example – these values are ’fixed’,
although, one day you might change
them. If the code file is a script
– define MATLAB variables and
assign values to them, near the
start of the code file. Otherwise, if
a function, you may need to pass
these parameters into the function
and so they need to appear in the
function definition on the 1st line of
the code.
• Identify any output variables,

i.e. result(s) of the calculation. In a
function, these are invariably pass
back out and hence need to appear
in the function definition on the 1st
line of the code. Output variable
may also be input variables – i.e.
a calculation may take the current
value of a variable (as an input),
update it, and then pass it back
out. In which case, the variable will
need ot appear as both input and
output. Perhaps pick distinction
variable names to avoid confusion,
e.g. var_in and var_out .
• You may have local variables

(i.e. used only within the script and
out outside of it). If scalars, these
need not be defined and initialized,
unless used as e.g. a counting or
running-sum variable. If in doubt,
maybe also define and initialize e.g.
to zero local variables.
• Otherwise, it is mostly just

a case of writing the maths, in
MATLAB – changing symbols
where necessary and replacing
the letters (invariably) used in the
equations with your variable names.

1. Lets start with the daisy (albedo) function (which will be based
on the previous, fun_3 one). You could deal with the inputs and
outputs first. As as well as T, the previous values of the fractional
areas of the two daisies (Fw, Fb) are also required by the function
(which is different from before where the values were assumed
and the respective parameters set at the start of the function31).

31 So if you are copy-pasting the previ-
ous Daisy function, you need to delete
the lines:

par_f_w = 0.01;
par_f_b = 0.01;

This is because each time the daisy fractional area function is
called, the fractional areas are updated (hence why they are in-
puts). And outputs. Because the daisy function is updating the
fractional areas, these two parameters also need to be outputs too.
So the very first thing to do is to modify the function definition,
re-saving it as fun_4 (see Figure 2.15), so that the inputs are:

T, Fw, Fb

and the outputs are:

α, Fw, Fb

(see help of various sorts on functions, but it not at all a funda-
mental change as to compared to before). Of course, you need to
substitute the maths symbols for the actual variable and parameter
names you choose to use.

numerical modelling – zero-d / equilibrium 39

Then, the only other development in the function, is to imple-
ment the equations for daisy growth/death (see Box) and update
the values of Fw, Fb.

Figure 2.15: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant,
EBM, and ’daisy’ albedo functions.
Note the creation of an inner loop,
with EBM, and ’daisy’ albedo functions
called from within this, while the solar
constant remains called form the start
of the outer loop as before.

2. How to translate the given daisy population/growth equations
into code? We could start by substituting the value of γ for its
literature value of 0.3 to make it a little less scary. And also set the
growth rate function, β to 1.0 for now, so that does not distract us
either. The now simpler equations look like:

dFw/dt = Fw ∙ (x − 0.3)
dFb/dt = Fb ∙ (x − 0.3)

which says that the change in fractional area (dF), from one iter-
ation (generation or time step) to the next is proportional to the
current fractional area (F) multiplied by some stuff (x − 0.3).

We could re-write this in terms of a (loop) iteration number (n)
and also ignoring for now which daisy (black or white) we are
talking about:

F(n+1) = F(n) + F(n) ∙ (x − 0.3)

or rearranging:

F(n+1) = (1.0 + x − 0.3) ∙ F(n)

which says quite simply that the next fractional area estimate, is
equal to the current one, multiplied by (1.0 + x − 0.3). This should
look pretty familiar to you now and you should know how to code
this up, e.g.

for n=1:100

F = (1.0 + x - 0.3) * F;

end

taking 100 loop iterations as an example. But ... we are not writing
the population and albedo update code directly in the loop, but
rather, it is going into fun_4 and the function is called from within
the for n=1:100 ... loop (Figure 2.15). So rather (schemati-
cally):

for n=1:100

fun_2()

fun_4()

fun_1()

end

and within the function:

F = (1.0 + x - 0.3) * F;

The value of x in the equation is simply the fraction of the
planet not covered in daisies. And if we also bring both daisies
and their respective fractional areas back into the picture:

40 ∼isempty(intersect(’models’,matlab))

x = 1.0 - Fb - Fw;

Fb = (1.0 + x - 0.3) * Fb;

Fw = (1.0 + x - 0.3) * Fw;

3. Now you are in a position to worry about the temperature
dependent functions for growth, which were:

βw = 1.0 − 0.003265 ∙ (22.5 − T)2

βb = 1.0 − 0.003265 ∙ (22.5 − T)2

These are actually pretty simple – you take temperature, sub-
tract it from a value of 22.5 and square it, multiply it by 0.003265
and subtract from 1.0 ...

bb = 1.0 - 0.003265 * (22.5-T) ∧2

bw = 1.0 - 0.003265 * (22.5-T) ∧2

Really – just as it looks written down mathematically. So now the
content of fun_4 will contain:

x = 1.0 - Fb - Fw;

bb = 1.0 - 0.003265 * (22.5-T) ∧2

bw = 1.0 - 0.003265 * (22.5-T) ∧2

Fb = (1.0 + x * bb - 0.3) * Fb;

Fw = (1.0 + x * bw - 0.3) * Fw;

4. So far, in fun_4 you have updated the area fraction remaining
(bare ground), updated the growth factors for the two species of
daisy, and then updated the fractional areas of both species of
daisy. Remaining, in this function, is to take the new fractional
areas, and update the mean albedo (which is then returned from
the function as an output):

% update mean albedo

albedo = x * par_a_s + Fw * par_a_w + Fw * par_a_b;

After this function returns the new updated values of mean
albedo (and the two fractional daisy areas in case we want them
for plotting later), the EBM function (fun_1) is called (in the inner
loop) (Figure 2.15).

5. Lastly, the initialization of the main program (scr_6) will be a
little different from before. Because the daisy function now takes
as input, Fw and Fb – you’ll need to give these variables each an
initial value (near the start of the program) so that first time the
function is called, there is a value for the equations to work with.
Similarly, temperature T now also becomes an input to the daisy
function (and it is not set anywhere else beforehand in the very
first iteration of the loops), so it also needs an initial value to be
assigned.32

32 For completeness, you could also
initialize S0 and α, but it is not strictly
needed, as they are calculated and
defined before they are first used.

-4 -3 -2 -1 0 1 2 3 4
Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- identical daisies

Figure 2.16: Evolution of global surface
temperature and the two populations of
daisies with time ... but now assuming
that the growth of each depends on the
global mean surface temperature.

If you have set this daisy population dynamics enabled EBM (a
DPDE-EBM!) up correctly, and drive it with your -4.0 to +4.0 Ga solar
constant calculating script, you should get something like Figure 2.16.

numerical modelling – zero-d / equilibrium 41

OK, so actually, this is not different in terms of the global mean
temperature response (to solar evolution), to before. But then again,
you have set both species of daisy with the same temperature growth
response. In other words, as the white daisies with a high albedo
grow, so to the black ones with a low albedo. Equally. And their dif-
ferent albedos balance, meaning that α still never changes. One thing
you could try to liven things up a little is to change on of the value
of β (and/or γ) so that their population dynamics are not identical.
Now, if the relative abundance of white and black daisies changes, so
too with global mean albedo and hence global temperature.

2.2.3 ’clever daisy’ daisy-world

The last step is to give each species of daisy a different environmental
preference for growth (why? because that is how the World works –
different plants and ecosystems tend to inhabit different environmen-
tal regimes as a result of being (evolutionary) adapted to different
environmental parameters). Watson and Lovelock [1983] assume that
both species of daisy have the same temperature preference but mod-
ify their local environment differently – white daisies inducing a local
cooling relative to the global mean temperature, and the presence of
black daisies driving a local heating (see Box). The result is Figure
2.17.

Daisy population dynamics (2)
To make the different species of

daisies interact differently with
the environment, the temperature-
dependent modifiers of growth are
made functions of the local (to the
daisy population or individual),
rather than global, temperature:

βw =
1.0 − 0.003265 ∙ (22.5 − Tw)2

βb =
1.0 − 0.003265 ∙ (22.5 − Tb)2

There are all sorts of says of defining
how the local temperature deviates
form the global mean. In Watson
and Lovelock [1983] this is simply
reduced to a simple deviation that
scales linearly with the difference be-
tween mean global and local (daisy)
albedo:

Tw = T + q ∙ (A − Aw)
Tb = T + q ∙ (A − Ab)

(noting that A is mean planetary
albedo here, not alpha as was the
case in the original (non daisy
enabled) EBM, while Ab and Aw

are the albedos of black and white
daisies, respectively).

q is a simple scaling factor that
describes how strongly the local
temperature deviates from the mean
(or conversely, how efficiently heat
energy is mixed between differen
daisy fractions) and is assigned a
default value of 10.0.

In the code – first copy fun_4 → fun_5 , and scr_6 → scr_7 ,
remembering to now call fun_5 from within the inner loop in
scr_7 . (Otherwise, the structure of the model is the same as before.)

In fun_5 , modify the equations of the growth factor β for each
species of daisy as per the equations in the Box. Now, instead of us-
ing T (the global mean temperature) in both growth equations, each
equation has its own local temperature – one associated with black
daisies (Tb) and one with white (Tw). The local temperatures are cal-
culated as deviations from the global mean, as per the equations in
the Box. You’ll need to calculate Tb and Tw in the code first, before
calculating the values of β.

Now the behaviour of the system and the evolution of global mean
surface temperature with time, is very different. Towards the start of
the experiment, and at very low values of S0, the global mean tem-
perature is too cold to support a daisy population (of either type).
As the value of S0 increases, initially global mean temperature fol-
lows the path it did before, in the absence of daisies (or with fixed, or
equal populations). At a certain point, black daisies, because of their
advantage that they absorb more sunlight and drive a locally warmed
climate, take off in population and rise to dominate 70% of the land
surface. The global mean temperature transitions sharply to a much

42 ∼isempty(intersect(’models’,matlab))

higher temperature state. As S0 further increases in value, they in-
crease slightly further in dominance (and global temperature climb a
little further in response) until locally they reach their optimal tem-
perature for growth. Past this (optimal temperature) point, white
daisies start to grow and slowly replace the black ones. Global cli-
mate is almost perfectly stabilized during this interval. Beyond this,
there is a short interval where black daisies die out and white daisies
go on to reach their own (local) temperature optimum. Beyond this
again, everything suddenly goes extinct in a rapid warming feedback
of increasing temperatures, declining white daisy numbers, further
solar radiation absorption and warming, etc etc. How everything is
dead and I how you are feeling happy with yourself.

-4 -3 -2 -1 0 1 2 3 4
Normalized solar constant

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- interactive daisies

Figure 2.17: Evolution of global surface
temperature and the two populations of
daisies with time.

You could code this modification in – adjusting the (local) value
of T that each species of daisy ’sees’ (as per the Box and the refer-
ence). Or ... we could simply give them different temperature optima,
which is what the value of 22.5°C accomplishes in the temperature-
dependent growth modifier equation. For now, this is the way-
simpler approach and involves only a minimal edit to your existing
daisy function. So where in the equation for βw and βb you currently
have values of 22.5 (°C) in each – try making these different. Rea-
sonable would be to assume that the white daisies are more adapted
to hot climates and hence have a higher temperature tolerance, with
black daisies being better adapted to colder climates, using their
higher albedo and presumably local heating to make up for a colder
ambient environment. (You could be able to come up with something
not entirely dissimilar to Figure 2.17.)

2.2.4 Efficient and ’clever daisy’ daisy-world

The purpose of the inner loop is to calculate the equilibrium plane-
tary temperature for each value of S0. It may be that an equilibrium
is reached much sooner than the 100 loop iterations that are allowed.
So rather than running the inner loop for the fixed number of itera-
tions each time, you could make the overall calculation more efficient
by testing whether the change in global temperature between one
iteration and the next, is lower than some small threshold value –
indicating that the iterative calculation has converged.33

33 Remember, the command break will
exit the current loop you are in.

Note that while the Daisy World equations can be written in terms
of the population (or area fraction) at the nth generation, strictly, they
are formulated in terms of the population (area fraction) at time t.

Daisy population dynamics
In the published Daisy World

paper, the population dynamics are
written in terms of time:

dFw/dt = Fw ∙ (x ∙ βw − γ)
dFb/dt = Fb ∙ (x ∙ βb − γ)

and hence in the form:

dx
dt = f (x)

Hence we can construct the model
via:

F(t+Δt) ≈ F(t) + Δt ∙ F(t) ∙
(x ∙ β − γ)

i.e. at each successive time-step, we
take the previous fraction (F(t)) and
add to this, our approximated (for-
ward in time differencing) change in
fractional area value.

3

Numerical modelling – Dynamic (time-stepping)

All models are wrong, but some are useful as the saying goes.
Which is actually pretty unfair, as numerical models, in deliberately
approximating some aspect of the Real World, are in fact a priori
designed to be wrong; just sufficiently not wrong, to be useful.

44 ∼isempty(intersect(’models’,matlab))

Forward-in-time (Euler) finite differencing

Commonly in numerical models, you find that the underlying equa-
tions may be of the form:

dx
dt = f (x)

i.e. the rate of change of some variable x, is some function of itself
(x).1 1 The equations need not be a function

of time.Invariably, we wish to make a projection of the state of the system
(value of x in this example), forward in time. If the increment in time
is Δt, then we wish to know the value of x at time t + Δt, i.e. x(t=Δt).

There is a Taylor expansion for this ... and switching to partial
derivative notation, we can write:

x(t+Δt) = x(t) + Δt ∙ ∂x
∂t + Δt2

2 ∙ ∂x2

∂t2 + Δt3

6 ∙ ∂x3

∂t3 + O(Δt4)

where O(Δt4) represents 4th order (and smaller) terms (which can be
considered as an ’error’ term (if not accounted for explicitly)), that
will be smaller in magnitude than Δt3

6 ∙ ∂x3

∂t3 .
If we drop all the higher order terms, and solve for dx

dt , we get:

∂x
∂t = x(t+Δt)−x(t)

Δt + O(Δt2)

which is just saying that we can approximate (if we accept the error
in the approximation represented by O(Δt2)) the gradient ∂x

∂t (or dx
dt)

by the difference between the value of x at time t + Δt, minus the
value of x at time t, divided by the increment in time, Δt.

In terms of creating a numerical model and coding it up, our next
value of x in time, can be approximated:

x(t + Δt) ≈ x(t) + Δt ∙ dx
dt

Coding Euler

How to implement this in code?
Consider the radioactive decay of an amount of radioactive sub-

stance. Assume an initial activity A (don’t worry about what the
units of this activity are), and the substance decays such that after 1
day, the new activity is equal to half the original activity. We could
write (or you might see given to you):

dA
dt = −0.5 ∙ A

where t is time in days.
This simply says: the rate of change in A with time (days), is equal

to minus (because it is decaying rather than growing) 0.5 times its
value.

numerical modelling – dynamic (time-stepping) 45

We could also write this:

∂A
∂t = A(t+Δt)−A(t)

Δt + O(Δt2)

and hence in our model, we know that the value of A at each succes-
sive point in time can be written:

A(t + Δt) ≈ A(t) + Δt ∙ dA
dt

and hence

A(t + Δt) ≈ A(t) − 0.5 ∙ A(t) ∙ Δt

or

A(t + Δt) ≈ A(t) ∙ (1.0 − 0.5 ∙ Δt)

If, in code, we represent the time-step Δt by dt , we have:

A = A* (1-0.5 * dt);

and in a loop of 100 steps and initializing the initial activity to one:

dt = 1.0;

A(1) = 1.0;

time(1) = 0.0;

for n=1:100,

A(n+1) = A(n) * (1-0.5 * dt);

time(n+1) = time(n) + dt;

end

or if you prefer:

dt = 1.0;

A(1) = 1.0;

time(1) = 0.0;

n = 1;

for t=dt:dt:100 * dt,

n = n+1;

A(n+1) = A(n) * (1-0.5 * dt);

time(n+1) = t;

end

These codes are equivalent – in the first, you loop with a counter, and
then have to derive actual time, and in the second, you loop in time,
but then have to keep a counter in order to index the output data
arrays. Note that in the first code, the notation:

time(n+1) = time(n) + dt;

is equivalent to the notation:

time = [time dt];

Try both out and explore different values of dt (Δt). Also add a plot
of the results arrays.

46 ∼isempty(intersect(’models’,matlab))

You could also try coding the results output in the form of a single
matrix, rather than 2 vectors. For this, rather than create the array (of
zeros) of the correct size at the start, try something like the following:

dt = 1.0;

data(1,1) = 0.0;

data(1,2) = 1.0;

n = 1;

for t=dt:dt:100 * dt,

n = n+1;

data(n,:) = [t data(n-1,2) * (1-0.5 * dt)];

end

where the first column of data is time, and the second is the activity.
Here, you are adding a 2-element vector ([t data(n-1,2) * (1-0.5 * dt)])
to the nth row of of the array data .

Other simple finite differencing schemes

We can also write the Taylor expansion as:

x(t−Δt) = x(t) − Δx ∙ ∂x
∂t + Δx2

2 ∙ ∂x2

∂t2 − Δx3

6 ∙ ∂x3

∂t3 + O(Δt4)

This leads to the backwards difference operator:

∂x
∂t = x(t)−x(t−Δt)

Δt + O(Δt2)

Subtracting the second expansion form the first, leads to:

∂x
∂t = x(t+Δt)−x(t−Δt)

2∙Δt + O(Δt3)

which unlike the forwards and backwards operators, is 2nd order
accurate. This is know as the centered difference operator. Effectively,
it is just saying that the gradient of the function at time t (dx

dt), can be
approximated by the average of the gradient between time t and time
t − 1, and between time t and time t + 1.

numerical modelling – dynamic (time-stepping) 47

3.1 Catch the ball (ballistics and simulating trajectories)

In considering dynamic, ’time-stepping’ representations of physi-
cal (/biogeochemical) systems, we’ll start with a simple, ballistics
example – that of the trajectory of a thrown ball.

Figure 3.1: Schematic of the thrown-ball
system.

The system we’ll consider is shown schematically in Figure 3.1. In
essence: we want to determine d – the horizontal distance (in m) that
the ball travels before it hits the ground. The initial conditions are:

1. The ball is thrown from an initial height h (m).
2. The ball is thrown with an initial speed s0 (ms−1).
3. The ball is thrown at an initial angle φ with respect to the hori-
zontal.

We’ll neglect any air desistence or spin imparted to the ball, and for
the purpose of calculating its height, we’ll ignore its diameter, i.e.
we’ll consider that the ball is level with the ground when its centre
is at height zero. Over and above this, you’ll only need to know the
gravitational constant (i.e. gravitational acceleration): g = 9.81ms−1

(i.e. the ball is being thrown on an Earth-like planet close to sealevel).
To simply things and the construction of the code and encapsula-

tion of the physics of the model, we’ll break it down into 4 steps:

Part I Considering only horizontal travel.

Part II Considering only vertical travel.

Part III Considering both horizonal and vertical travel and testing for when
the ball hits the ground.

Part IV Add some graphical output.

Figure 3.2: Schematic of the code for
simulating the horizontal movement of
a ball.

Part I Start with a new m-file (which can be a simple script file). For
the structure of the code – Figure 3.2 is given as an example to guide
you.

First, you are going to need to define a constant (g) – the value for
gravitational acceleration on Earth. (Here it is termed a ’constant’,
because its value never changes. The value of π would be another
example, although MATLAB provides this as a function return.):

% model constants

g = 9.81; % gravitational acceleration (ms-2)

Next, your program needs some parameters (the initial height
h0, initial speed (s0), initial angle (θ) of the ball). (These are called
parameters because they are invariant during the running of the
program, but may be changed if the program is run again.):

48 ∼isempty(intersect(’models’,matlab))

% model parameter values

h0 = 1.0;

s0 = ...

theta0 = ...;

(You might add comments for what the parameters are at the end of
the line, and ideally include their units too.)

For now, pick any ’reasonable’ values for s0
2 and φ 3 (and change 2 On September 24, 2010, against the

San Diego Padres, Chapman was
clocked at 105.1 mph (169.1 km/h) –
the fastest pitch ever recorded in Major
League Baseball. If you convert 169.1
km/h into units of ms−1, this will give
you some reasonable upper limit for
your initial thrown velocity.
3 Obviously, the angle should lie be-
tween zero and 90 °(or else the throw
is going backwards and/or into the
ground). BE CAREFUL as MATLAB
assumes that angles are in units of
radians, so either work in units of
radians throughout, or convert from
degrees into radians when you calculate
the velocity component based on the
angle.

the default zero values in the code). (Here, the initial height of the
ball is assumed to be 1m, but you are free to make a different as-
sumption.)

Then, because you are going to use a time-stepping approach
(rather than solving the system analytically), you are going to need to
create a loop in time, starting at time zero. Can you guess the time-
step you need? No? Then we need to make the time-step a parameter
that we can change later, to ensure that the system is solved well (i.e.
accurately and without numerical instability). You could call this pa-
rameter e.g. dt (for dt) and set it4 to an initial (guessed) value such

4 In the parameter definition section of
the code.

as 0.1s. How long should you run the simulation for? This is also a
sort of unknown at this point, at least until you have run the simula-
tion a couple of times to get a feel for what the longest time the ball
stays in the air might be. So why not pick 10s to start with. Again,
create a parameter to hold the value of the maximum model simula-
tion time and assign its value in the parameter definition section of
the code, e.g.:

% model parameter values

...

dt = 0.1;

max_t = 10.0

(Add comments for what the parameters are and ideally include their
units ...)

Assuming a time-step parameter name of dt and a maximum
time, max_t , if your current time is called t , your loop structure will
look like:

for t = 0:dt:max_t

%SOME CODE

end

with time t starting at zero, and progressing to max_t in steps of dt .

What else do you need? You will need to know the horizontal com-
ponent of the balls velocity.5 You can calculate the (initial) horizontal

5 In the absence of air resistance, hori-
zontal velocity does not actually change
throughout the simulation (i.e. in each
iteration of the loop, it will have the
same value).

component of velocity (u) from the given initial conditions of initial
speed (s0) and initial angle of trajectory (φ)6 if you can recall your

6 Just as long as you can remember
how to calculate the sides of a right
angled triangle given the length of the
hypotenuse, which here is the speed.

REMEMBER that MATLAB uses
radians for calculating with angles, not
degrees.

numerical modelling – dynamic (time-stepping) 49

basic trigonometry 101 ... Because this variable (e.g. call it u) depends
on parameter values defined at the top of the code, it needs to come
after the parameter list, but before the loop starts.

You also need a variable to represent the horizontal position of the
ball (delineated here in the text as p, with units of m). This will start
at zero and be updated within the loop. So also in the variable initial
condition section, why not define your horizontal position variable p
and assign it a (initial) value of zero.

The complete section of initializing variables will look like:

% model initial conditions

u = ...

p = 0.0;

(here leaving the code for deriving u from s0 and theta0 , for you to
work out ...).

Along with the schematic of the code structure, this should be
all you need to create a basic code (but one at this point that does
not actually ’do’ anything). You should have 1 constant, and then 5
model parameters defined representing: the initial height of the ball,
the initial speed, and initial angle of throw, plus, maximum time and
time step length. Then you should have 2 model variables: (hori-
zontal) position p, which you should have initialized to zero, and
(horizontal) velocity component u, which you should have initialized
calculated from s0 and φ. There should be nothing in the loop so far.

Check that it runs without error even though it is doing nothing
useful! Add some debug (e.g. a line in the loop using disp) to check
that the loop really does loop from zero to max_t in steps of dt .7 7 Note that depending on whether or

not max_t is divisible by dt with no
remainder, your loop might not exactly
finish at a value for a of dt .

Now to add some code to the loop. During each time-step, i.e.
each time around the loop, dt time (s) passes. (Pause ... and think
about this.) In time dt, if the horizontal velocity of the ball is u, you
should be able to calculate how far it moves, right?8 You need to 8 Distance = velocity times time:

dp = u × dtadd this increment in distance travelled to the current value of the
position variable p9. Do this (calculating first the change in position, 9 i.e. with code like

p = p + dp;

which you have seen endless times
before now and should becoming
wearily familiar ...

dp , and then updating the position variable, p). (Don’t forget to read
the margin notes!)

Re-run the code. Check it works at all (if not: debug). Try adding
debug code within the loop that displays the current time (t) plus
value of p at each time-step, e.g.

for t = 0:dt:max_t
%CODE TO UPDATE POSITION
disp([’current time = ’, num2str(t), ’, ...
position = ’, num2str(p)]);

end

so that you can track what is going on. (You can make a fancier out-
put if you wish and add in the relevant units to the output.)

50 ∼isempty(intersect(’models’,matlab))

Strictly, when updating the position of the ball in the first iteration
of the loop, time is dt at this point, not zero, which is what the loop
thinks (you already have a position of zero at time zero – the initial
conditions). So rather than starting the loop at zero, modify the loop
to start instead at a value of dt.

You should have a working model at this point, albeit only for the
horizontal position of the ball.

Part II Now for tracking the vertical position (and velocity) of the
ball. Copy and rename your previous m-file – use this as a starting
point for the new model. You are going to modify your program so
that p is now the vertical, not horizontal, position of the ball.

Figure 3.3: Schematic of the code for
simulating the vertical movement of a
ball.

Think about what is different about the physics of the system
(Figure 3.1) from before – this is going to directly inform how you
adjust and add to the code. To start with, you should have noticed
that the initial position (p(0)) of the ball does not start at zero, but
rather at height h0 (see Figure 3.1). This is one change to make in the
code (i.e. having defined h0 as a parameter, you subsequently use
h0 to set the initial value of p). Also – the initial (vertical) velocity
component, which we will call v (rather than u which we used for
the horizontal velocity), is different from before. So go back to your
triangle trigonometry, and calculate of the initial vertical velocity
component (v0). Overall, the code structure looks like Figure 3.3.

You could, and indeed should, test the code so far. It should in fact
do something very similar to before, with position p increasing, lin-
early, as a function of time (i.e. as the loop progresses in the number
of iterations carried out). The only differences you should see are that
p starts from value h0 and the rate at which p changes will be greater
or less than before, depending on the value of θ you assumed.10 10 What value of θ would result in

an identical change in d with time
(comparing the previous horizontal-
only model with the new vertical (only)
one)?

So far so good. Except balls generally do not continue travelling
vertically upwards for ever. You are missing gravity in this (vertical-
only) model. Your variable for v (vertical velocity) now needs to
change as a function of time and you’ll need to update its value
within the loop11. 11 Before or after the updating the

position? Actually, a slightly tricky
question.

How are you going to update v? Well, the change in velocity with
time is called acceleration and in this example the only force exert-
ing any acceleration on the ball is gravity. Mathematically we can
approximate the change in velocity, Δv as:

Δv = −Δt ∙ g

where g is the acceleration due to gravity. Note the appearance of a
minus sign in the equation if we are considering a coordinate system
with distance upwards.

numerical modelling – dynamic (time-stepping) 51

So in the loop, calculate the change in velocity during the time-
step, and then update the value of v12.13 You should end up with 5 12 Hint:

v(t+1) = v(t) + Δv

where v(t+1) is the new (at the next
time-step) velocity and v(t) the current
velocity
13 Note that in this example and as
per Figure 3.3, we update the vertical
position in the loop first (at the start of
the loop), and then update the velocity
afterwards.

lines in the loop (excluding comments):

1. Calculate the change in position (dp), based on the current
(vertical) velocity, v and the increment in time (dt).
2. Update the position p based on the current value of the posi-
tion, plus the change in value (dp).
3. A line of debug to display the current (loop) time and the cur-
rent position.
4. Calculate the change in velocity (dv), based on gravitational
acceleration and the increment in time (dt).
5. Update velocity v based on the current value of velocity, plus
the change in value (dv).

Re-run the model ... what happens? Does this seem ’reasonable’
(i.e. how the position changes as a function of time)?14 At this point 14 You might think about your own

direct experience with throwing balls,
as a reality check. i.e. have you ever
thrown one that took a minute to come
down, or one that hit the ground within
0.1s? If these sorts of things happen in
the model, you may have a bug in there
somewhere.

you might consider whether you really do need to run the model for
as long as 10s. Play about with the assumed initial angle and also the
velocity and get a feel for what is the longest the ball lasts in the air
(i.e. until its position becomes negative).

Part III By now, you should now have 2 working models (sperate
m-files) – one for the horizontal position of the ball, and one for the
vertical position (and vertical velocity) of the ball. You now want to
combine the 2 sperate parts of the model.15 15 I suggest basing the combined model

on the vertical model (as it is the
more complicated of the 2) and hence
copying-and-renaming the 2nd script
(i.e. so you end up with 3 different
m-files in the end).

How to merge? Mostly, the code content of the 2 individual mod-
els was identical, but there is more in the vertical position model, so
that would be the better one to copy and rename. Then what you
need to copy across from the horizontal model and add in is:

• The calculation of the initial value of u.
• The initialization of the horizontal position.
• The calculation of the change in horizontal position each time-
step.
• The updating of the new horizontal position.

By now, you should have noted a slight problem – in both previ-
ous (sperate) models, the variable p was used to represent both the
horizontal AND vertical position of the ball. D’uh! duh

exclamation informal
used to comment on an action per-

ceived as foolish or stupid, or a state-
ment perceived as obvious. As in:

"I used the same variable name twice
and which is why the model did not
work – duh!"

My solution would be ... a vector, to store the current position
– just of one row and two columns, i.e. exactly as you might write
a position in (x, y) notation. The horizontal position (x) is hence
assigned the first element (p(1)) and the vertical position, the 2nd
(p(2)). If you do this (i.e. resolve the variable clash this way), you’ll
need to edit how you set the initial conditions in the code, e.g.

52 ∼isempty(intersect(’models’,matlab))

p(1) = 0;

p(2) = h0;

as well as how the position is updated in the loop. You can leave the
name of the increment in position (Δp) the same if you wish (as this
is a temporary variable whose value is replaced each time around the
loop in any case), e.g.

dp = dt * u;

p(1) = p(1) + dp;

dp = dt * v;

p(2) = p(2) + dp;

where the 1st 2 lines calculate the change in horizontal position and
then update the x (p(1)) component of position, and the 2nd 2 do
the same only for the y (p(2)) component of position.

Hopefully this works and runs ... Maybe add some output within
the loop to track its progress, such as:

for t = 0:dt:max_t
%CODE TO UPDATE POSITION
disp([’(’ , num2str(p(1)), ’,’ , ...
num2str(p(2)), ’) @ t = ’ , num2str(t)]);

end

You should end up with output, depending on how you con-
structed the string to be displayed by disp (and what initial condi-
tions you chose ...), like:

» ball_uv
(0.5,1.866) @ time 0.1
(1,2.634) @ time 0.2
(1.5,3.3038) @ time 0.3
(2,3.8755) @ time 0.4
(2.5,4.3491) @ time 0.5
(3,4.7247) @ time 0.6
(3.5,5.0021) @ time 0.7
(4,5.1814) @ time 0.8
(4.5,5.2626) @ time 0.9
(5,5.2458) @ time 1
(5.5,5.1308) @ time 1.1
(6,4.9177) @ time 1.2
(6.5,4.6065) @ time 1.3
(7,4.1973) @ time 1.4
(7.5,3.6899) @ time 1.5
(8,3.0844) @ time 1.6
(8.5,2.3808) @ time 1.7
(9,1.5792) @ time 1.8
(9.5,0.67938) @ time 1.9
(10,-0.31849) @ time 2
(10.5,-1.4145) @ time 2.1
...
...

which is far far far from exciting ... but does at least confirm a con-
stant change in horizontal position with time, and a vertical position

numerical modelling – dynamic (time-stepping) 53

that initially increases above the initial condition (h0 = 1.0) but sub-
sequently drops back and eventually falls below zero. And the time
at which the vertical position reaches zero, is the value of d in Figure
3.1.

The very least we could do at this point is to detect when the ball
has reached the ground and terminate the loop. I’ll leave this code
for you to devise, but you’ll need:

1. A conditional statement (if ...) to test whether the vertical
position (p(2)) has dropped below zero. This would go in the
loop just after the position of the ball has been updated, and ...
2. ... within the conditional, the MATLAB command to exit a
loop, which you have seen before (look it up if you have forgot-
ten!).

Now you might note that when the ball reaches the ground (tech-
nically: its height falls below zero) and the loop exists, you may al-
ready be way below zero. In fact, if you are even the least little bit
observant, you might note that the change in height per time-step at
the end of the simulation is quite large (order meters) and hence it is
unlikely you’ll ever capture the moment that the ball is very close to
the ground. Unless you shorten the time-step, that is. So play about
with a shorter time-step (you only need change the value you as-
signed to the parameter representing Δt in the code). How short does
it have to be in order to catch the moment the ball reaches the ground
(passes zero) to within e.g. 0.1m?16 What about 0.01m? 16 i.e. to have the loop terminate when

the height is no more than −0.1m.In terms of how long the model takes to run and how many time-
steps it uses – is it even ’worth’ finding when the ball hits the ground
to an accuracy of 0.01m? What is the difference in the value of h you
determine between different assumptions about the time-step? As
you increase the length of the time-step, when does the value of d
start to appreciably change (compared to assuming a very short time-
step)? This is a measure of ’error’ associated with the assumed time-
step duration. Think about whether the error in d is ’meaningful’
compared to d itself.

OPTIONAL – Finally – as an alternative to creating a for loop in
which we pre-defined a maximum number of time-steps (or maxi-
mum time) and then had to exit the loop once the ball reaches zero
height about the ground, try re-writing the loop as a while loop,
with the condition (for the loop to continue looping) that the ball has
a height above the ground that is greater than zero. (This makes for a
much neater solution to the problem.)

54 ∼isempty(intersect(’models’,matlab))

Part IV Some graphics fun.
It would be kinda fun (really) to show the ball ’flying through the

air’. There are a variety of ways of doing this. We’ll start with the
simplest first and use scatter .

As a departure from previous plotting, we don’t want to plot at
the very end (after the loop)17 but rather, plot each position as it is 17 Although if you stored the position

of the ball at each time-step, you could
re-play the trajectory afterwards.

calculated, within the loop.
In the code – open a new graphics figure window, before the loop

starts, and set hold on , by adding the lines

figure;

hold on;

Within the loop, you want to plot each (x, y) position as it is calcu-
lated (after the position has been updated, that is) by:

scatter(p(1),p(2));

(feel free to add additional parameters to scatter to make the
points smaller or larger, or filled, or whatever). Comment out any
debug (disp) lines.

Well, not so exciting. The plots sort of appears all at once and
there is no sense of animation or of the ball moving. MATLAB is just
way too fast for its own good18. 18 This is a Trump-ism. In truth, MAT-

LAB is about the slowest piece of *$&%
about.

You can make the loop proceed slower, by adding a time delay –
i.e. each time around the loop, MATLAB will take whatever time it
needs to carry out the calculation and plot the current position PLUS
whatever additional time you tell it to chill out for. The command is
pause and you might initially try e.g.

pause(0.05);

which should insert a 50ms delay into the loop. Place this line just
after scatter . Run it.

pause
MATLAB says: "pause(mjs)

pauses the MATLAB job scheduler’s
queue so that jobs waiting in the queued
state will not run."

Garbage.
pause(n) will pause the execu-

tion of the code by n seconds.Now it has all got really trippy. If you tell it no different, MATLAB

insists on auto-scaling the (x and y limits of the) plot. As the position
of the ball increases (initially) in y-axis direction, and (constantly)
along the x-axis direction, MATLAB periodically re-scales the axes.
Annoying. So before the loop starts and after you create the figure
window, why not prescribe axes limits(?) Having played with the
model you should have a reasonable idea for what the maximum
vertical and horizontal distances are associated with ’reasonable’
choices for the initial conditions (s0 and θ).19 You should end up with

19 Don’t forget the command for speci-
fying a scale for the axis limits is axis .

something like Figure 3.4 once the program has completed.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizontal distance (m)

V
er

tic
al

 d
is

ta
nc

e
(m

)

Figure 3.4: Trajectory of a ball!!

numerical modelling – dynamic (time-stepping) 55

OPTIONAL – Also – try turning your script into a function so that
you do not need to edit the values of s0 and θ in the code, but pass
them into the program as parameters instead (the function needs not
return anything however).

Having developed some visualization for the trajectory of the ball,
this is a good point to experiment with the length of the time-step
and determine at what point (time-step duration) the numerical ap-
proximation starts to break down – i.e. as compared to a simulation
with a very short time-step (or an analytical solution), when (what
longer time-step duration) does the trajectory start to visually differ
(and the distance travelled before the ball hits the ground, change)?
e.g. Figure 3.5 illustrates a 0.1s time-step and Figure 3.6 a 0.2s time-
step (contrast with Figure 3.4).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizontal distance (m)

V
er

tic
al

 d
is

ta
nc

e
(m

)

Figure 3.5: Trajectory of a ball (with a
poor time-step choice).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizontal distance (m)

V
er

tic
al

 d
is

ta
nc

e
(m

)

Figure 3.6: Trajectory of a ball (even
poorer time-step choice).

If you are keen ... you can make more of an ’animation’ out of the
ball trajectory plotting. One trick would be to re-plot the position
of the ball a second time, but now in white (hence covering up the
previous drawing). Better is to ask MATLAB to delete the last ball
object.

When you call scatter as a function, a handle is returned that is
the ID of the points plotted. You can use this ID to delete the point
again! e.g. close all the currently open windows and try the follow-
ing:

» h=scatter(1,2);

and you get a circle plotted at location (1, 2).

» delete(h);

... and ... it is gone (but leaving (re-scaled) axes in place).
If, in your loop, after updating the position of the ball, you have:

h=scatter(p(1),p(2),50, ’filled’ , ...
’MarkerFaceColor’ ,[1 0 0], ’MarkerEdgeColor’ ,[0 0 0]);

pause(0.025);
delete(h);

you should see a red ball (with a black outline) smoothly sailing
across the screen.20 21

20 You could make the animation a little
smoother by decreasing the time-step
and also playing about with the delay
(pause).

21 A slight complication here as that
as it stands, the code will not work
because in the first time around the
loop, when you get to delete(h) ,
MATLAB is unhappy because the
handle h has not yet been defined
anywhere. The easiest way to fix this
is outside the loop, to plot the initial
position of the ball (and obtain its
handle). e.g.:

figure;
axis([0 10 0 5]);
hold on;
h=scatter(p(1),p(2),50,’filled’);

Now when the loop starts, there is a
’ball’ to delete!

OPTIONAL – A further refinement would be to add a term to
account for air resistance – as the ball travels through the air, friction
will act to decelerate the ball.

You could represent the effect of friction in a similar way to how
you accounted for gravity, except (a) friction will affect both velocity

56 ∼isempty(intersect(’models’,matlab))

components, and (ii) friction will act to decelerate the ball, regardless
of its direction of travel (up or downwards). Friction also differs
from gravitational acceleration in that the deceleration will not be
constant, but instead a function of velocity. Furthermore, can assume
that friction will scale with the square of the velocity (rather than
linearly).

In your basic code:

dp = dt * u;

p(1) = p(1) + dp;

dp = dt * v;

p(2) = p(2) + dp;

dv = -dt * g;

v = v + dv;

you would add (to the end of the loop):

du = -dt * f * u∧2;

u = u + du;

dv = -dt * f * v∧2;

v = v + dv;

Here, f is a parameter that scales the impact of air resistance on
velocity. It is not clear, at least in this simplistic formulation, what its
value should be. So this (the value of f) is something to explore and
test the effect of.

numerical modelling – dynamic (time-stepping) 57

3.2 Dynamics in the zero-D Energy-balance climate model

In this next Example making use of time-stepping, we will make the
zero-D energy-balance climate model (very) slightly more interesting,
or at least, (very) slightly more realistic.

The time-dependent behavior of the initial version of the energy
balance model is trivial. In fact: there isn’t any. The system is al-
ways in equilibrium as constructed. Why? No thermal inertia – i.e.
nothing in the physical system as defined in the equations has any
heat capacity and the outgoing (long-wave / infrared) energy flux is
always assumed to be in exact equilibrium with the incoming (short-
wave) flux. So we need to add an ocean, or rather: a box (a variable
in the MATLAB code) to store the heat content, or temperature, of
the ocean, and update this (temperature) in the event of there being
any imbalance between gain and loss of energy at the surface of the
Earth.

Specific Heat Capacity
According to wikipedia: "An ob-

ject’s [or here: ocean] heat capacity
(symbol C) is defined as the ratio of the
amount of heat energy transferred to
an object and the resulting increase in
temperature of the object:"

C = Q
ΔT

where Q is the (change in) energy
(so could equally be written ΔQ if
you prefer) and ΔT the associated
change in temperature. Units are:

• C — JK−1

• ΔT — K
• Q — J

Typical units for specific heat capac-
ity are:

Jg−1K−1

(or Jkg−1K−1)The science behind the new model is based directly on the basic
energy balance equations you had before, except this time, you are
not going to assume that the 2 equations are equal (and hence solve
for T). Instead, you are going to calculate the net energy gain (or
loss) over a given interval of time and use the specific heat capacity
of a substance (assuming water here)22 to link this energy change,

22 Once again – be very careful with the
units. Or all will be lost ...

to a temperature change (see Box). This will be the basis of the ’dy-
namics’ of the climate model and will dictate how quickly the mean
surface temperature responds to any imbalance in loss vs. gain of
energy.

You will assume the following:

• The average mixed layer depth of the ocean is 70 m.
• The average fraction of the Earths surface that is ocean is 0.7.

(both from Henderson-Sellers [2014]) – Figure 3.7. You’ll also need to
know:

• The specific heat capacity of water.

(see Box) but you can find this out for yourself ... Note that you do
not need to know e.g. the radius of the Earth as we are constructing
the model on a global average per m−2 basis as before (i.e. we are
considering a representative 1m2 of surface, of which 70% is water (or
0.7m2) with a depth of 70m.

Figure 3.7: Schematic of the dynamic
EBM.

Figure 3.8: Schematic of the script for
the basic dynamic EBM

The form of the program is shown schematically in Figure 3.8.
You’ll need to create yourself a new script (scr_1) to make this.
Much of this and the main sections of code should look familiar.
Break the code down into logical sections. Start by defining any
constants you need, as well as parameter values. For the time loop,

58 ∼isempty(intersect(’models’,matlab))

we are going to start off with a fixed total duration and a fixed time
step (a little later, we’ll relax these constraints). And to make things
really simple to start – assume a 100 year duration (starting at T =
1.0) and a loop time increment , ΔT = 1.0 (year). So you are not even
going to need to initialize and update a loop counter in the code!

In the loop itself, you firstly need to calculate the energy imbalance
(assuming there is one) between incoming solar radiation absorbed
and out-going infrared radiation loss. For this – taken the equations
given to you earlier for absorbed solar radiation and infrared loss,
and simply calculate the difference (rather than re-write in terms of T
as you did for the equilibrium EBM) – ΔF.

From the energy flux imbalance (ΔF), which is in units of Wm−2,
i.e. Js−1m−2, you’ll need to calculate how many J of energy (per m2)
are lost or gained over the course of your time-step. Your time-step
is in units of years ... so you’ll need to calculate how many s in a
(average) year, and multiply the energy change s−1 by this number
(to give the energy change per time-step). The energy change can
then be used to update the temperature of the mixed layer ocean ...
as long as you have already calculated the heat capacity of the ocean
that is ...23.

23 Assuming specific heat capacity is
in units of Jg−1K−1, you need to find
the mass of the ocean box in g, noting
that the density of (pure water at 0C) is
1 gcm−3.

Start by determining the volume of
the ocean box in cm3, convert to g, and
then multiply the specific heat capacity
C by this, to give the heat capacity of
the ocean box.

This is the number of J of energy
needed to raise the temperature by 1K.

A possible sequence of calculations (assuming you have calcu-
lated the heat capacity of the ocean box once, before the loop starts)
follows24:

24 It is much easier and less prone to
bug, if you split things into five steps.

1. Calculate incoming energy flux, Fin.
2. Calculate outgoing energy flux, Fout.
3. Calculate the net energy change (per m2 per s) at the Earths
surface, ΔF.
4. Calculate the total energy imbalance (per m2) over a year, in J.
5. Using the heat capacity of the ’ocean’ , calculate its temperature
change.

After the loop, plot something helpful at the end. If successful, you
should see something similar to (actually, identical to) Figure 3.9
(assuming a 1 yr time-step).

0 10 20 30 40 50 60 70 80 90 100

Time (yr)

0

5

10

15

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM spin-up

Figure 3.9: 100 yr spin-up of the basic
EBM.

Figure 3.10: Schematic of the script for
the basic dynamic EBM – now with
added loop count(!)

Next, you are going to play a little with the time-step in the model.
So, rather than a simple loop from 1 to 100 (years) with an incre-
ment of 1, you are going to generalize the increment as Δt. If dt

is your parameter representing the increment in time (presumably,
conveniently defined hear the start of the code)25, and max_t the

25 Don’t forget to convert dt into units
of s when you use it in the energy
calculation.

maximum time (here: 100 years) (also conveniently defined near the
start of the code?), then:

% start of time-stepping loop

numerical modelling – dynamic (time-stepping) 59

for t = dt:dt:max_t,

% SOME CODE GOES HERE

end

Now you will need to crete yourself a loop counter in order to store
the results (for subsequent plotting), because dt will not necessarily
be an integer and hence you will not be able to use t to index your
data storage vector (/array). The modification needed is only minor
however – see Figure 3.10.

The only slight complication is in knowing the size of the output
vectors, assuming that you have created them (using zeros) up-front
in the code (and as per the Figure 3.8 schematic), rather than growing
the vectors as the loop progresses (see earlier). Initially, you would
have been able to simply write e.g.

data_time = zeros(100,1);

data_T = zeros(100,1);

One strategy is simply to pick a number larger than you think the
number of times the loop will execute. The downside being that you
might create a vast array with only a small portion of it ever being
used. Better in this example would be to append to the vectors as
the loop progresses and not attempt to define them beforehand (i.e.
Figure 3.8 rather than Figure 3.10).

By playing around with different parameter values for Δt, you
should discover that some care has to be taken with the choice of
time-step duration, e.g. Figure 3.11 has a time-step of 3.5 years,
which clearly is on the verge of going doolally. 26

26 For practice (fun!?), you could turn
the script into a function. Make two
parameters as inputs: (1) the total
simulation duration, and (2) the time-
step, both in units of yr.

Doolally
Mad, insane, eccentric.

0 10 20 30 40 50 60 70 80 90 100

Time (yr)

0

5

10

15

20

25

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM spin-up

Figure 3.11: 100 yr spin-up of the
basic EBM, but with a poor choice of
time-step ...

So far, so far from exciting – you have been simply time-stepping
the model to equilibrium, for which there was an analytical solu-
tion anyway (with ocean heat capacity irrelevant to this). However, it
should be apparent that it takes some years (how many) for the sys-
tem to reach equilibrium. This would have important implications for
a (real world) system in which the one of the terms in the radiative
balance equation changes relatively rapidly (or on a time-scale com-
parable to the adjustment time of the system). The concentration of
CO2, and radiative forcing due to the ’greenhouse effect’, is just such
an example.

A follow-on Example to this, takes the time-stepping (dynamic)
zero-D EBM and calculates the warming impact of a prescribed CO2

concentration (technically: mixing ratio) in the atmosphere.

The Greenhouse Effect
The effect of changing CO2 concen-

trations on the global energy budget
is typically written in terms of a
virtual (long-wave) radiation flux
applied at the top of the atmosphere.
The flux anomaly, ΔF, as a function
of CO2 concentration (technically:
mixing ratio) (CO2) relative to a ref-
erence (pre-industrial) concentration
(typically: CO2(0) = 278ppm) can be
approximated:

ΔF = 5.35 ∙ ln(CO2
CO2(0)

)

The complete basic EBM energy
budget now looks like:

Fin = (1−α)∙S0
4 + 5.35 ∙

ln(CO2
CO2(0)

)

Fout = 0.62 ∙ σ ∙ T4

First off: copy either of your previous dynamic EBM scripts
(scr_1 , scr_2), re-naming to e.g. scr_3 .

Then, check out the CO2 radiative forcing (Greenhouse Effect) Box.
This will guide you as to how you are going to modify your energy

60 ∼isempty(intersect(’models’,matlab))

budget (within the time-stepping loop) – basically, you are simply
adding a 3rd term (a second incoming term) to the heat budget.

From your previous experiments, you should have determined
what value the equilibrium temperature ended up as (in the absence
of CO2 forcing and with a modern solar constant). You should make
this your new initial condition for calculating the planetary tempera-
ture from and set the appropriate parameter. (If you don’t, the results
of all your subsequent experiments will be dominated by the climate
system adjusting from your initial condition rather than cleanly re-
sponding to whatever perturbation you have applied (/experiment
carried out).)

Test the model with a fixed, assumed CO2 concentration (by set-
ting the value of your parameter for CO2 concentration) and check
that the mean surface temperature responds in a reasonable way.27,28 27 What is ’reasonable’? Well, you could

conduct a pair of experiments – one
in which you do not modify CO2, and
one in which your double it. The IPCC
and there (now) five Assessment reports
have much to say about the climate
system response to a doubling of CO2.
So you can conduct a reality check
on your model based on existing and
widely available climate sensitivity
information.
28 By way of reference: assume that the
pre-industrial concentration (mixing ra-
tio) of CO2 in the atmosphere (CO2(0))
is 278 ppm.

For reference:

• Peak of last glacial — ∼ 190ppm
• Pre-industrial — 278ppm
• Current — ∼ 400ppm
• End of century — ∼ 900ppm
• Cretaceous — ∼ 834 − 1112ppm(?)

Next, you will load in a CO2 data-set and drive your dynamic zero-D
EBM as a function of time, with a changing concentration of CO2 in
the atmosphere.

The program (scr_3) structure is going to be similar to Figure
3.12. To complete it, you need to:

Figure 3.12: Schematic of the dynamic
EBM driven by a history of CO2 (read
in from a file).

1. Add in code to load in the CO2 dataset. You are going to use
the ice-core derived record from week #1
(etheridge_etal_1996.txt).
2. From the resulting data array – determine the minimum and
maximum years and the total length (number of rows) of the data.
All these values might usefully be stored in variables in your code.
3. Create results vectors of the same length. Create one vector for
each of: year, CO2 value, temperature. (Create a single, 3-column
array instead if you prefer.)
4. Edit the time loop such that it runs from the minimum to maxi-
mum year (with a time-step of 1 year).
5. Also in the loop – save the current year, CO2 value, and associ-
ated calculated temperature.

Be careful that indexing of arrays in MATLAB (for accessing the CO2

value, or saving data to the appropriate row in the vector or array) –

numerical modelling – dynamic (time-stepping) 61

MATLAB always starts at a value of 1. You will either need to derive
an index from the current year29, or add a loop counter (it is simple 29 e.g. current year minus start year plus

one.to do the former and it takes less lines of code).
When you have this working you should get something like Figure

3.13 (but note that this was done with not quite the same CO2 dataset
...). If you want to be fancy you can add a horizontal line indicating
the pre-industrial equilibrium solution (using line).

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

Time (yr)

14

14.2

14.4

14.6

14.8

15

15.2

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM forced with observed CO
2

Figure 3.13: Transient EBM response
to observed changes in atmospheric
CO2. For reference, the pre-industrial
equilibrium global temperature is
shown as a horizontal black line.

Finally, the lagged behavior of the climate system (as encapsulated
in your EBM) is maybe not obvious as the forcing (CO2) is varying.
Common in model experiments and characterization, is to create
artificial and deliberately simplified forcings and perturbations, so
as to more readily diagnose the response time and characteristics of
a system. Crete an artificial CO2 data-set, spanning the same time
interval as the real data, and at the same frequency, but substitute
an idealized CO2 forcing in which CO2 stays constant (at 278 ppm)
up until year 1999, then at year 2000, increases to 400 ppm, and stays
there. The result of such an experiment should look like Figure 3.14.

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

Time (yr)

14

14.2

14.4

14.6

14.8

15

15.2

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM forced with observed CO
2

Figure 3.14: Transient EBM response to
(fake) changes in atmospheric CO2.

Other common model scenarios are linear ramps (up, and/or
down) and compound increases, such as a 1% per year increase in the
concentration of CO2 (each and every year) starting ca. 1960.

To quantify the impact of the ocean heat reservoir on the transient
climate response – try modifying one of your original equilibrium
EBM function such that rather than a value of S0, you instead pass
in the CO2 concentration. You’ll need to add in the CO2 radiative
term to the energy balance equation (see earlier Box on CO2 radia-
tive forcing) as you solve for T. Take (and rename) the dynamic EBM
script (scr_3), and in place of the lines of code in the loop that cal-
culated the radiative imbalance and then updated the global surface
temperature – simply call your modified EBM function.

The aim here is to be able to run the same experiment of changing
CO2, but with the assumption that the climate is always in equilib-
rium. Compare the equilibrium vs. dynamic model results (giving
an estimation of the importance of the non zero heat capacity of the
planet in creating a lag in temperature in response to a forcing).

A further refinement would be to add a deep ocean heat reservoir
(with e.g. diffusive exchange between deep and surface (mixed layer)
boxes).

4

Numerical modelling – To infinity (1D) and beyond(!)

64 ∼isempty(intersect(’models’,matlab))

4.1 1-D energy-balance climate model

Although the Earth is, of course, fundamentally three-dimensional,
there are many situations in Earth, Ocean, and Atmospheric sciences
when an environmental system can be approximated with a model
having just one single (length) dimension. For instance, the struc-
ture (e.g. temperature properties) of the atmosphere generally varies
vertically much more quickly in distance than it does in the horizon-
tal. Similarly, the changes in the physical, biological, and chemical
properties of the ocean are generally much more pronounced with a
change in depth rather than for the same distance in latitude or lon-
gitude. Because the horizontal gradients in environmental properties
in such systems are often relatively small, the horizontal fluxes and
exchanges of matter and energy will also be small, particularly com-
pared to vertical transport. The behaviour of some processes which
are in reality are operating in a three-dimensional system world can
therefore often be usefully analysed by considering their behaviour in
just one dimension.

The simplest possible1 example of a 1-D model is to build on the 1 :o)

EXAMPLE OVERVIEW:

1. Define model grid (latitudes)
2. Calculate zonal surface area
3. Calculate zonal cross-sectional area
4. Calculate incident solar radiation
5. Set up plotting as a function of

latitude

(zero-D) EBM from before. Well ... perhaps not the simplest, but
relatively fun. If you like that sort of thing ...

The idea is: rather than to treat the entire Earth as a single homo-
geneous surface characterized by a single surface temperature (and
hence single value of outgoing radiation flux), you are going to split
the Earths surface up into latitudinal bands. Why latitude and not
longitude? Simple inspection of global temperature distributions
indicate that the meridional2 gradients are much more pronounced 2 According to the mighty Wikipedia:

"along a meridian" or "in the north-
south direction".

that the zonal3 gradients. Obviously, a model would be improved
3 "along a latitude circle" or "in the
west-east direction"

by resolving both meridional and zonal gradients and energy flows,
but if you are going to simplify a climate model to just a single di-
mension, picking latitude seems as good a way to go any any. You
can also think in terms of how incoming solar radiation changes
most – ignoring day-night changes as the Earth rotates – low vs. high
latitude regions have the greatest contrast in incoming energy (and
hence temperature), and one might suspect that flow of (heat) energy
from the Equator towards the poles might be about the single most
important transport in the climate system.

We can make a further approximation by noting that the input
of solar radiation is roughly symmetrical about the Equator (and
assuming that we are going to consider only an annual average cli-
mate state of the Earth).4,5 So, for this exercise, you need actually

4 The actual distribution of the conti-
nents on Earth together with how the
ocean then circulates on a large-scale
completely ruins in this assumption
practice, or rather: should a particular
degree of ’realism’ be required.

5 Because of the (non-zero) obliquity of
the Earth, there is a slightly imbalance
in the annual averaged solar radiation
received by each hemisphere – dictated
by which hemisphere is in its summer
when the Earth is closest to the Sun.

only model one hemisphere (and assume that the other one acts

numerical modelling – to infinity (1d) and beyond(!) 65

identically and that the resulting temperature distribution can be
copied/mirrored).

#1 Zonal area of the Earths surface
The area of a zonal band of the

Earth surface, from latitude φ1 to
φ2 (in radians), can be found by
integrating the circumference of a
circle: 2 ∙ π ∙ r, where r = r0 ∙ cos(φ)
and r0 is the radius of the Earth:

∑
φ2
φ1

2 ∙ π ∙ r0 ∙ cos(φ) ∙ δx

and where δx is an increment in
length tangential to the surface equal
to r0 ∙ sin(δφ) and which for small δφ
as can be written as r0 ∙ δφ.

In the limit δφ → 0:
∫ φ2

φ1
2 ∙ π ∙ r2

0 ∙ cos(φ) dφ

The zonal area between latitude φ1

and φ2 is thus:

2 ∙ π ∙ r2
0 ∙ (sin(φ2) − sin(φ1))

and which is why when you inte-
grate from -90°to +90°(or -π/2 to
+π/2) you recover the surface area
of a sphere: 4 ∙ π ∙ r2

0.

OK – so the first step is to divide up the Earth (or one hemi-
sphere), into bands, with each band being subject to the same en-
ergy budget as before, including an ocean-dominated heat capacity
component, and which will lead to each band having its own char-
acteristic temperature. (Assume for now that each latitude band is
characterized by the same fraction of ocean and mean mixed-layer
depth.) You can chose how many bands to make. Actually, if you do
it the ’easy’ way it will not matter how many you want6 and which,

6 Within reason, but ... as you’ll find
later, there is a numerical stability
penalty to having too many (but simply
requiring a shorter time-step to fix.)

as you might have guessed, uses loops. The hard way is to write out
all the equations explicitly7.

7 If you are unsure how a loop is going
to pan out in terms of updating the
fluxes and calculating the temperature
of each zonal band, maybe write out
the equations in full initially (for one
hemisphere), e.g. for 3 bands: 0-30°N,
30-60°N., and 60-90°N.

You are going to do construct something like this:

for n = 1:n_max

% CODE GOES HERE

end

where n_max = 90.0/dlat and dlat is the width of each band8.

8 If you loop in n (latitudinal bands),
you can pre-define the northern and
southern edge of each band for conve-
nience, and then simply by indexing the
appropriate array with n, recover the
latitude, e.g.

% define model grid - N
edge
grid_n = [dlat:dlat:90];
% define model grid - S
edge
grid_s =
[0:dlat:90-dlat];

where dlat is the increment in latitude
between bands.

For each band, it would be nice to write exactly the same equa-
tions as before. Except ... you can’t. Why? (Hint: spheres have curved
surfaces – who would have guessed? And the surface gets more
oblique with respect to incoming radiation as the latitude increases,
meaning that the same (per unit area) solar flux is spread over an
increasing area.)

• For outgoing radiation / energy loss, you need to know the sur-
face area of each band, assuming that each band occupies an equal
number of degrees of latitude, and how this varies with latitude.
A small hint can be found in Box #1. Or the Internet will, as usual,
know it all.

• For incoming solar radiation, you need the cross-sectional area of a
band on a sphere.
The original mean incident solar energy per unit area was S0/4
on the basis that the total received radiation was π ∙ r2

0 ∙ S0 spread
over (i.e. divided by) a total surface area of 4 ∙ π ∙ r2

0. You already
have the total surface area of a zonal band around the Earth (Box
#1) which you need for calculating the long-wave energy loss from,
but now you need the area perpendicular to the incoming solar
radiation (i.e. the cross-sectional area). The area of a complete disk
is π ∙ r2

0 and to cut a long story short ... and see Box #2 ... the area
of a portion of a disk, is:

A = r2
0
2 ∙ (−2 ∙ φ1 + 2 ∙ φ2 − sin(2 ∙ φ1) + sin(2 ∙ φ2))

which is *so* much less fun than before :(

Actually, both equations are so little fun, that, assuming that you

66 ∼isempty(intersect(’models’,matlab))

defined vectors to hold the northern and southern edges of the zonal
bands (see later), I’ll give you the necessary code fragment for free:

% calculate zonal surface area (units radius)

loc_sa = 2.0 * pi * (...

(sin(pi * grid_n(n)/180)-sin(pi * grid_s(n)/180) ...

);

% calculate cross-sectional area

loc_ca = 0.5 * (...

- 2.0 * pi * grid_s(n)/180 + 2.0 * pi * grid_n(n)/180 - ...

sin(2.0 * pi * grid_s(n)/180) + sin(2.0 * pi * grid_n(n)/180)

...

);

where loc_sa is the surface area of the zonal band, and loc_ca is
the cross-sectional area (grid_n and grid_s hold the northern and
southern edges, respectively, of the zonal bands).

#2 Zonal cross-sectional area
The cross-sectional area of a

zonal band ... is a pig to calculate.
You start with the area of a circle
bordered by a cord, which can be
thought of as a line of latitude. This
itself, is derived by calculating the
area of a segment and subtracting
a triangle ... no seriously. I wish I
could be bothered to draw you a
picture. Google is full of hits for a
circular segment.

Inconveniently, this is written in
terms of the angle of the segment, ψ:

A =
r2
0
2 ∙ (ψ − sin(ψ))

Again, you need a picture. If we
re-write ψ in terms of latitude φ:

φ = (π−ψ)
2

then we can reduce this to (recognis-
ing, e.g. that sin(π − 2 ∙ φ) is simply
sin(2 ∙ φ):

A =
r2
0
2 ∙ (π − 2 ∙ φ − sin(2 ∙ φ))

All we need to do then, is to
subtract the smaller, high-latitude
chord-bounded circular segment
from the low-latitude one. Simples.

Obviously(!) you ratio loc_ca by loc_sa to get out the relative
change in solar flux for that latitudinal zone (as you did for a disk/-
sphere and ended up with S0/4). Note that MATLAB just hates units
of ° for angles – you need your latitude values, when you calculate
the sin of the southern and northern boundaries of the zonal band, in
units of radians.

You are going to to be time-stepping through the simulation (as
per the previous EBM with a heat reservoir), and your time-stepping
loop needs to go outside (around) the latitude band (n) loop. The
’code goes here ’9 is going to be similar to the code as before, for

9 Along the lines of:

% (1) calculate net
radiation imbalance (W
m-2)
% (2) update temperature
(of ocean mixed layer)

(with the results array having a zonal
band number dimension as well as of
time).

updating the temperature of the surface (equivalent to the temper-
ature of your ocean mixed layer heat reservoir), but obviously you
need a vector to store the temperature of each zonal band.

You are ready to go ... or should be. Probably easiest is to adapt
your function from before (and save under a different m-file name)
and retain the ability to pass in a time-step and also maximum sim-
ulation duration. Amazingly, given the cr*ppy unpleasant trigonom-
etry involved, it seems to work(!) – illustrated in Figure 4.1. As ever,
if you give it a particularly inappropriate time-step, funky and mean-
ingless things can happen (not shown).

0 10 20 30 40 50 60 70 80 90
-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 4.1: Basic 1-D EBM with no
latitudinal heat transport and for a
single hemisphere only.

In an extension to this Example, we note that although the dis-
tribution of surface temperatures with latitude looks not entirely
unreasonable (colder at the poles is good!), you really need data10

10 Not the Star Trek, Next Generation,
one.

of some sort to be sure the model projection is not bonkers. You had
a dataset of annual mean global surface air temperature data before
(which you dutifully plotted). You could either eye-ball some num-
bers from and try and guess appropriate or representative values as
a function of latitude and compare to your EBM, or calculate a zonal

numerical modelling – to infinity (1d) and beyond(!) 67

mean. Actually, MATLAB makes this obscenely simple for you using
the mean function11. 11 A function to calculate the arith-

metic mean, rather than a nasty and
vindictive function.

mean
MATLAB help , helpfully says:

Average or mean value.
S = mean(X) is the
mean value of the
elements in X
if X is a vector.
For matrices, S is a
row
vector containing the
mean value of each
column.

The only things then to watch out for are:

1. If the array is in the wrong orientation, you’ll find yourself
averaging along lines of latitude. This is simple to check as you’ll
get no noticeable latitudinal gradient in temperature. You should
also find in that case that the length of the vector returned by
mean matches the longitude grid rather than latitude.
2. Correcting #1 requires flipping the matrix around with the
transpose operator (’).
3. Units – units of the temperature dataset are K whereas your
model is in degrees Centigrade.

Once you have fixed any obvious data problems, you should end
up with something like Figure 4.2 (January) or Figure 4.3 (July).
Still to be done is to create an annual average zonal mean from the
data that can be contrasted directly with the annual average EBM
output, rather than just a single month of data. Fixing this is left as
an exercise for the reader, as they say ...

-80 -60 -40 -20 0 20 40 60 80
-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 4.2: Basic 1-D EBM with no
latitudinal heat transport (red filled
circles). Overlain is the zonal mean
observational data for January (blue
circles).

-80 -60 -40 -20 0 20 40 60 80
-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 4.3: As per Figure 4.2 but for
July.

Irrespective of the month (and this might well hold true for the
annual mean too), the EBM doesn’t exactly provide an ideal fit to the
observations. In particular: the North pole is rather too cold and the
tropics maybe a little on the warm side. Actually, we are only really
looking at half the model-data picture at the moment, and although
in the EBM the Southern Hemisphere is a mirror image of the North,
it would help to actually see this. So in addition to creating a annual
mean zonal temperature profile to plot against the EBM – also (cal-
culate, or mirror, and) plot the corresponding model projection for
the Southern Hemisphere. Something is still missing (in terms of
the model accounting for the observations) – what? Hopefully you
correctly guessed (i.e. scientifically and logically deduced) that it is
meridional heat transport – from the (overly) warm tropics to the
(too) cold poles.12

12 We have also ignored e.g. how surface
albedo increases as incident angle de-
creases – i.e. solar radiation is generally
absorbed more strongly by surface that
are perpendicular to the radiation and
reflected more efficiently if radiation
is glancing at a shallow angle to the
surface. However, this would only exac-
erbate our problem and leave the poles
even colder.

Extending this Example further, we’ll add some meridional trans-
port of heat energy (to fix the process missing from the previous
version).

We can encapsulate something of the effect of heat transport along
the latitudinal temperature gradient, either by adding a term to rep-
resent eddy diffusion and analogous to Fick’s law, or by analogy to
thermal conductance (albeit with a very poorly conducting atmo-
sphere). They actually both amount to the same thing and will end
up with similar looking equations. Taking the thermal conductance

68 ∼isempty(intersect(’models’,matlab))

approach, the flux of heat energy from one latitudinal band to the
next, J (W), can be written13: 13 The equation is conventionally

written as negative, assuming the point
of reference is the higher temperature,
which loses heat energy.

J = −k ∙ A ∙ ΔT
Δz

where k is the thermal conductivity (Wm−1K−1), ΔT is the difference
between the temperatures of two adjacent zonal bands (T1 − T2),
and Δz the distance between the bands (measured at the mid-point
latitude14).15 14 Similar to before, if you loop in n

(latitudinal bands), you can pre-define
the central latitude of each band for
convenience:

% define model grid
mid-point
grid_mid = ...
[0+dlat/2:dlat:90-dlat/2];

although ... this comes in useful only
for plotting (e.g. temperatures against
the mid-point latitude of the zonal
bands, as the separation in latitude is
always dlat and hence the separation
in distance is always the same(!)).
15 This is effectively the same as for the
diffusion of CH4 in a soil column in the
other 1D modelling example, with the
exception of the addition of an explicit
area (A) term here, which we did not
worry about before because the model
was constructed on a unit area (1 cm2)
basis and hence area did not appear
explicitly in the equations.

To code this, you simply take the interface area between two ad-
jacent zonal bands (A), multiplied by k, and by the temperature gra-
dient between the bands (ΔT

Δz). Heat energy will be lost by the band
with the higher temperature, and gained by the adjacent band with
the lower temperature, which needs to be taken into account in the
energy budget of each band, as summarized below.

The area that heat diffuses across can be simply approximated as
the height of the atmosphere over which heat transport takes place,
multiplied by the distance around the Earth at that latitude (taking
the latitude at the boundary between zonal bands, rather than the
mid-point). We’ll further assume that for height, the atmosphere can
be approximated by equivalent thickness of constant pressure, which
would make it 8.5 km (8.5E6 m) in height (and then suddenly space
beyond that).

Distance between 2 latitudes
Really, you don’t need a Box for

this. It is embarrassing to make one
in fact. But just in case ...

The average distance between
zonal bands can be estimated from
the difference in latitude between
the two mid-points of the zones, and
divide up the circumference of the
Earth proportionally, i.e.

Δz = Δlat
360 ∙ ztotal

where ztotal = 2 ∙ π ∙ R (the circumfer-
ence of the Earth at the Equator).

Circumference at a specific latitude
This is even more embarrassing to

write than the last one. The distance,
z, around a particular latitude, φ
(a Greek character was really not
necessary, but it looks way more
fancy this way), is:

z = 2 ∙ π ∙ sin(φ) ∙ R

(sin(φ) ∙ R being the radius of the cir-
cle at that latitude).

Based on the equation – add a heat diffusion (/conductance) term
to your 1D zonal EBM. Note that you do not a priori know the value
of k. This is not a problem per se, indeed, there may be no simple an-
swer or first principals derivation because the processes that govern
meridional heat transport in the real atmosphere ... and ocean, may
be legion and non-linear. The advantage of a model is that you can
find a value of k that most closely fits the observed data and thus best
represents the missing process. Informally, you can simply play with
the model and by trial-and-error find a value that seems to fit the
observations best.

The key here is to recognise that there are now additional terms
in calculating the energy balance for any particular zone. Whereas
previously we could write:

ΔF(n) = Fsolar_in (n) − Flongwave_out (n)

now we need:

ΔF(n) = Fsolar_in (n) − Flongwave_out (n) + Fdi f f usion_in (n) − Fdi f f usion_out (n)

Note that we have special boundary conditions to consider: the zone
bordering the Equator and the zone bordering the pole. This is be-
cause the polar zone only gains heat by diffusion from lower lati-
tudes and there is no higher latitude zone than it to diffuse heat to.

numerical modelling – to infinity (1d) and beyond(!) 69

For the lowest latitude zone, if we are assuming that the Earth is
symmetrical about the Equator, then it only loses heat to a higher
latitude zone and does not exchange heat energy with the opposite
hemisphere (because the temperature is assumed the same).

The structure of your model, within the (outer) time-stepping
loop, should then look like:

1. Loop through all n latitude bands and calculate the in-coming
and out-going radiation.16 16 Don’t update any temperatures just

yet!2. Loop through (n − 1) latitude bands (i.e. omitting the highest
latitude box, n), and calculate the diffusion of heat from the band
n to the one adjacent at higher latitude (n + 1). Populate 2 (length
n) vectors – one to store the diffusive heat gain (presumably from
a lower latitude), which will have non-zero values for indices 2
through n, and one to store the diffusive heat loss (presumably to
a higher latitude), which will have non-zero values for indices 1
through (n − 1).
3. Loop through all n latitude bands, calculate the net energy in-
put ΔF(n) and update the surface temperature accordingly (based
on the heat capacity of the ocean mixed layer and the time-step, as
before).

As before, if you are not entirely confi-
dent in what you are doing – write out
the equations long-hand for the sim-
plest possible comparable case – that
of 3 zonal bands: one from 0-30°N, one
30-60°N, and one from 60-90°N. You
have two flux calculations in this case
– the transfer of heat energy from the
low to the mid latitude box, and from
the mid to the high latitude zone. See if
you can see the pattern, which will then
help you generalize it to n.

What about the value of k? You are going to have to guess it to
begin with17 ... and adjust your guess if the model fits the data worse 17 If you see nothing plotted, your

guess might be too large and you have
numerical instability. You could try
reducing the time-step. But also start
with the lowest conceivable value and
work higher.

than before.
As an illustration – Figure 4.4 shows the effect of specifying

a value of heat conductivity of k = 0.1 Wm−1K−1, while k =
1.0 Wm−1K−1, as shown in Figure 4.5, is clearly compete overkill, and
much of the pole-to-Equator temperature gradient has been wiped
out by over-aggressive heat transport between the bands. (Note that
here I have simply mirrored the modelling temperature profile for
the Northern hemisphere, to the other (with a hold on). This could
have been done much better by combining the vectors and hence
obtaining a continuous curve from Souther to North.)

-80 -60 -40 -20 0 20 40 60 80
Latitude

-100

-80

-60

-40

-20

0

20

40

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 4.4: 1D EBM with an initial
guess as to the value of k.

-80 -60 -40 -20 0 20 40 60 80
Latitude

-100

-80

-60

-40

-20

0

20

40

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 4.5: 1D EBM with a x10 larger
value of k.

70 ∼isempty(intersect(’models’,matlab))

4.2 1-D reaction-transport model

A rather scientifically different, but conceptually somewhat
similar example, consider diffusion of a gas through a porous
medium. We will take the example of methane (CH4) diffusion into
soils, but there are many other situations in the Earth, Ocean, and
Atmospheric sciences where (diffusive) transport in 1-D is critical to
understand (such as the supply of solutes to the interface of a grow-
ing mineral crystal). At its simplest, we have a concentration of CH4

in the atmosphere, which we will assume does not change with time
(i.e., the reservoir is in effect infinite). We will call this concentration
C0. Because we are not going to allow the value of C0 be affected
by whatever happens in our 1-D soil column (we are not concerned
in this exercise in any role that the soil methane sink might play in
controlling the concentration of CH4 in the atmosphere itself), it is a
condition imposed on the model. This is known as a boundary con-
dition (and because it is at the top of the soil column, it is an upper
boundary condition).

In the soil we have a population of methane-consuming bacte-
ria (’methanotrophs’) who are taking up and metabolizing the CH4

(there will also thus also be a return of CO2, the metabolic product of
CH4 oxidation, from the soil to the atmosphere). Because CH4 is be-
ing depleted at depth, there will be a gradient in CH4 concentrations
along which CH4 there will be net diffusive transport, illustrated in
Figure 4.6. The scientific question is thus; what is the flux of CH4 into
soils? This is important (no, really!) because methane is a powerful
greenhouse gas and (aerobic) soils might constitute an important sink
of this gas. 18

18 In reality the system looks more like
Figure 4.7, and actually, even more
like Figure 4.8 ... adding considerable
complexity (and dynamics).

Figure 4.6: Idealized schematic of the
soil-CH4 system.

Figure 4.7: Slightly less idealized
schematic of the soil-CH4 system.

Figure 4.8: Even less idealized and
almost realistic, schematic of the soil-
CH4 system.

If all CH4 in the pore space was entirely consumed at some known
depth, z, then we would have a gradient of C0 − 0 (C0 being the
imposed upper boundary condition, and zero being the concentration
at depth) in methane concentration, and diffusion would be taking
place over a depth z. If D is the diffusivity of CH4 (in soil), with units
of cm2s−1, then we can easily calculate the initial flux, J, of methane
into the soil by Fick’s law (as cm3 CH4 per second (s−1) per unit
cross-sectional area (cm−2)):

J = D ∙ C0−0
z

or, more generally we can write that at any point in the soil that the
following condition must be satisfied:

J = D ∙ ΔC
Δz

where ΔC
Δz is the gradient in CH4 concentration (i.e., the change in

concentration divided by the change in depth).

numerical modelling – to infinity (1d) and beyond(!) 71

If all there was to the soil methane system was consumption to
zero at known depth, we could simply use an analytical solution
to calculate the CH4 flux into the soil. Unfortunately, life is rarely
as kind, and there are a number of complications (see background
material). For instance, the bugs do not all live at the same depth in
the soil column (although that is the assumption made in Ridgwell
et al. [1999]), nor have a constant activity throughout the year. Also,
soil properties vary with depth, which affects the porosity and tor-
tuosity of the soil (basically, how interconnected soil pore spaces are,
and thus in effect how conductive the soil is to gaseous diffusion)
and thus the diffusivity (D) of CH4 in the soil column, illustrated in
Figure 4.7. We will assume an initial value for D of 0.186 cm2 s−1.

Because we would quite like a general model for soil CH4 uptake
that was capable of accounting for these sorts of complications if nec-
essary, we will solve the system numerically rather than restricting
us to a simple analytical solution. This is what we will be doing in
this exercise – constructing the basic model of atmospheric CH4 dif-
fusion into the soil, although there is not time in this exercise to go
on and consider the metabolic consumption of atmospheric CH4 by
methanotrophic bacteria.

EXAMPLE OVERVIEW:

1. create function
2. create arrays and initialize model

parameters
3. set up plotting (useful for later)
4. create time-stepping loop frame-

work
5. add code to calculate fluxes:

(I): flux into surface layer
(II): flux into the (9) interior layers
in a loop

6. add code to update concentrations
based on fluxes:
(I): updating of first 9 layer concen-
trations in a loop
(II): updating of bottom-most layer

If we divide up the soil profile into 10 equally-spaced (equal thick-
ness) layers19, the basics of the model will be an array with 10 rows,

19 It need not be 10 – choosing 10 layers
of 1 cm thickness each, just simplifies
things.

one (row) location in the array representing the CH4 concentration
in the pore space corresponding to each 1 cm thick interval of soil
(see Figure 1). Thus, row #1 corresponds to the concentration in the
0-1 cm depth interval, C1, #2 corresponds to the 0-1 cm depth inter-
val, C2, ... , and #10 corresponds to the 9-10 cm depth interval, C10.
We will also need to create an array to store the average depth, zn at
which each of the CH4 concentrations is measured. These depths will
be; 0.5 (z1), 1.5 (z2), 2.5 (z3), ... , and 9.5 cm (z10).

We are now ready to calculate the diffusion of CH4 down the soil
column. From the earlier equation, you know that you can relate the
methane flux to the gradient in the soil, and the gradient between
any two successive soil layers is equal to:

Cn−Cn+1
zn+1−zn

This is just to say, the difference between the concentration in any
layer n and the concentration in the layer immediately below it
(which will be number n + 1) divided by the depth interval between
the mid-points of the same two layers, which is the depth (from the
surface) of the deeper layer (zn+1) minus the depth of the layer imme-
diately above (which is layer n).

Putting this all together, the downwards flux of CH4 between

72 ∼isempty(intersect(’models’,matlab))

layers is given by:

J = D ∙ Cn−Cn+1
zn+1−zn

You can think of this system as analogous to the Great Lake model
system20,21,22 – there we had a series of reservoirs storing stuff 20 Except less wet.

21 And smaller.
22 And in the soil ... OK, so not so much
like the Great Lakes system ...

(heavy metals), and there was a flow of material from one lake to the
next. Here we have gaseous CH4 in soil pore spaces rather than met-
als in solution in a lake, and we have diffusion of CH4 from one soil
level to another rather than a flow of water from one lake to another.
The only real difference is that in the Lake Model more of the work
was done for you and you were given the flow rates between lakes,
whereas here you have to calculate the transport (diffusion) rate of
CH4. The strategy for simulating the behavior of this system through
time will be very similar though – stepping through time, and during
each time step calculating the mass fluxes of CH4 between layers and
adding this to the pre-existing concentrations in each layer. The other
difference with the Lake Model is that all the soil layers in an indexed
array rather than being given different (lake) names, allowing you to
use a loop.

OK – now for the to-do stuff ...

1. Create a new m-file function. Pass in the run length (in units
of seconds) of the model simulation as a parameter, and e.g. call
it maxtime . See the blurb from previously for how to define a
function. If you want to be tidy: add a close all statement near
the start of the function.23 23 Note that because the variables

created in a function are private (and
not seen by the rest of the MATLAB
workspace), there is no need to issue
a clear all . In fact: if you add a
clear all at the start, you’ll clear the
(run length) variable that you have just
passed in ... :(

2. Create a 10×1 vector array call conc and initialized with all
zeros24. This is the variable array for storing the concentration

24 To save time – use the MATLAB
function zeros .

of CH4 in each 1 cm interval of the soil profile. Note that we are
assuming no methane is present in the soil to start with (zero soil
CH4 concentrations is the initial condition of the model).

Also create a 10×1 vector array called J , again initialized with
all zeros, to store the fluxes of CH4 into each of the 10 soil layers
from the one above (analogous to how you had the series of river
fluxes associated with the various lakes in a previous exercise).

Then create a 10×1 vector array z_mid to store all the soil mid-
layer depths (0.5, 1.5, 2.5, ... , 9.5). (This is a parameter array for
helping in the plotting of soil CH4 concentration against depth,
later on.) Note that you need to create an array of 10 values, start-
ing at 0.5, ending at 9.5, and with a step interval of 1.0. Go dust off
the colon operator to create this vector array.

Also create a parameter (conc_atm) to store the concentration
of CH4 in the atmosphere. To keep things as simple as possible,
you will be assuming units of cm3 cm−3, so that the atmospheric

numerical modelling – to infinity (1d) and beyond(!) 73

CH4 concentration becomes 1.7×10−6 cm3 CH4 cm−3 (equivalent
to 1.7 ppm), i.e.,:

conc_atm = 1.7E-6;

Also, just for completeness, define a constant to store the depth at
which the soil surface meets the atmosphere:

z_atm = 0.0;

Finally, define a parameter to store the value of the diffusivity
constant D (0.186 cm2 s−1):

D = 0.186;

3. Create a basic time stepping loop. Define a time-step length
(dt) to take – this is the amount of time that going around the
loop each time represents. Call the time-step length parameter dt

and assign it a value of 0.1 (s) (do this somewhere before the loop
starts in the m-file but after the function definition line at the very
top of the script). The model simulation length you want is given
by the (passed) parameter maxtime , and each time around the
loop lasts dt in model time, so how many counts around the loop
do you need to take ... ? If you call the loop counter tstep , then it
should be obvious :o) that the start of the loop will look something
like:

for tstep = 1:(maxtime/dt)

Yes? Before you do anything else, play with the function and check
that the time-stepping loop is working and that you understand
what it is doing. Try printing out (disp() 25) the current loop 25 The display line(s) should go inside

the loop, of course.value of tstep as well as the time elapsed in the model.26 One
26 Equal to the loop count multiplied by
the time-step length:

tstep * dt

way of displaying what is happening in the loop is to add a debug
line such as:

disp([’time-step number = ’ num2str(tstep) ’, ...

time elapsed = ’ num2str(tstep * dt) ’ seconds’]);

(All I am doing here is concatenating several strings together –
a description of what is being written out followed by a value
(a number variable converted to a string using num2str), then
another description of what is being written out followed by a
value, and finally the units of the second number.) If your function
was called ch4model (for instance) and you type:

» ch4model(1.0)

you should now get something like:

time-step number = 1, time elapsed = 0.1

time-step number = 2, time elapsed = 0.2

time-step number = 3, time elapsed = 0.3

time-step number = 4, time elapsed = 0.4

time-step number = 5, time elapsed = 0.5

74 ∼isempty(intersect(’models’,matlab))

time-step number = 6, time elapsed = 0.6

time-step number = 7, time elapsed = 0.7

time-step number = 8, time elapsed = 0.8

time-step number = 9, time elapsed = 0.9

time-step number = 10, time elapsed = 1

The loop has gone around 10 times because you asked for 1.0 s
worth of model simulation (the passed parameter maxtime) and
the time-step (dt) is defined as 0.1 s. Happy? (:o))

4. Run what you have so far and make sure that it works.27 27 Note that because the variables in
a MATLAB function are private (and
are thus not listed in the Workspace
window), if you want to check the
values in this array you could first leave
off the semi-colon from the end of the
line so that MATLAB prints the array
contents to the screen. Or, explicitly
add in a disp() line. Or ... add a
breakpoint somewhere in the code
and view the variable values when the
program pauses.

Remember: build up a piece of computer code piece-by-piece,
testing at each step before moving on. Believe me, there’ll be more
time for beers at the end compared to trying to write it all in one
go and then not having a clue as to why it is not working ...

5. At the end of the function (i.e., after the loop has ended), plot
the concentration profile of CH4 in the soil column – you will
want depth (cm) on the y-axis and concentration on the x-axis.
Depth should run from 0 cm at the top to 10 cm at the bottom.
Scale the x-axis so that concentration runs from 0 to 2.0×10−6 cm3

cm−3. Also plot on the same graph as a point the atmospheric
CH4 concentration at the surface of the soil, whose value is held in
the parameter conc_atm .28,29,30 28 hold on and then using the

scatter function is probably the
easiest way.
29 Note that MATLAB does not like
you trying to plot the y-axis with the
numbers getting more negative as you
go up the axis. One way around this is
to plot the negative of the depth on the
y-axis; e.g.:

plot(conc(1:10),-z_mid(1:10));
axis([0 2.0E-6 -10 0]);

so you really have the y-axis scale going
from 0 cm at the top, to minus 10 cm at
the bottom. (If you are clever, there are
ways around this involving explicitly
specifying the labeling of the y-axis ...)
30 Also note that if you want your
concentration scale in more friendly
units, such as ppm, then you will need
to scale the values you are plotting to
make them 106 times bigger; i.e.:

plot(1.0E6 * conc(1:10),-z_mid(1:10));
axis([0 2.0 -10 0]);

6. Call the function from the command line and check again that
everything is working OK. There should be no crashes (check for
bugs and typos if not) and you should get a graph which has a
vertical line running from almost the top (-0.5 cm) to almost the
bottom (-9.5 cm) at a concentration of 0 cm3 cm−3, together with
a point at the top (depth = 0.0) marking the atmospheric CH4

concentration of 1.7×10−6 cm3 CH4 cm−3 (or 1.7 ppm if you have
re-scaled the x-axis values). Check that you have this. Note that
the CH4 soil profile line can be hard to see because it runs along
the axis. You can make the line thicker in the plot command by:

plot(conc(1:10),-z_mid(1:10),’LineWidth’,3);

You can also fill in the atmospheric CH4 point by passing the
optional parameter filled to the scatter function..

7. So far this is not exactly very exciting (*yawn*). In effect, you
have a model for a soil system in which the soil is capped by an
impermeable layer at the surface (preventing any entry of atmo-
spheric CH4 into the soil) and nothing happens.

8. So now get model actually calculating something. Within the
time-stepping loop you are going to calculate the flux of CH4

between each layer. The concentration units of CH4 are cm3 CH4

cm−3. The length scale is cm. The diffusivity of CH4, D has units

numerical modelling – to infinity (1d) and beyond(!) 75

of cm2 s−1. So if we apply dimensionality analysis (basically, just
working out the net units) we get:

J = cm−2 × cm3 CH4 cm−3/cm

which comes out to give J in units of cm CH4 s−1! This looks a bit
screwed up. However, what area of soil (the cross-section of the
column) is the diffusion occurring across? The vertical length-scale
of the 1D model has been defined, but what about whether the
soil column is a nano-meter across or the area of the whole Earth?
Assume that the cross sectional area of the 1D model is 1 cm2 (i.e.,
1cm × 1 cm). Therefore, the flux of CH4 is occurring in a 1 cm2

unit cross sectional area model, with units of:

J = cm−2 × cm3 CH4 cm−3/cm × cm2

or cm3 CH4 s−1. This is much more reasonable (and cm3 of CH4

can easily be converted into units of moles or g of CH4 if you
needed to).

9. Before adding in the meat of the model (the calculation the
fluxes of CH4 between the pairs of 1 cm layers in the soil column),
it is easiest to calculate separately the special case of the flux from
the atmosphere into the first layer. The average distance (Δz) over
which diffusion occurs is only 0.5 cm in this case (measuring from
the surface (zero height) to mid-depth of the first 1 cm thick layer).
Referring to the equations previously, but recognizing that the n =
0 layer doesn’t exist because it is the atmosphere31 (so conc(0) 31 And also because you cannot start

indexing a vector in MATLAB at zero.and z_mid(0) have been replaced by conc_atm and z_atm ,
respectively) you should see that the flux of CH4 into the first soil
layer from above is:

J(1) = D * (conc_atm - conc(1))/(z_mid(1) - z_atm);

10. Now for the main course of your modelling feast. It should be
obvious(!) that what happens for layers 2 through 10 is basically
identical – i.e., for each of the layers n = 2 through n = 10, the flux
of CH4 into layer n from the layer above (n − 1) can be written:

J(n) = D * (conc(n-1) - conc(n)) / (z_mid(n) -

z_mid(n-1));

So, you could write a little loop, going from n = 2:10 , and calcu-
late the value of J(n) within the loop.32 32 Don’t forget that you have just calcu-

lated the first n = 1 layer flux (J(1))
already.11. Make sure that you are happy with what you have done so far.

You have calculated the CH4 flux from the atmosphere into the
first soil layer (n = 1). You have done this on its own because it
is a special case – there is no soil layer immediately above, only
the atmosphere. Then you have calculated the fluxes into each
soil layer (n from 2 to 10) from the layer above within an n loop
(because it is easier than writing out the same equation 9 times!).

76 ∼isempty(intersect(’models’,matlab))

Although you are not yet updating the concentration of CH4 in
the soil layers, it is worth running the model again to check that
that all the new things that have been added to the model work.
Do this, and check that you can still call the function without
MATLAB errors appearing (although this does not guarantee that
you have not made a mistake ...).

12. So, all that is left to do now is to update the concentration of
CH4 in each soil layer and see what happens ... To keep it sim-
ple, assume that the soil has a porosity of 1 cm3 cm−3 (i.e., all air
space and no actual soil!!!) – see Ridgwell et al. [1999] to get a feel
for how complicated gas diffusion in a real soil becomes and how
you must modify the diffusion coefficient to take into account dif-
ferent factors (such as soil type and moisture content). To update
the CH4 concentration in soil layer n due to the flux of CH4 from
above (layer n − 1) you must add a volume of CH4, given by the
calculated Jn value (in cm3 of CH4 per second) multiplied by the
time-step interval (in s). You must also take into account the loss
of CH4 from each soil layer n as CH4 diffuses into the layer below
(n + 1). So, just like you calculated the new metal pollution con-
centrations in the lakes by taking account what was there to start
with, plus any gain, minus any losses, the concentration change
for layer n = 1 for instance (but don’t write this in), is simply;

conc(1) = conc(1) + dt * J(1) - dt * J(2);

This is saying that the new CH4 concentration in layer n = 1 is
equal to the concentration at the previous time-step, plus the CH4

that diffuses into the later from above (J(1)), minus the CH4 that
diffuses out of the layer at the bottom (J(2)). Does this make
sense? You need to exercise your paw if not.

13. You could write out 10 equations to update the 10 soil layer
CH4 concentrations, or ... use another loop! You will have to be
careful, because when you get to layer n = 10, there is no flux
downwards because it is the bottom of the model. The bottom
boundary condition of the model is then that there is no down-
wards flux. (We could have defined the soil column to be deeper
than this, but it is always better to keep any model you are con-
structing as simple as possible to start with.) You will therefore
have to treat the bottom-most (n = 10) layer separately, but you
can still loop through from n = 1 to 9, and use the same equa-
tion. So, create a new loop, just after the n=2:10 one, and set its
counter (you can re-use the name n) going from n=1:9 . Within
this second n loop, update the CH4 concentrations for layers n = 1
through 9:

conc(n) = conc(n) + dt * J(n) - dt * J(n+1);

numerical modelling – to infinity (1d) and beyond(!) 77

Now add in the code to update the n = 10 layer CH4 concentra-
tion (i.e., adding just the flux from above (J(10)) to the current
conc(10) concentration value).

Now you are done. Hopefully. The overall structure of loops and
things should now look something like (NOTE: not necessarily ex-
actly like):

function ...

% (1) initialize model variables and set model parameters

...

%

% (2) start of time-stepping loop

for tstep = 1:(maxtime/dt),

% calculate the CH4 flux from the atmosphere into

the first

% soil layer

J(1) = ...

% calculate the CH4 fluxes from one soil layer to

the next

% (n=2:10)

for n = 2:10

J(n) = ...

end

% update the concentration of CH4 in each of the

soil layers

% (n=1:9)

for n = 1:9

conc(n) = ...

end

% and finally update the concentration for the

special case

% of n=10

conc(10) = ...

end

% (end of time-stepping loop)

%

% (3) plot results

...

end

Run it for 10s (»ch4model(10.0)) and see. You should see a
profile of decreasing CH4 concentrations as you go down deeper into
the soil, looking something like Figure 4.9.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 10 s

Figure 4.9: Soil profile of CH4 after
10.0s of simulation.

Now try a longer model run (100 s) (»ch4model(100.0)) and see
what happens. You should get something like Figure 4.10.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 4.10: Soil profile of CH4 after
100.0s of simulation.

Go find out when the system (approximately) reaches equilibrium
(i.e., the profile stops changing with time). You will need to judge
when any further changes are so small they could not possibly really
matter.

78 ∼isempty(intersect(’models’,matlab))

Keeping with the same Example33 and having constructed the basic 33 OVERVIEW:

1. adapt model and explore choice of
time-step

2. adapt model and explore choice
of layer thickness / number of soil
layers

3. add methanotrophs (CH4 sinks)
4. play!

diffusion framework for the model, we can explore what happens if
consumption of CH4 (by methanotrophs) occurs within the soil (as
well as exploring the numerical stability and hence choice of time-
step duration and grid resolution, of the model).

First, take the ch4model (or whatever named) function and add a
second input parameter to set the time-step length. You should then
have two input parameters (maxtime and dt).34 By calling the func- 34 Note that you will have to comment

out (or delete) the line in the code
where previously you defined the time-
step length as fixed with a value of 0.1
s.

tion from the command line, with a model simulation duration of 100
s, play around with the time-step length. Approximately, what is the
longest time-step you can take before the model becomes numerically
unstable? What are the characteristics of the soil CH4 profile that
lead you to suspect instability occurring in the numerical solution?
The onset of instability might look something like Figure 4.11.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 4.11: Soil profile of CH4 after
100.0s of simulation with an extremely
marginal choice of time-step length.

Now ... it just so happens that some top profs (me!?) have told you
that there are some bugs – methanotrophs (see Ridgwell et al. [1999])
that live deep down in the soil. From this, you assume that they will
be present only in the deepest (n = 10) soil layer in the model. They
just sit there, munching away on CH4 that diffuses down from the
atmosphere into the soil pore-space. A bit like idle grad students
living on a diet of pizzas.35 The bugs consume the CH4 present in

35 Except students mostly don’t live in
the cold damp dirty ground.

the soil pore space at a rate that is proportional to the concentration
of CH4 in the soil (makes sense – the more CH4 food source there is
to metabolize, the more than they will remove per second). Call this
rate constant e.g. munch_rate . It has units of fractional removal per
second. In other words, if the concentration of CH4 in layer n = 10 is
conc(10) , then in one second:

munch_rate * conc(10)

cm3 CH4 cm−1 will be lost from the soil pore space. So, if you had a
rate constant (munch_rate) of 0.5 s−1, then each second, half of the
CH4 in layer n = 10 would be removed. Of course, the time-step in
the loop might not be 1.0s – if you had dt=0.1 , for instance, then the
loss of CH4 each time around the loop would be:

0.1 * munch_rate * conc(10)

cm3 CH4 cm−1. Are you following so far ... ?
Now, add a third parameter that is passed into the soil CH4 model

function for the rate constant. Modify your equation for the updating
of the CH4 concentration in the deepest (n=10) soil layer to reflect the
presence of the methanotrophs. Call the soil CH4 model function;
pass a time-step of 0.1 s and a methanotroph CH4 consumption rate

numerical modelling – to infinity (1d) and beyond(!) 79

constant of 1.0 s-1. Your function call should look something like this
at the command line;

» ch4model(xxx,0.1,1.0)

where xxx is the duration of the simulation36,37. How many seconds 36 Not your favourite website address.

37 e.g. for 100s, giving a plot looking
(hopefully) like Figure 4.12.

(approximately) does it take for an equilibrium profile to be estab-
lished (i.e., what was the simulation duration that you used to create
your plot?). What, ultimately, is the shape of the soil profile of CH4

concentration, and why?
0 0.5 1 1.5 2

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 4.12: Soil profile of CH4 after
100.0s of simulation, with CH4 uptake
at the base of the profile with a rate
constant of 1.0 per s.

Now ... lets say that you then go out into the field and take sam-
ples from each 1 cm thick interval of a 10 cm soil profile. You incu-
bate the soil samples in sealed flasks with CH4 initially present in the
headspace (a fancy word for the air or gas above a sample in a con-
tainer). Hey – you observe that CH4 is removed in all flasks, equally.
Someone screwed up(!) – these bugs live throughout the soil column,
not just at the bottom. You’d better update your model in light of
these new scientific findings.

Add a term (within the 2nd n loop in which you update the CH4

concentrations) to reflect the consumption of CH4 in the layers n = 1
through 9. (You can keep the term for consumption in the n = 10
layer.) Since the bugs are spread out through 10 layers rather than be-
ing concentrated in one (at the bottom), presumably the consumption
rate is only 1/10 of your previous rate value. So use munch_rate =
0.1 (i.e., a rate constant of 0.1 s−1, rather than the value of 1.0 s−1 that
you used before) for all subsequent calculations. Call the soil CH4

model function with a time-step length of 0.1 s and determine the
steady state soil (equilibrium) CH4 profile (Figure 4.13). What shape
does this remind you of ... and why?38 38 There is in fact an analytical solution

to this profile – can you derive it?

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 1000 s

Figure 4.13: Equilibrium soil profile of
CH4, with CH4 uptake throughout the
soil column with a rate constant of 0.1
per s.

A couple of slightly more challenging modifications to try now:

1. Alter the model so that you can also pass into the function, the
number of soil layers that are represented in the upper 10 cm –
equivalent to altering the thickness of each layer. This change is a
little more involved than simply altering the time-step duration.
For instance, now, rather than n (the number of layers) going from
1 to 10, they are now counted from 1 to nmax

39 (the number of

39 For which you might call the variable,
e.g. n_max).

model layers you pass into the function)

2. Add in a parameter controlling the maximum depth of the soil
column represented (replacing the fixed 10 cm assumption from
previously).

3. Try adding a source of CH4 at the base of the soil column.40

40 This is quite physically plausible and
might reflect (in order of decreasing
likelihood): a water-logged, anoxic
layer at depth, thawing permafrost, or a
natural gas seep.

41 Units should be: cm3 CH4 cm−3 s−1. But now much (i.e. what

41 Note that now you have 2 different
boundary conditions in the model – a
fixed concentration in the atmosphere
at the surface, and a fixed flux at depth.

rate of methane production would be reasonable)? You could
play about, trying different values until finding one that did not

80 ∼isempty(intersect(’models’,matlab))

produce anything insane. Not a very satisfying approach. You
could certainly look up in the literature measured soil production
values (a much better approach). You could also get a feel for a
possible order-of-magnitude by contrasting with the previous
consumption flux (from the atmosphere). Actually, you have not
looked at this so far (the total atmospheric CH4 consumption
flux) and maybe should have as it is what matters in terms of the
soil being an effective sink, or not, for atmospheric CH4. To do
this – you need to extract from the model, the CH4 flux from the
atmosphere into the first soil layer (why?). Do this and make it
the returned values from the function. Now set the production
(at depth) rate similar to the net (from atmosphere) consumption
flux from before (with methanotrophic activity throughout the
soil profile). You should obtain a profile (at steady state) that is
approximately symmetrical in depth42 – e.g. Figure 4.13. 42 But not quite symmetrical – why?

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 1000 s

Figure 4.14: Example equilibrium soil
profile of CH4 with production at
depth.

4. Finally ... there should be (there is!) a value for the production
rate at depth, at which the flux into the atmosphere is zero. (There
are certainly some very large production rates at depth for which
the flux from the atmosphere is negative, i.e. there are net emis-
sions of CH4 *to* the atmosphere. Can you find this value (which
makes the net exchange zero) ... *without* trial-and-error?43 43 Your function returns the net flux and

you need to search for the production
rate value that minimizes this net flux.
Meaning you need to construct a search
algorithm, testing a larger production
rate of the net flux is positive, and
a smaller value if the net flux it is
negative.

5

Numerical modelling meets GUIs (and prettier games!)

82 ∼isempty(intersect(’models’,matlab))

5.1 GUI Pokémon game

Now we’ll build on your excellent GUI skills and create a GUI inter-
face for the ballistics (ball trajectory) model.

The idea of the ’game’ is that you are going to launch a ball, the
behaviour of which will be calculated as per your time-stepping
ballistics model. Rather than simply detect whether or not the ball
falls below zero (height), there will be a graphic (Pokémon) displayed
and a ’hit’ will be recorded if the position of the ball falls within the
boundary of the graphic. The key initial conditions – initial speed
and angle of the launched ball, will be set by controls in the GUI
rather than set in code. Finally, there will be a series of refinements
to improve the look and feel (and game-play) of the game that will
introduce a few further concepts in creating good MATLAB GUIs
and also new MATLAB functions. Ultimately, the GUI (app) might
look something like Figure 5.1, but how the controls are positioned
in the window and their relative size and shape, is pretty well much
up to you. You could also control how the initial parameter values
are set in a different way (e.g. using an Edit Text box rather than a
Slider). Quite what buttons you want and how they are used is also a
matter of personal aesthetics.

Figure 5.1: Screen-shot of he Pokémon
game App.

There is quite a lot of coding to be done and the risk of a huge
mess ensuing. So we’ll go through this all in a number of discrete
steps:

Part 0 (Some graphics tricks.)

Part I Create a basic GUI interface using MATLAB guide .

Part II Load in and display the graphics needed for the game.

Part III Add in the ballistics model.

Part IV Utilizing the sliders.

Part V Create the detection (logic) needed for a successful ’catch’ and associ-
ated outcomes.

Part VI Refinements to improve the look and feel of the game.

Because of the complexity of the project, the complete code (m-file)
as well as associated .fig GUI file, are provided (on the course
webpage). These are provided if needed for guidance (e.g. what code
goes where?), only. Try your best to work through the creation of the
App without this.

Example images are provided but you can substitute your own if
you prefer.

numerical modelling meets guis (and prettier games!) 83

If you run into unexpected and apparently nonsensical issues
when you make changes and text the App, try closing the design
window and any open Figure windows and type » clear all .

Part 0 – A few of the graphics procedures you will need to grasp and
implement.

Firstly, at the command line, open a Figure window (» figure).
Download any (legal/moral) image you care from the internet1 You 1 With the raster graphics format being

one of: .jpg, .png, .tif.can load this image into the MATLAB workspace with imread , and
display it in the Figure window with imshow . (Try it.)

imread
’A = imread(filename) reads

the image from the file specified by
filename ...’
and in this definition, assigns the
result of imread to a variable A.

imshow
imshow(A) will display an image

held in the variable A (read in by
imread).
Assign the result of imshow to a
handle if you wish to do anything
with it later, i.e.

h = imshow(A);

This fills up the screen, which is OK for a background image, but
not for much else. Open up a new Figure window. You can define a set
of axes anywhere in the window you like via the axes function:

axes(’pos’,[x,y,dx,dy])

where (x ,y) are the co-ordinates in the window, which by default
are from 0 − 1 in both x and y directions. dx and dy are the width
and height, respectively, of the axes (in the same window coordinate
system).

For instance, to create a set of axes starting at the origin, but only
25% of the full width and height of the window:

» axes(’pos’,[0.0,0.0,0.25,0.25]);

If you now display the image:

» imshow(A);

2 you should see a smaller version of the image, positioned at the 2 Or whatever you called the variable
with the image in.origin. If you remembered to assign the handle to a variable:

» h = imshow(A);

you can then delete the image:

» delete(h);

OK – now dig up the script for your ball-throwing animation – the
one where the scatter plotting ball location object was deleted after
a pause (giving the impression of movement/animation)3. Near 3 From Part IV of Section 8.1

the start of the script (before the loop starts), load in the Pokéball
graphic4. Then, instead of using the scatter function to plot a 4 (or pick your own graphic)

single point (circle), you are going to:

1. Define an axes object, either centered (harder) on the position
of the ball that scatter plotted, or taking as its origin (easier),
the position of the ball. The width and height of the axis ... you

84 ∼isempty(intersect(’models’,matlab))

can play about with, but it should be a relatively small proportion
of the total size of the main axes.
Note ... that axes uses relative coordinates (i.e. 0 − 1 in both di-
mensions) and not your actual ball position (in units of m). So
you’ll need to determine the horizontal and vertical position of the
ball, as a fraction, of the total size of your domain.5 5 e.g. you might have considered a

maximum horizontal distance of 10m
and a maximum vertical distance of
7.5m and specified:

axis([0 10 0 7.5]);

In which case, for the position of the
ball in relative/normalized units –
divide the x position by 10 and the y
position by 7.5.

So, if your x and y positions were
given by h(1) and h(2) , respectively,
the corresponding coordinates of the
frame are then:

h(1)/10 , h(2)/7.5 .

It is important here not to be confused between the different
sets of axes – you defined the primary one, outside of the loop,
and which defines the domain in which the trajectory is simulated:

axes(’Position’ ,[0 0 1 1], ’Visible’ , ’off’);

you then specified what (x,y) limits the axes represented, e.g.:

axis([0 x_max 0 y_max]);

(here, use parameters containing the maximum x and y limits).
You then scatter plot the ball’s position in the xmax,ymax do-
main.

In contrast ... to contain (display) the image you are defining a
small axes region (within the loop). The location and width/height
of this graphics frame are given in relative (0 − 1 scale) units,
rather than 0 − xmax and 0 − ymax you assumed with scatter .

The line:

axes(’pos’,[x,y,dx,dy])

(where you need to replace [x,y,dx,dy] with the appropriate
coordinates and image size - see margin note for an example of
deriving the correct coordinates) comes in the code in place of
scatter.

2. Plot the ball image (i.e. add the command imshow , which
should come immediately after the axes command). Assign the
graphics handle returned by the function to a variable.

3. As per previously, after a delay, you can delete the graphic
object,

Omitting delete(h) , the output of your ball/trajectory model
should look like Figure 5.2.

Figure 5.2: Trajectory model, with a
Pokéball image replacing the scatter
point. Here show without deleting the
image once displayed.

OPTIONAL – Ignoring the fact that image deleting is disabled, the
images (sprites) Figure 5.2 have a black background around them.
Yuk. If you picked an image with a white background, it would
look better, unless you had a dark background to the entire figure
window.6 6 You could pick an image which is

square. But what balls have you seen
that are cubes? Seriously. Do you get
out at all an play any sports? Or even
watch TV?!??

Some (raster) graphics formats enable a ’transparency’ to be de-
fined – basically a color that ... is transparent. Common formats with
such a capability include .gif and .png. As .png is a valid format for

numerical modelling meets guis (and prettier games!) 85

imread – try and find a .png image on the internet with a trans-
parency.7 You could also use the Pokéball image provided (which has 7 In Google search / images, a trans-

parent background is illustrated as a
grey-white checkerboard.

a transparent background).
To enact a transparent background in MATLAB is a bit of a mess

... you first have to obtain additional handles when you read in the
image:

[img_ball, h_map_ball, h_alpha_ball] = imread(’Pokeball.png’);

where img _ball is the variable containing the ball image, as before,
and h_alpha_ball is a handle to ... lets not worry about what it is
to. Just that you need it.

When you plot the ball, now add an additional command:

h = imshow(img_ball); set(h, ’AlphaData’, h_alpha_ball);

which sets this thing I am not telling you about.8 8 Wikipedia (please donate!), says: ’In
computer graphics, alpha compositing is
the process of combining an image with
a background to create the appearance of
partial or full transparency.’ Without
alpha channel information, everything
is assumed 100% opaque (including the
background).

For instance – the same model as before (with the Pokéball replac-
ing scatter but with the use of delete), but with only 1s simu-
lated, plus a background image displayed (before the loops starts),
and ... with a transparency implemented (removing the square black
background), looks like Figure 5.3.

Figure 5.3: Trajectory model (exactly
the same trajectory as per the Figure
5.2), frozen mid-flight at t = 1s with the
Pokéball passing over UC-Riverside.

Now ... we are ready ...

Part I – the basic GUI.
To achieve a GUI along the lines of Figure 5.1 you need to create

the following objects in the window design editor (but don’t create
them quite yet – details will follow ...):

1. Something to display all the action and graphics in. This is
pretty well much like MATLAB creates when you use plot ,
scatter , or any of the graphical functions that create a Figure

Window. This is called an Axes object.
2. A Push Button for telling MATLAB to start calculating (and
displaying) the balls’ trajectory.
3. A Push Button for resetting the game once it is finished.9 9 This we’ll only worry about making

use of this in Part IV.4. A Push Button to finish the game and close the App.
5. A Slider (bar) to set the initial speed of the ball.
6. A Slider to set the initial angle of the balls’ trajectory.
7. For each slider bar: a Static text box to display the value.
8. Also for each slider bar: a Static text box to display the units.

Make a start by running GUIDE at the command line. Create a
new (blank) GUI. You might save it once the GUI editor window
has open up10. MATLAB then opens the Editor and the GUI code 10 File – Save As. . .

template.

86 ∼isempty(intersect(’models’,matlab))

Sketch out on a piece of paper how you might lay out the objects
in your GUI window before you actually start to create anything. If
you have graph paper to hand, you could sketch out your design on
a grid similar to the design window grid and size. Note that should
should be aiming to make the Axes object square (i.e. the same length
in both x and y dimension) as the background image we are going
to use is square.11 Also note that the Sliders can be horizontal rather 11 Later on you might want to try

substituting your own background
image. In this situation, you might
need a different aspect ratio to the Axes
object.

than vertical if you prefer and if it make it easier to pack in all the
objects.

OK – to begin for real.

1. You have to start somewhere (i.e. you have to pick on one ob-
ject as the first one to be created!), and the best place to start is
arguably with the Axes object as it is the largest object in your win-
dow. Click on the Axes icon and drag out the position and size of
the object you want.12 By default, it is assigned a name (its Tag 12 Note that you can drag the GUI editor

window larger, and you can also drag
larger the gridded design area, meaning
that your App window will be larger
that you run the program.

property) of axes1. You are not going to have so desperately many
objects that it is necessarily worth re-naming it, but you can if you
wish (although the text will refer to axes1 where needed). Remem-
ber that you can move and re-size it at any point after creating it.
Its position as x,y of the objects origin as well as dimensions (x-
length and y-height) are indicated by Position at the bottom right
of the design window. For e.g. creating an approximately square
Axes object, you can also simply count the number of grid lines in
each dimension.

Save the .fig file and run it13. You do indeed have a graph-like 13 Note that there are two things that
potentially might both need being
saved – the m-file and the .fig file. If
you make code changes, save the m-file,
and if you make design change sin the
GUI editor, save the .fig file.

object with labelled axes. This is not actually that convenient (to
have the axes labels when you don’t need any in this particular
example). In the design window – double click on the Axes object
to bring up its list of properties. Find and edit XTick – delete all
the tick mark numbers. Do the same for the y-axis. Close the GUI
window from the previous version if it is still open, then save and
re-run. Now you should see a large white square(ish) with two
thin black lines delineating the axes14, and nothing else. 14 We could remove these black lines,

but they’ll get covered up later.
2. Next Push Button #1. Create (position and size, where- and
how-ever you think best). Simplest is to leave the default name
(’pushbutton1’). Change the text associated with the Push Button
(property ’String’). Label as ’Throw’, ’Go’, or whatever seems ap-
propriate. Remember that you can change the default font size,
family, color ... (and e.g. make bold etc.) as well as the color of the
button itself (plus a host of other property options).

3. Create a 2nd Push Button (’pushbutton2’) as per before. Label
consistent with the GUI aim (and e.g. Figure 5.1).

4. Similarly, create 3rd Push Button (’pushbutton3’).

numerical modelling meets guis (and prettier games!) 87

5. Now we need a Slider15 bar. These are bar with a slider (’knob’) 15 Not anything to do with baseball.

that can be slide up and down via the mouse, or moved by click-
ing in the bar above or below the position of the slider. By doing
so (changing the position of the slider along the slider bar), you
change the numerical value of the slider. We are going to use one
in order to set the initial speed of the ball. So go create one (leav-
ing the default name of ’slider1’).

Because we need to link the Slider to our model (in terms of
parameter value), we need to specify a minimum and maximum
value that the Slider can take, as well as an initial value. These
properties can be set at in the code, but we’ll start off by specifying
them using the design GUI tool. If you double click on the Slider

you’ll get its property list opened up. The minimum and maxi-
mum property value name are Min and Max – edit these to span
a plausible initial speed range16. Also set a default initial value 16 I used 0 to 20ms−1.

(parameter name ’Value’)17. 17 I assumed 0ms−1.

6. Create a second Slider (’slider2’) for setting the initial angle of
the ball (theta).18 18 Here I assumed a range of 0 to 90°,

with a default of 0°.
7. Because the Sliders themselves do not tell you quite what value
you have slide the slider to, it is a Good Idea to somewhere dis-
play the value. We’ll do this via a Static Text box (’text1’) and you’ll
need to create one to go with each Slider (so you’ll also have a
’text2’ named object). For now – simply leave the default text as is.

8. Finally, if you follow the design in Figure 5.1, you could add a
further pair of Static Text boxes in order to display the units. This
is far from essential and I’ll leave it up to you whether you bother,
particularly if your window is cluttered already.

That is the basic GUI design done. Save and run (having first
closed any open, running, instances of your GUI program). You
should have a window with all the objects discussed, but with none
of them yet doing anything.

At this point it is worth quickly orientating you around the automatically-
generated code m-file:

• At the very top of the m-file appears:

function varargout = Pokemon(varargin)

which defines the main program function (here, called pokemon

and meaning the App is run by typing » Pokemon).
Remember that you do not have to edit any of this function.

• Next comes:

% -- Executes just before Pokémon is made visible.

function Pokemon_OpeningFcn(hObject, eventdata,

handles, varargin)

88 ∼isempty(intersect(’models’,matlab))

This is the function that is called just before the window is made
visible and we’ll edit it later in order to carry out some initial tasks
(i.e. before the ballistics model itself runs).

• Then:

% -- Outputs from this function are returned to the

command line.

function varargout = Pokemon_OutputFcn(hObject,

eventdata, handles)

which is mysteriously useless and we will not edit.

• The first actually useful automatically generated code is:

% -- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata,

handles)

This will contain the code that is executed when the ’Throw’ (or
’Go’) button (’bushbutton1’) is pressed and will end up containing
the complete ballistics model code.

• The function code for when second button (’bushbutton2’)
is pressed appears in order after the function associated with
’bushbutton1’:

% -- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata,

handles)

We’ll only make use of this towards the very end of this section is
making the final refinements to the App.

• Then, the third button (’bushbutton3’):

% -- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata,

handles)

This will contain more more than a command to close the App (as
you have programmed previously).

• The code that is called whenever the position of the first
slider the appears:

% -- Executes on slider movement.

function slider1_Callback(hObject, eventdata,

handles)

• This is then followed by a second function associated with
slider1 whose purpose is ... not obvious. Perhaps slider initializa-
tion? Regardless, we’ll be ignoring the following code:

% -- Executes during object creation, after setting

all properties.

function slider1_CreateFcn(hObject, eventdata,

handles)

numerical modelling meets guis (and prettier games!) 89

• The final code is the pair of functions for the 2nd slider (of
which we’ll only edit the first of these two functions (slider2_Callback)):

% -- Executes on slider movement.

function slider2_Callback(hObject, eventdata,

handles)

% -- Executes during object creation, after setting

all properties.

function slider2_CreateFcn(hObject, eventdata,

handles)

Before we move on, you could add your first code to the m-file – a
close action if you click on the lower of the three Push Buttons. Refer
to the previous sub-section and example to remind yourself how to
do this. You are aiming to have the App window close when you
click on pushbutton3, whose associated function is called function

pushbutton3_Callback .
Save the m-file and re-run the App by typing its name (e.g. »

Pokemon) and the command line (first closing any already open
instances of it). The App window should now close when you click
on the third button. In the GUI design editor, edit the ’value’ of the
String property of this Push Button so that it has a logical and vaguely
meaningful label.

Part II – (graphics) initialization.
Note that in this section, all the code will go in function Pokemon_OpeningFcn ,
after the following (automatically generated) lines:

% Choose default command line output for Pokémon

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes Pokémon wait for user response (see

UIRESUME)

% uiwait(handles.figure1);

First, we’ll read in a background image (’background.jpg’ – available
for download from the website, or pick your own) and then display
it. We’ll use the commands imread for reading in the graphics for-
mat (and converting it into something MATLAB prefers) and then
imshow to display it. The first part is easy enough:

img_background = imread(’background.jpg’);

The question then becomes ’where’ to display it. You might not think
there is even a question in this – in the window! Except ... where in
the window?

90 ∼isempty(intersect(’models’,matlab))

We actually want the background image in the (currently) blank
Axes area, not just anywhere in the Figure window (which also have
various button etc. objects positioned in it). We need to find the ID of
the Axes object and tell MATLAB that is ’where’ we want to display
it.19 We can get the handle (ID) of the Axes object via: 19 Actually, it may work without wor-

rying about this, but we’ll need to be
able to specify where to position other
images later anyway.

h_axes = findobj(’Tag’ , ’axes1’);

and then tell MATLAB that this is currently the object to put things
in by:

axes(h_axes);

(which sets the current/active axes object to the one with the handle
h_axes)). We then use this handle in the call to imread :

h_background = imshow(img_background, ’Parent’ ,h_axes);

Try it (run the App). (The only problem with this is that MATLAB
may completely fail to scale the image to fit the Axes. We’ll fix this
shortly.)

While we’re at it (editing function Pokemon_OpeningFcn),
we can specify the axis range for plotting the position of the ball
in the Axes object (as you did previously), and add a hold on for
completeness. We may as well then also define the axis ranges (in m)
as parameters (that we can use elsewhere).

The complete code (so far), at the end of the automatically gener-
ated code in function Pokemon_OpeningFcn , becomes:

% define grid dimensions

x_max = 10.0;

y_max = 10.0;

% read in background image

img_background = imread(’background.jpg’);

% set axes suitable for game

axes(h_axes);

axis([0 x_max 0 y_max]);

hold on;

% draw background

h_background = imshow(img_background, ’Parent’ ,h_axes,

...

’Xdata’,[0 x_max],’Ydata’,[0 y_max]);

Here – as part of the call to imshow , the size and position of the im-
age are now explicitly prescribed (and the image scaled to completely
fill the axes object).

When you run all this, you should get Figure 5.4 (or with alterna-
tive background).

Figure 5.4: Template App with back-
ground image.

Next, we want a Pokémon to throw the ball at! The load-in code
(which can go after the code fragment above) for the image is identi-
cal to before:

numerical modelling meets guis (and prettier games!) 91

img_eevee = imread(’Eevee.png’);

(the image itself (’Eevee.png’) can be replaced with your own ...)
There are two complications in using imread , however. To see

what these complications are, after the img_eevee = line, add the
following:

h_eevee = imshow(img_eevee, ’Parent’ ,h_axes);

to also display the image. Well, it is a bit of an odd mess. By de-
fault, imshow tries to fit an image to the space, so that might, at least
partly, help explain things.

We can start by making the Pokémon image smaller and see
whether that helps us to work out what is going on. To do this, we
could e.g. pick half of the size of the Axes object, and plot the Poké-
mon from the origin. A replacement line to do this would look like:

h_eevee = imshow(img_eevee, ’Parent’ ,h_axes, ’Xdata’ ,[0

x_max/2],...

’Ydata’ ,[0 y_max/2]);

When you run this, you should get Figure 5.5.

Figure 5.5: Template App with back-
ground image plus Pokémon.

You can see firstly that the Pokémon image is half the size of the
space – exactly as we requested via ’Xdata’ ,[0 x_max/2] which
says to start the image at zero on the x-axis and stretch it horizontally
until half way along (x_max/2), and similarly for the y-axis. Except
... in the Axes object, it seems that the y-axis origin starts at the top
and is positive downwards (which is why the Pokémon appears in
the top left, rather than bottom left, corner).

To cut a long story short, we can generalize the position and size
of the Pokémon that is displayed (and use this at the end when we
refine the App), via the following code fragment20: 20 You should delete the lines starting

img_eevee = and h_eevee = first.
This 10-line code fragment then follows
directly on from the previous 11-line
one.

% define Pokemon size

dx_Pokemon = 0.2 * x_max;

dy_Pokemon = 0.2 * y_max;

% define initial Pokémon position

x_Pokemon = x_max-dx_Pokemon;

y_Pokemon = y_max-dy_Pokemon;

% read in Pokemon image

img_eevee = imread(’Eevee.png’);

% draw Pokémon

h_eevee = imshow(img_eevee, ’Parent’ ,h_axes, ’Xdata’ ,[x_Pokemon...

x_Pokemon+dx_Pokemon], ’Ydata’ ,[y_Pokemon-dy_Pokemon

y_Pokemon]);

Now giving you a small Pokémon – in fact, 20% of the Axes size as
specified by the parameters: dx_Pokémon and dy_Pokemon .
Remember that you can refer to the complete code to see how things
fit together.

92 ∼isempty(intersect(’models’,matlab))

If you run this, you should get Figure 5.6. (Note that because y
is measured downwards from the top in the GUI Axes object, for
’Ydata’ , we write the y min and max values the other way around:
[y_Pokemon-dy_Pokemon y_Pokemon] .)

Figure 5.6: Template App with back-
ground image plus small Pokémon at
bottom right.

One final thing is the background to the Pokémon image. The
original format (png) is actually defined with a transparent back-
ground. MATLAB can make use of this with a small tweak to the
code – replacing the img_eevee = line with:

[img_eevee,h_map_eevee,h_alpha_eevee] = imread(’Eevee.png’);

which grabs additional graphics information and specifically about
the transparency. And after the last line (h_eevee =), add:

set(h_eevee,’AlphaData’,h_alpha_eevee);

which implements the transparent background and hopefully gives
you Figure 5.7.

Figure 5.7: Template App with back-
ground image plus small Pokémon at
bottom right, now with its transparency
applied.

Part III – incorporating the ballistics model.
Here – almost all the code in this section will go into function

pushbutton1_Callback – the function that is executed when the
first Push Button is clicked. But before any coding – ensure that the
text label associated with the first Push Button is appropriate for
launching the ball (’Throw’, ’Go!’, whatever).21 21 Remember – double-click on the

pushbutton1 object in the design editor
and then find and edit the value of the
String property.

Below is a simple rendition of the ballistics model. All that has
been modified from a stand-alone m-file that would plot the trajectory
of a ball, is that the creation of a figure (and associated hold on) is
not necessary (because this has already been done within the initial-
ization function). Either copy-paste your own version (and comment
out the figure creation line), or add the below version.

% model constants
g = 9.81;
% model parameters
theta0 = 80.0;
s0 = 5.0;
h0 = 2.0;
% model parameters - time (s)
dt = 0.05;
t_max = 10.0;
% calculate initial velocity components
u = s0 * cos(pi * theta0/180.0);
v = s0 * sin(pi * theta0/180.0);
% set initial position of ball
x = 0.0;
y = h0;
% create Figure window and hold on
%Figure;
%hold on;
% run model

numerical modelling meets guis (and prettier games!) 93

for t=dt:dt:t_max,
% update horizontal and vertical positions
dx = dt * u;
x = x + dx;
dy = dt * v;
y = y + dy;
% plot current position of ball
scatter(x,y);
if (y < 0.0)

break ;
end
% update vertical velocity (horizontal velocity unchanged)
dv = -dt * g;
v = v + dv;

end

When you run the complete App, and press the first Push Button,
you should see the balls’ trajectory plotted. Upside-down! WTF!?

Well, this does seem to be the coordinate system in this Axes ob-
ject. We can fix this by subtracting the model calculated height (y)
from the maximum y-axis value (y_max) and adjust the scatter

code line to:

scatter(x,y_max-y);

Except ... we defined y_max in the initialization function, and its
value is not available in this function, unless we define it as global

in both, so lets do that – add the following lines:

global x_max;

global y_max;

to both the following functions

• function Pokemon_OpeningFcn

• function pushbutton1_Callback

(before any of your other code in these files, but below anything that
MATLAB generated automatically in the first place).

It works(!) and in the right direction (for ’up’), but it is hardly
iTunes grade App material. What we can do, is to replace the point
plotted by scatter , with an image.

At the top of function pushbutton1_Callback (after the
global declarations) load in a ball image:

[img_ball, h_map_ball, h_alpha_ball] = imread(’Pokeball.png’);

(using the full format of returned parameters because we’ll make use
of its transparency). We’ll then define the size of the ball:

dx_ball = 0.05 * x_max;

dy_ball = 0.05 * y_max;

and finally, in place of scatter ... , write:

94 ∼isempty(intersect(’models’,matlab))

h_ball = imshow(img_ball,’Parent’,h_axes,’Xdata’,...

[x x+dx_ball],’Ydata’,[y_max-y y_max-y+dy_ball]);

set(h_ball, ’AlphaData’, h_alpha_ball);

The first of these final two lines, displays the image given by the
parameter (ID) img_ball . It ensures that it is displayed in the axes
area pointed to by h_axes (and because of this, you also have to de-
fine x_axes as global22, i.e. global h_axes;). Its size is dx_ball 22 Directly underneath the other

two global definition lines AND
in a similar position in the ini-
tialization function: function
pushbutton1_Callback .

by dy_ball . Its x-coordinate is simply x (hence the image goes from
x to x+dx_ball) and its y-axis coordinate ... well, don’ worry about
it, after much trial-and-error, it works. Now you should have some-
thing like Figure 5.8 when you run it.

Figure 5.8: App with ball trajectory
trail.

To finish this section off, we’ll improve how the trajectory of the
ball is displayed. Firstly, we could add a delay between each addition
of the ball image, rather than them all sort of appear at once. After
the set ... line, add:

pause(0.005);

This is some improvement visually. We could also remove the previ-
ous ball image, so that only one ball image is displayed on the screen
at any one time, hopefully giving the impression of movement. Since
we were good and obtained the handle (h_ball) of the ball image
when we displayed it, this gives us a means to tell MATLAB to get
rid of it again. Now, after the pause line, add:

delete(h_ball);

which simply deletes the last ball image object that was plotted.
Now when you run it you should see a single ball image that

follows the trajectory that you calculated with your time-stepping
ballistics model.

Part IV – utilizing the sliders.
So far it is not much of a game – the values of the parameters deter-
mining the initial speed and angle of the ball are set in the code. You
could always edit the code, save, and re-run to replay the game with
a different throw, but ... really(?)

The Sliders are there to allow you to adjust the two key parameter
values and the ’Throw’ (/’Go’) button can be re-clicked on to then
re-run the game. The Sliders are set up such that when you move
the slider, its value changes. In designing the GUI and creating the
objects, you have already set the min and max values of the Sliders to
something reasonable. What remains is to obtain the value of each
Slider and pass that to your ballistics model.

The first step is to read the new Slider value when the slider is
moved. Taking the example of the first Slider (’slider1’) which controls

numerical modelling meets guis (and prettier games!) 95

the initial speed of the ball – we first need to request the handle (ID)
of this Slider. As before, we use the findobj function:

h = findobj(’Tag’ , ’slider1’);

which simply asks for the handle (passed to variable h) of the object
whose ’Tag’ is ’slider1’. You then23 use the get function to get the 23 On the next line.

’value’ (one of the properties of the object):

s0 = get(h, ’Value’);

where here the value is assigned to the variable s0 (initial speed).
These two lines of code go in function slider1_Callback just
after the comment lines (there is actually no other code (automati-
cally generated) in this function as it currently stands).

While we’re here editing this function, what else might be helpful
to happen when the slider is moved and its value changes? Although
from creating the Slider object you know (unless you have forgotten)
what the min and max Slider values are, you would still be somewhat
guessing what its exact (or even rough) value was. During the GUI
design phase, you created a pair of Static text boxes for each Slider.
One of each pair was intended to display the Slider value. So lets do
this now. The Static text box for the value display was called (its Tag)
text124. 24 At least, it was in my GUI design –

check the name of yours.Once again, before we can change any of the properties, we need
to determine the handle of the object. For Static text box text1, the code
would be:

h = findobj(’Tag’ , ’text1’);

(this should be starting to become familiar to you by now ...).
To set its value, which in this case is a text string, we write:

set(h, ’String’ ,num2str(s0));

where num2str(s0) converts a numeric value into a string (as you
have seen before). These two lines of code will go after the first two
in the same function (as you need to have obtained the value of s0
before you can use it to change then text box display).

At this point you may as well save and re-run. Now, when you
drag and release the slider for initial speed, its new value is displayed
above it in the text box. At least, this should be what happens ...

Write the analogous four lines of code for the other Slider, which
will go in function slider2_Callback . Now the parameter
value being read and displayed in the text box is the initial angle of
launch, theta0 (of whatever you prefer to call the parameter).

Again – save and test what you have so far. This should now be
two Sliders that are linked to two Static text boxes such that when the
slider is moved, the new values are displayed.

96 ∼isempty(intersect(’models’,matlab))

There is one final step to take – if you change either or both Slider

values and click on ’Throw’ /’Go’, the trajectory of the ball is cur-
rently still the same as before – you are not actually changing the
parameter values used to initialize the ballistics model yet. Recall
that variables within functions are private – they cannot be ’seen’ out-
side of the function their value is set in. Unless you declare them as
global variables.

So, in each Slider function, you need to declare the respective pa-
rameter (s0 or theta0) as global . This will need to be the first line
of the code (after the comment lines and before the four lines of code
you inserted). You will also need to add the global declarations at
the start of the pushbutton1 code where your model lives (function

pushbutton1_Callback(hObject, eventdata, handles)):

global s0;

global theta0;

You then need to comment out the lines that set your initial model
parameter values:

%theta0 = 80.0;

%s0 = 5.0;

You can test it now, and if you do, you might find that nothing
appears to happen if you press ’Throw’. Only if you change the slider
positions does anything (i.e. a moving ball) happen. We have created
the situation where the ballistics model takes it values for initial
speed and angle from the parameters s0 and theta0 . The only place
in the code in which these values are set are the Slider functions. BUT,
the Slider functions are only called when the slider is moved. So on
starting the App, unless you first move the Sliders, the values of s0

and theta0 are undefined25. 25 Invariably, undefined variables in
code are assigned a value of zero, but
you should never try and use a variable
whose value has not somewhere been
defined.

What to do? Well, recall there is the function that is called when
the App first starts up and in which we loaded up various images
etc. In this function, we could also check the value of each Slider

(even though the slider could not have been moved yet), set the pa-
rameter values, and display the Slider values in the Static text boxes.

At the end of the code in function Pokemon_OpeningFcn ,
add:

% read in default model parameters and set labels

h = findobj(’Tag’ , ’slider1’);

s0 = get(h, ’Value’);

h = findobj(’Tag’ , ’text1’);

set(h, ’String’ ,[num2str(s0)]);

h = findobj(’Tag’ , ’slider2’);

theta0 = get(h, ’Value’);

h = findobj(’Tag’ , ’text2’);

set(h, ’String’ ,[num2str(theta0)]);

numerical modelling meets guis (and prettier games!) 97

which is pretty well much just an amalgamation of the code you
have added to the two Slider callback function. The last final piece is
to remember that the initial Slider values you read and set s0 and
theta0 on the basis of, cannot be seen outside of this function. So
at the top, along with the other global statements, make s0 and
theta0 global.

Note that if you do not like the new defaults for s0 and theta0 ,
you can always edit the properties of the Sliders in the GUI design
editor window thing.26 26 Equally, you could have coded in

defaults and then set the Slider values
to be these defaults when the App
starts up. The process is basically
exactly the same as for setting the Static
text box string values.

Part V – pokéball/Pokémon collision detection.
Remember earlier – you detected if the height of the ball fell below
ground level and used this to exits the loop (because no more calcula-
tions were necessary):

if (y < 0.0)

break ;

end

You are going to do something similar, but:

1. Firstly, test both x and y positions of the ball (rather than just
y).
2. Finish the game upon a successful hit.

For the first part – you need to determine whether the ball is
within the limits of the Pokémon (which would be a reasonable cri-
teria for a ’hit’). There are four parts to the criteria, which all need to
be true:

1. The ball is to the right of the left edge of the Pokémon.
2. The ball is to the left of the right edge of the Pokémon.
3. The ball is above the bottom edge of the Pokémon.
4. The ball is below the top edge of the Pokémon.

In code, if the edges of the Pokémon are:

xmin, xmax, ymin, ymax

we are looking for the situation:

x>xmin && x<xmax && y>ymin && y<ymax

where (x,y) is the location of the ball.27 27 Note that the code you need is not
quite this simple – your ball (x,y) lo-
cation is in units of m, with y positive
upwards, whereas the Pokémon image
location and size is defined in normal-
ized Axes units, and with y downwards.

For the edges of the Pokémon – refer back to the code in function

Pokemon_OpeningFcn where you defined the position of the Poké-
mon image. The only thing is t remember the up-side-down y-axis,
so you are actually looking for y to the greater than the top edge, and
less than the bottom edge ...

If this condition is met, the game is over. You might then:

98 ∼isempty(intersect(’models’,matlab))

• Remove the Pokémon image and replace with a message.
• Grey out and disable the ’Throw’ button.

Part VI – final game refinements.
Various refinements that come to mind and that you might try and
implement:

• Upon clicking ’New Game’, you might place the Pokémon in a
different place. Perhaps larger or smaller than originally. Both
these settings could be made random.
(This is already included in the complete example code.)

• In a new game, you might display a different Pokémon. Which
Pokémon gets displayed, could also be random.
(The MATLAB function rand creates a random number between
0 and 1, useful for scaling size. A simple change over in Pokémon
would be to create a variable that was true or false, to control
whether one or other image was displayed, and could be flipped
in state (var = ∼var) after each catch.)

• Keep score (of how many ’catches’) as well as how many tries
total.
This would require two new Static Text box objects in the GUI.

• You could also keep a high score ... saving this value when you
close the App, and loading it when you start it up.
(e.g. simply saving and loading an integer from a .mat file)
Harder, is to add the ability to enter (and remember) the initials of
the person with the high score ...

• Rather than using sliders, you could enter in the initial speed and
throw angle as values.
For this, you will need a pair of Edit Text boxes. You need to read
in whatever the text is that was entered into these boxes when
the thrown button is clicked ... and convert to a number – see
MATLAB help on:

str2double

(You could refine this further by detecting a non-number (str2double

will return a NaN if the string of characters does not form a num-
ber) and somehow requesting the user tries again – see MATLAB
help on msgbox .)

• Change the physics!!
You could add a term to account for air resistance – as the ball
travels through the air, friction will act to decelerate the ball.
(See Optional section in earlier chapter on ’ballistics’.)

6

Example codes

100 ∼isempty(intersect(’models’,matlab))

6.1 Chapter 1 codes

example codes 101

6.2 Chapter 2 codes

Bibliography

Index

D’uh
D’uh

environment, 51
duh environment, 51

environments
duh , 51
exit , 36
FUNCTION, 11
help , 11
imread , 83

imshow , 83
line , 27, 61
mean, 67
pause , 54
zeros , 30

exit environment, 36

FUNCTIONenvironment, 11

help environment, 11

imread environment, 83
imshow environment, 83

license, 2
line environment, 27, 61

mean environment, 67

pause environment, 54

zeros environment, 30

	How to use this Textbook
	Fonts and highlighting
	Help(!) and keyword definitions
	Side notes and other distractions from the main text
	What and when to type
	Code structure
	'Answer' codes

	Introduction to numerical modelling
	Numerical modelling – zero-D / equilibrium
	Zero-D Energy-balance model of the climate system
	'Daisy World'

	Numerical modelling – Dynamic (time-stepping)
	Catch the ball (ballistics and simulating trajectories)
	Dynamics in the zero-D Energy-balance climate model

	Numerical modelling – To infinity (1D) and beyond(!)
	1-D energy-balance climate model
	1-D reaction-transport model

	Numerical modelling meets GUIs (and prettier games!)
	GUI Pokémon game

	Example codes
	Chapter 1 codes
	Chapter 2 codes

	Bibliography
	Index

