
ANDY RIDGWELL

str=’Do you like bananas?’;

UC-RIVERSIDE / DEPT. OF EARTH AND PLANETARY SCIENCES 2020/21

Copyright © 2020 Andy Ridgwell

http://www.seao2.info/teaching.html

Except where otherwise noted, content of this document is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license (CC BY-NC-SA 3.0)
(http://creativecommons.org/licenses/by-nc-sa/3.0/)

Current printing, November 23, 2020

http://www.seao2.info/teaching.html

Contents

How to use this Textbook 9
0.1 Fonts and highlighting 9

0.2 Help(!) and keyword definitions 9

0.3 Side notes and other distractions from the main text 10

0.4 What and when to type 10

0.5 Code structure 11

0.6 ’Answer’ codes 12

0.7 MATLAB versions 12

1 Elements of ... MATLAB and data visualization 15
1.1 Using the MATLAB software 16

1.1.1 Starting MATLAB 16

1.1.2 The command line 16

1.1.3 MATLAB GUI 17

1.1.4 Help(!) 17

1.2 Basic concepts 18

1.2.1 Variables 18

1.2.2 Numerical expressions and Arithmetic operators 21

1.2.3 Relational and logical operators 22

1.2.4 Functions (built-in) 23

1.2.5 Miscellaneous commands 24

1.3 Vectors and arrays #1 25

1.3.1 Creating vectors 25

1.3.2 Basic vector manipulation 26

1.3.3 Addressing elements in vectors 26

4

1.4 Basic graphing (aka. ’data visualization’) 28

1.4.1 Plotting 28

1.4.2 Graph labelling 29

1.4.3 Sub-plots 30

1.4.4 Saving graphics and figures 30

1.5 Vectors and arrays #2 32

1.5.1 Creating matrices and arrays 32

1.5.2 Basic matrix manipulation 33

1.5.3 Some matrix math :(36

1.6 Loading and saving data 38

1.6.1 Where am I? 38

1.6.2 Loading and importing data 39

1.6.3 Saving and exporting data 41

1.6.4 Loading and saving the workspace 41

1.7 Basic data processing (and yet more plotting) 42

1.7.1 Sorting data (in arrays) 42

1.7.2 Data scaling 44

1.8 Nicer graphing 46

1.8.1 Modifying lines/symbols in plot 46

1.8.2 Plotting multiple data-sets 46

1.8.3 Changing label font size (and type) 47

1.8.4 Scatter plots 48

1.8.5 Simple 2D data and bitmap visualization 49

1.9 Further matrix math (systems of equations) 50

2 Elements of ... programming 53

2.1 Introduction to scripting (programming!) in MATLAB 54

2.1.1 Programming good practice 55

2.1.2 Debugging the bugs in buggy code 58

2.2 Functions 61

2.3 Conditionals ’101’ 64

2.3.1 if ... 64

2.3.2 switch ... 70

5

2.4 Loops ’101’ 72

2.4.1 for ... 72

2.4.2 Other loop configurations and usages 76

2.4.3 Fun(!) worked examples 78

2.5 Loops and conditionals ... together(!) 83

2.5.1 for ... and conditionals 83

2.5.2 while ... 87

2.6 Even more (and loopier) loops 90

3 Further ... MATLAB and data visualization 93

3.1 Further data input 94

3.1.1 Formatted text (ASCII) input 94

3.1.2 Importing ... Excel spreadsheets 98

3.1.3 Importing ... netCDF format data 99

3.2 Further (spatial / (x,y,z)) plotting 103

3.2.1 Contour plotting 103

3.2.2 Meshgrid 108

3.3 Further data processing 112

3.3.1 find ! 113

3.3.2 Other data filtering 117

3.3.3 Some miscellaneous and useful data manipulations techniques 119

3.3.4 Data interpolation 120

3.3.5 Data (row) deletion 124

3.4 Even nicer graphing and graphics 128

3.4.1 Drawing lines (and using handles) 129

3.4.2 Colors 133

3.4.3 Shapes 133

3.4.4 Placing and making text ’nice’ 135

3.4.5 Creating color maps 136

3.5 Stats (it had to happen ...) 139

3.5.1 Basic (pretend) ’stats’ 139

3.5.2 ’Real’ stats 140

6

4 Further ... Programming 141

4.1 Nested loops 142

4.2 Algorithms and problem-solving 152

4.2.1 Example #1: max(!) 152

4.2.2 Example #2: sort(!!) 157

4.2.3 A gridded algorithm problem 160

4.3 Interpreting equations (0) – Basics 172

4.4 Interpreting equations (1) – Population models 173

4.4.1 Exponential (and unrestricted) growth 173

4.4.2 Restricted growth (and an equilibrium state) 174

4.5 Interpreting equations (2) – Pure lovely maths 177

4.5.1 Sequence convergence (in 1D) 177

4.5.2 Sequence convergence (in 2D) 180

5 Programming applications – games! 187

5.1 Tic-tac-toe 188

5.1.1 Mouse behavior 191

5.1.2 Drawing the ’objects’ 191

5.1.3 Identifying specific boxes 193

5.1.4 Remembering turns (and arrays!) 195

5.1.5 Putting it all together 197

6 Graphical User Interfaces (GUI) 203

6.1 MATLAB GUI basics 204

6.1.1 Hello, World [Static Text (box)] 205

6.1.2 Simple GUI responses [Push Button] 208

6.1.3 Updating object properties (do you like bananas?) 211

6.1.4 Simple GUI responses [Sliders] 215

6.2 MATLAB apps 217

7

7 Example codes 219

7.1 Chapter 1 codes 220

7.2 Chapter 2 codes 221

7.3 Chapter 3 codes 224

7.4 Chapter 4 codes 225

Bibliography 227

Index 229

List of Figures

1 Schematic for a generic script. 12
2 Schematic for a generic function. 12

1.1 Example of the default output of the plot function. 28
1.2 A plot illustrating axis auto-scaling (maximum x and y values now

slightly larger than 10 and 100, respectively). 29
1.3 A (only very slightly) improved plot. 29
1.4 Arrangement of subplots. 30
1.5 Result of simply throwing the entire data matrix at plot 40
1.6 Spline fit to measured changes in CO2 concentration in Law Done

ice core, following Etheridge et al. [1996]. 41
1.7 proxy reconstructed past variability in atmospheric CO2. 42
1.8 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 43
1.9 Observed annual global mean surface temperature anomaly (com-

pared to year 1910 to 2000 average). 44
1.10 Observed annual global mean surface temperature. 45
1.11 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 46
1.12 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 47
1.13 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 48
1.14 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 48
1.15 A 2D plot of some random gridded model data. 49
1.16 A 2D plot of some random gridded model data ... but with the un-

derlying data matrix re-orientated before plotting. 49
1.17 Lake volumes and river flow rates in the Great Lakes system. 50

2.1 Schematic of the example program. 56
2.2 Schematic of the Hello World program. 57
2.3 Output from the (bug-fixed version of) plot_some_dull_stuff m-file. 60
2.4 Schematic structure of the simple bananas question program. 65
2.5 Schematic structure of the extended bananas question program. 67
2.6 A slight variant on the schematic structure of the extended bananas

question program. 67
2.7 Schematic of the bananas program using the if ... else ...

construct (and displaying alternative messages). 68

10

2.8 Extremely unappealing blocky plot of Earth surface temperature (who
cares with month? – the graphics are too poor to matter ...). 80

2.9 Continental outline (of sorts). 90
2.10 Another continental outline (of sorts). 91
2.11 Another go at the continental outline! 92

3.1 Very basic imaging (image) of an array (2D) of data – here, global
bathymetry. 103

3.2 Slightly improved very basic imaging (imagesc) of bathymetry data. 104
3.3 Example result of basic usage of the contour function. 105
3.4 Example usage of contourf , with the hot colormap (giving dark-

/brown colors as deep ocean, and light/white as high altitude). 105
3.5 Example usage of contour , contouring only the zero height isoline,

and providing a label. 107
3.6 Usage of contour but with lon/lat values created by meshgrid func-

tion and passed in (and with the hot colormap (giving dark/brown
colors as deep ocean, and light/white as high altitude). 109

3.7 Example contour plot including meshgrid -generated lon/lat val-
ues. Result of contourf(lon,lat,temp7,30) , where the data file
was temp7.tsv , with some embellishments. 111

3.8 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 116
3.9 Observed annual mean surface temperature in Riverside. 125
3.10 Observed global annual mean surface temperature anomaly, relative

to the mean of 1910 through 2000. 126
3.11 Observed annual mean surface temperature anomaly, relative to the

mean of 1910 through 2000, at Riverside. 126
3.12 Observed annual mean surface temperature anomaly, relative to the

mean of 1910 through 2000, at Riverside, filtered to remove years with
missing monthly data. 126

3.13 Figure window with axes. 129
3.14 Figure window with single line segment (via plot). 129
3.15 Figure window with a second line segment (via line). 129
3.16 (no comment). 130
3.17 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 132
3.18 RGB scale. By SharkD - Own work, GFDL, https://commons.wikimedia.org/

w/index.php?curid=3375025 133
3.19 Square. 134
3.20 Alt square. 134
3.21 Random polygon. 134
3.22 Global topography plotted with the default MALTAB color scheme. 136
3.23 Global topography plotted with hot . 137
3.24 Global topography plotted with a basic black+white dual color scheme. 137

11

3.25 Comparison of sparsely sampled data (points) compared with a more
finely spaced spline interpolation (solid line). (x-axis and y-axis are
both unit-less.) 137

3.26 Global topography plotted with a user-defined grey-scale. 138

4.1 Tic-tac-toe game grid. 142
4.2 Tic-tac-toe game grid with numerical codes overlain. 142
4.3 Tic-tac-toe game grid – numerical representation. 142
4.4 Tic-tac-toe game grid – search order: columns then rows. 143
4.5 Tic-tac-toe game grid – search order: rows then columns. 143
4.6 3x3 grid of black squares ... 147
4.7 3x3 grid of colored squares. 148
4.8 (yawn) 148
4.9 Chess board grid pattern. 150
4.10 Ocean topography (blues through red) in the ’GENIE’ Earth system

model. Land is shown marked in brown. 160
4.11 The ’GENIE’ mode land grid, with land points assigned a sequen-

tial integer (working across and dow the grid – from West to East,
and then North to South). 166

4.12 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier ... almost ... (!) 169

4.13 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier (color). 170

4.14 The ’GENIE’ mode land grid, with land points (almost) assigned a
unique identifier (color). 171

4.15 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier (color). 171

4.16 The Mandelbrot Set – points representing complex numbers that are
members of the set, are shown in black. Complex numbers for which
the sequence does not converge, are graphically represented by the
white locations in the plotted domain. 177

4.17 ×50 (-ish) zoom in on the Mandelbrot Set illustrating self-similarity
and the fractal nature of the set boundary. 177

4.18 Solution space (blue points) for the simple sequence. 178
4.19 Solution space (blue points) for the simple sequence, with the rate

of divergence forming the color scale of light blue (slowest) through
yellow (fastest divergence). 180

4.20 Simple, low resolution Mandelbrot set rendition. 184
4.21 Simple, low resolution Mandelbrot set rendition (now highlighting

points that are members of the solution set (black) vs. not (white). 184
4.22 Initial Mandelbrot Set magnification. 185
4.23 Example Mandelbrot Set zoom. 185
4.24 Example Mandelbrot Set zoom. 185

12

5.1 Tic-tac-toe. By Symode09 - Own work, Public Domain, https://commons.wikimedia.org/
w/index.php?curid=2064271. 188

5.2 Schematic structure of the complete code. 189
5.3 Tic-tac-toe game grid drawn. 190
5.4 Tic-tac-toe game – object drawing test. 193
5.5 Tic-tac-toe game – object drawing + mouse button test. 193
5.6 Tic-tac-toe game – object drawing now arranged in a grid. 194
5.7 Tic-tac-toe game grid with numerical codes overlain. 196
5.8 Tic-tac-toe game – object drawing now arranged in a grid and with

forced alternation in player turn. 198
5.9 Linear indices of a 3 × 3 matrix. 199

6.1 Starting GUI window of the MATLAB GUIDE, GUI design tool. 204
6.2 (Blank) GUI window editor GUI window. 205
6.3 Design of the Hello, World window! 206
6.4 Design window with a default push button object. 208
6.5 (completely) Bananas design window. 211
6.6 (completely) Bananas GUI in action. 213

List of Tables

1.1 Pollution input input rates to each of the 5 lakes. 50

4.1 Examples of applying the equation iteratively (different starting val-
ues). 178

How to use this Textbook

A brief guide as to how to interpret and make best use of this book,
follows.

0.1 Fonts and highlighting

Throughout ... but also be aware (because it is probably not imple-
mented particularly consistently ...): the following formatting is used
in the text to distinguish the specific context of the word:

• Bold – indicates program/software names (e.g. MATLAB).
• Italics – indicates technical/jargon words, particularly those
specific to MATLAB (but not command words or functions them-
selves), or programming concepts, e.g. loop.
• Sans-serif font family typeface – indicates keyboard keys (e.g. F5),
program menu items (e.g. Save as ...), program window names,
and filenames (except where they appear in MATLAB code).
• Typewriter font family typeface – indicates MATLAB
commands and functions, and lines of code (see examples below).
• Color highlights in the text are used to reflect the colors em-
ployed by MATLAB at the command line, or in the code editor.
• Math is hi-lighted in a different font, e.g:
a = 10 × b + c2

and hence differs from the MATLAB code version:
a = 10 * b + c ∧2

or writing it out ’normally’:
a = 10 x b + c2

0.2 Help(!) and keyword definitions

MATLAB help is not always especially helpful! In the course text,
for each function that MATLAB provides a comprehensive help text
on, such as help , a simple summary version will be displayed in the
right hand margin in a grey box. For example – the box to the right
in the margin, headed FUNCTION.

FUNCTION
A simple and/or summary usage

of particular MATLAB commands
and functions is provided in a grey-
background box in the margin.

...

...

16

Also appearing in grey boxes in the margin are overviews and
summaries of MATLAB commands or functions as well as ways
to do things in MATLAB. For example – the box to the right in the
margin, headed loops.

loops
There are a number of differ-

ent ways of constructing loops in
MATLAB ...

...

...

0.3 Side notes and other distractions from the main text

1 sort of things will appear in the text – side notes2 and there will 1 I am a Side note!
2 I am also a Side note!be some corresponding text or comment in the margin (as closely

aligned vertically as possible). Most side notes are helpful and offer
additional guidance or suggestions, and on balance, you should read
them.3 In fact, the format of the book gives over substantial space 3 Some are trivial and a little worthless

educationally, but you wont know
which is which until you have read
them ... They might also just brighten
up your day a little.

to Side notes, explanation boxes, and figures, so be prepared that
important information may frequently appear in the margins.

0.4 What and when to type

Examples of MATLAB code/commands are indicated by text in a
’Typwriter ’ font, e.g.

A = [1 2 3 4];

When the given examples are illustrating instructions typed in at the
command line, the text again appears in the ’Typwriter ’ font, but in
addition, the command line prompt (») is shown at the start of a line
(you do not actually type in the prompt itself ...), e.g.

» hello

is typing in hello at the command line, and

» hello

Undefined function or variable ’hello’.

is then showing you what happens (when you type in hello at
the command line).

Additionally ... lines of code that go along with the discussion in
the text and which are not necessarily intended for you to type in
(although you may still want to, simply to try it out), are given in a
light Courier font:

% light font lines of code

Lines of code that are intended for you to type in – either at the
command line ...

17

» disp(’hello’)

or somewhere in an m-file ...

% place in a file

are given in a bold Courier font. Additionally, code to type in, where
possible/appropriate, will include the same context-colors as MAT-
LAB.

Instructions as to when you should do or try something out, rather
than read and digest, where possible are given in bold. (Note that
you might want to try out other (light font) code to get a complete
picture of the art of programming.)

When you see a string or variable name in all CAPITAL LETTERS
– this is a ’placeholder’ and is indicating that you should substitute
in an appropriate string or variable name in its place, e.g.

load(’FILENAME’,’-ascii’);

is in fact indicating that you substitute the name of your actual file in
place of FILENAME. i.e., if your actual filename was exciting_data.txt,
then your code would read:

load(’exciting_data.txt’,’-ascii’);

Alternatively:

plot(MYARRAY(:,1),MYARRAY(:,2));

would indicate that you should substitute your actual variable name
(holding the data to plot in this example) in place of MYARRAY, e.g.

plot(exciting_data(:,1),exciting_data(:,2));

In general, you should use all lower-case characters for names of
variables, functions and scripts, or files.

0.5 Code structure

A visual guide to the structure of your programs is given by schematic
figures in the page margin4. For example, a generic script (yellow

4 Not all code fragments and programs
are given a schematic.

box) is shown by Figure 1, and a generic function (green box) by Fig-
ure 2. 5

5 Don’t worry about the terms function
and script for now

In these schematics, the flow (sequence) of the code is indicated by
the red arrow.

For the function, that information is passed into the function, and
then returned back to where the function was called from, is indi-
cated by the red arrows entering the top of the box and leaving the

18

bottom of the box, respectively. (But note that there is no line of code
at the end that tells the model to return values ... this is simply to
illustrate the flow of the program, particularly when things get more
complicated and there are multiple scripts and functions involved.)6 6 All this should hopefully all become

apparent later.

Figure 1: Schematic for a generic script.

Figure 2: Schematic for a generic
function.

For the script, the code file starts with a comment (%program

description) summarizing what the script does, although after the
function definition header line, so to should the function (somewhere
have comment lines describing what it does).

The black left-pointing filled triangles and associated text to the
right, indicate categories of code content, and occurring in what
order, that the programs might contain.

The purpose of these cartoons is to help you when faced with a
blank page and the question: ’Where do I start’ or ’What do I write’
appears prominently in your mind7. It is to give you some sort of

7 Also surrounded by flashing neon
lights.

idea what bits might go where, and what general content is required
in the file. The cartoons do not (and are not intended) to show the
exact details of the code content. Nor do they necessarily indicate
all the different sections needed. Conversely, not all the sections
illustrated may be strictly necessary and in come examples there
may be nothing to ’initalize’ and there may be no constants of local
parameters to define the values of at the program start.

So please – use the cartoons as a simple visual guide to the ap-
proximate structure of your program, but do not over-interpret them.

0.6 ’Answer’ codes

For some of the more complex codes you will be expected to write,
in addition to step-by-step instructions in the text, complete ’answer’
codes are be provided at the back of the text. These are provided
as guides to help you structure the code as you work through the
relevant section and see the ’bigger picture’ of where all the parts fit
together. The complete codes are obviously NOT provided for you
simply to copy ... else you’ll learn nothing. Except how to use the
CTRL-C and CTRL-V key combinations.

Please use this provision as intended and for guidance only should
you find yourself completely stuck.

0.7 MATLAB versions

The MATLAB software suite is constantly evolving and new and/or
improved functions, and additionally functionality of the GUI, are
constantly appearing. The point of this course is to provide you with
a basic programming ability, as well as practical skills in applying
MATLAB to science and data problems, rather than skill you more

19

narrowly in the most recent MATLAB software version. You may
well find ’easier’ ways of doing things using newer MATLAB func-
tions as compared to in this text, and if you do and want to utilize
newer/simpler ways of doing things – then please feel free to do so.

1

Elements of ... MATLAB and data visualization

Hello Newbies! This first lab’s porpoise is to start to get you familiar with what MATLAB ’is’ and what
the heck you’d actually do with it. Specifically, you are going to learn about variables and arrays and doing
some very basic/simple math in MATLAB, and learn how to import and manipulate (array) data in this
software environment and then do some basic plotting (aka ’data visualization’). If your are clever ... you
might find menu items or buttons to click that will do the same thing as typing in boring commands at the
command line. In fact, you would have to be pretty dumb not to notice all that brightly colored eye-candy
in the GUI (Graphical User Interface – i.e., menus, buttons, and stuff) at the top of the screen. However,
you will get to grips with programming much quicker if you stick with the instructions and do almost
everything that is asked of you using the command line (rather than doing stuff via the GUI), at least to
start with. You’ll just have to trust me for now ... We’ll start with the very basics and things that you could
easily do in Excel instead, and build up.

Graphics is one of the important strengths of MATLAB. Although other software packages and scripting
languages exist that perhaps have the edge on MATLAB in terms of visually appealing plots and graphs,
MATLAB is worlds apart from e.g. Excel. And way way better than potato printing.

22 str=’do you like bananas?’;

1.1 Using the MATLAB software

1.1.1 Starting MATLAB

To start with: find the MATLAB icon on the desktop; run the pro-
gram. You should see a number of sub-windows arranged within
the main MATLAB window, hopefully including at the very least,
the Command Window1. Depending on whether you have used MAT- 1 Conveniently labelled Command

Window – you cannot possibly fail to
identify it ...

LAB before and it has remembered your settings, windows may also
include: Command History, Workspace, Current Folder. If instead you
see; ’Tetris’, ’Grand Theft Auto: San Andreas’, and ’Fortnite Battle
Royale’, then you have the wrong software running and are going to
find learning MATLAB rather hard. However, there is big $$$ to be
made in on-line gaming tournaments these days. You could quit your
degree now ... Conversely, there are also good jobs and $$$ in being
able to program. So, read on ...

1.1.2 The command line

When MATLAB initially starts up, the Command Window should
display the following text:

Academic License

»

or nothing (the page is blank) ... or in order versions of the software:

To get started, select MATLAB Help or Demos from the

Help menu.

»

Regardless, there should be a vertical blinking line (cursor) following
the double ’greater than’ symbols with an ocean of blank lines/space
below2. 2 Note that in nerd-speak the » is

called the command ’prompt’ and is
prompting you to type some input
(Commands, swear words, etc.). See –
the computer is just sat there waiting
for you to command it to go do some-
thing (stupid?). If one does not appear
at the bottom of whatever is in the Com-
mand Window is means that MATLAB
is busy doing something extremely
important. Or perhaps, MATLAB may
have completely died. Either way, it will
not accept any new/further commands
until it is done calculating/dying.

If you are unfamiliar with using command-line driven software ...
Don’t Panic!3 Nothing bad can happen, regardless of what you do.

3 Douglas Adams. The Hitchhiker’s Guide
to the Galaxy. Pocket Books, 1979. ISBN
0-671-46149-4

Well, almost. It is possible to accidently clear MATLAB’s memory
of the results of calculations and data processing and close plots and
graphs before you have saved them, but MATLAB remembers all the
commands you type, so in theory it is perfectly possible to quickly
reproduce anything lost. (Later on we will be placing the sequence
of commands into a file (that is saved) and so ultimately, MATLAB
should turn out to be mostly fool-proof.)

To convince yourself that nothing dreadful will happen ... type ...
anything. Actually ’anything’ will do.

» anything

Undefined function or variable ’anything’.

elements of ... matlab and data visualization 23

Well ... not so exciting. But not so disastrous! MATLAB simply
has no clue what you are talking about, or rather, anything is not a
’key word’4 that MATLAB recognises. In the specific error message,

4 i.e. a word, or sequence of characters
that has a special meaning to MATLAB
and it will act upon, as opposed to
a sequence of characters that has
not special meaning and MATLAB
completely ignores.

MATLAB could not find that anything was a built-in (or user-
defined) function, nor a listed variable, both of which you’ll learn
about in due course.

1.1.3 MATLAB GUI

There are lots of fancy looking icons and pretty colors and you could
spend all day staring at them and not getting any work done. Or
you could learn some good programming practice. Which is why we
mostly will ignore the eye-candy and little (if any) guidance will be
given as to the functionality of the Graphical User Interface (GUI).
Look at this as a lesson for the user (to read the Help, textbook, on-
line documentation, or simple go Google for an answer5). 5 Otherwise known as Internet fishing.

1.1.4 Help(!)

If stuck at any point – you can press the F1 key or click on the ques-
tion mark icon on the tool-bar, to bring up the indexed and search-
able MATLAB documentation.6 6 It is also possible to obtain context-

specific help, e.g. on a specific (built-in)
function, which we’ll see in due course.

You can also type help at the command line (and press the Return

key).

» help

The result is perhaps not especially helpful. The typical usage is to
provide the name of a function7 you require help on. Perversely, help 7 Don’t worry about what a function is

yet.is a function and MATLAB provides help on help . The initial output
to which is as follows:

» help help

help Display help text in Command Window.

In the course text, for each function that MATLAB provides a com-
prehensive help on, such as help , a simple summary version will be
displayed in the right hand margin in a grey box.8 8 Refer to the section on ’How to use

this Textbook’.

help
Typically takes a single param-

eter – the name of a function, and
returns an entirely incomprehensible
description of that function and its
usage at the command line.

24 str=’do you like bananas?’;

1.2 Basic concepts

1.2.1 Variables

A variable is, in a sense, a pointer to a location in computer memory
where a piece of information is stored9. For instance – open up a 9 In the bad old days, this pointer was

the actual address in memory and
might have looked something like
f04da105 .

blank worksheet in Excel, and in the very top left hand cell, enter the
number 10. You can see visually, that Excel is referencing this loca-
tion as column A, and row ’1’. In fact, this location (’A1’) is indicated
in the Name Box to the left of the Formula Bar.

In MATLAB, a variable is associated a name (rather than a letter-
number code as in Excel) in order to make things rather more easy
and convenient. The name can be almost any sequence of characters
you like, regardless of whether it is a real or fake word, as long as
it does not contain numbers or special characters (e.g. #, $, %, ...)
or spaces. So actually, you are only left with continuous sequences
of characters without spaces (’words’!). Note that you can create
a variable name based on 2 (or more) real words, separated by an
underscore (_) if that helps describe what the variable refers to. Valid
variable names include:

A

B

cat

derpyhooves

this_is_boring_stuff

BIG

big 10 10 Note that MATLAB distinguishes
between lower and UPPER case letters
in a variable (i.e. BIG and big would
represent two different and distinct
variables). I would strongly advise to
stick to all lower case, or all upper case,
to avoid possible future confusion. (or
come up with a naming convention, of
whatever sort (e.g. capital first letter),
and stick to it.)

(but noting that my personal preference/recommendation is to avoid
uppercase characters and stick to all lowercase)

Variables are entirely useless unless they have some information
assigned to them. In fact, you can type in any of the variable names
above (at the command line) and MATLAB will deny it knows what
you are talking about11.

11 Technically, MATLAB reports:
Undefined function or
variable which tells you it is nei-
ther a function name (more on this
later), nor is defined as having any
information associated with it.

So far so useless – you need to assign something to it. (The analo-
gous situation is that when you first open an Excel spreadsheet and
it is completely blank – you can still reference cell A1, but there is
nothing in it.) Which brings us to quite ’what’ and ’how’.

First of, you need to know that variables can have the following
types of things assigned to them:

• Integer – An integer number is a counting number, i.e. 1, 2,

3, ... and including zero and negative integers. (MATLAB has
different representations for integer numbers, depending on how
large a number you need to represent (and how much memory it

elements of ... matlab and data visualization 25

will need to allocated to storing it). This is something of a throw-
back to the days when computers only had 1/10000000th of the
memory of your iPhone and were slower than half a lemon nailed
to the floor. So we will not in this text particularly worry about a
numbers/computing concept called precision.)

• Real (floating point)12 – A real number can have a non-integer 12 The distinction (sort of) is that floating
point is a specific representation of a
real number.

component, e.g. 1.5 or 6.022140857 × 1023. Real numbers also
come in different precisions in MATLAB (also to do with memory
allocation and speed), determining not just the number of decimal
places that can be represented, but also the maximum size.

Be aware that you can configure13 MATLAB to display a partic- 13 Under the menu item Preferences and
then Command Window.ular format for real numbers, e.g.

42.0

versus
4.2e+01

(there are identical real numbers, just a different display format).

• Character – One or more characters, but now allowing spaces
(unlike in the case of naming variables). Related to this is the
String type, which is more flexible esp. for creating arrays of char-
acters. Which then confuses all the description in the text as a
sequence of characters (or a vector of characters) is since long-ago,
known as a string. In the text, string will be used to refer to vector
of characters rather than the MATLAB string type.

• Logical – a variable that can be true or false 14 – we’ll come

14 As opposed to a Trump variable, that
can have many different alternative
states of ’true’, although generally, a
Trump ’true’ is in fact ’false’. An entire
new branch of mathematics and logical
deduction has been created just to
process al this.

to quite what this means later.

• etc – No, not a real type, but to note that MATLAB defines and
recognises a whole bunch of other variable types, including Com-
plex (MATLAB can handle complex numbers) and Object (we will
also not worry about objects, which can incorporate a combina-
tion of types. At least, not yet ...). The MATLAB documentation
contains a full list (and/or go Internet Fishing).

To come back to Excel – if you select Format Cells (right-mouse-
button-click over cell A1), you get to chose from a long list of ’for-
mats’, including Number and Text, and which have a loose correspon-
dence with types in MATLAB.

The next thing to learn is ... to ideally, not attempt to mix up (com-
bine) variables of different types. MATLAB is very forgiving when
it comes to combining an integer and a real number in the same cal-
culation, but in some other programming languages, this should be
avoided. However, even in MATLAB, strings and reals (or integers) are
very different things.15 When necessary, different variable types can be

15 Again – in the Excel example, Excel
will not let you add a Number and a
Text value together, for instance. (Try it!
You should see #VALUE! reported.)

converted between (see Variable Type Conversion Box).

Variable Type Conversion
MATLAB provides a variety of

functions (see later) for converting
between different types of variables.
The most commonly-used/useful
ones are as follows:

1. converting from a number to a
string (s)

• s = num2str(N) , where N is
any number type variable

• s = int2str(I) , where I is
an integer

2. converting from a string (s) to a
number

• x = str2num(s) , where N is
(generally) a double precision
(real) number

Case #1 (num2str) is generally the
most useful, e.g. in adding specific
captions to plots (with caption text
based on the value of a numerical
variable) – examples are given later.

26 str=’do you like bananas?’;

The second and perhaps rather more important thing, is how to
assign a value to a variable (and in fact, create the variable in the
first place). Programming languages such as FORTRAN require you
to define the variable beforehand and assign it a type.16 MATLAB 16 Partially true. An Alternative Fact of

sorts.allows you to define and assign a value to a variable all at the same
time, and it will kindly work out the correct type based on the value
you assign to it.

You assign a value to a variable using the assignment operator =17. 17 This is NOT ’equals’ in MATLAB.
Or any sane programming language.
We will see the equality operator shortly.
= assigns the value or variable on its
right, to the variable on the left.

For example:

A = 10

will assign the value 10 to the variable A. If you type this at the com-
mand line, MATLAB will kindly repeat what you have just told it
and report the value of A back to you directly under the line you
typed the command in at:

A =

10

Note that you do not need to add a space before and/or after the as-
signment operator (=). This is something of a personal programming
and aesthetics preference, i.e. whether to pad things out with spaces
or not. (Chose what you feel happiest with and later on, whatever
leads to the fewest programming mistakes ...) i.e.

A = 10

is interpreted exactly the same as:

A=10

Pause ... this is sort of fundamental (to using MATLAB), what
you have just done here. It is the equivalent of typing ’10’ into the
cell A1 in Excel (assuming we can equate the Excel location A1 with
the MATLAB variable A). In doing this, you have both: (a) created a
variable A, and (b) assigned it a value of 10 .

MATLAB will also report in the Workspace window, the name and
value, type (unhelpfully called Class), etc of all your current variables
(just one currently?). Actually, it is not all quite so simple. If you
take a look at the Class of the variable A in the display window – it is
listed as double (a real number) rather than an integer. So by default,
if MATLAB does not know what you really want, it defines A as a
double precision real number18. 18 If you genuinely wanted an integer,

there are ways to do this, such as using
a type conversion function form real to
integer (see above).

Pausing again ... if you want to remind yourself of the variables
that you (or a program) have created – you can refer to the Workspace

window.19 Also listed here as noted above, is its value (and type etc). 19 There is a command line command
for listing current variables (whos), but
lets not bother with it.

Another way to access the value of a variable, is to simply type in its
name at the command line:

elements of ... matlab and data visualization 27

» A

and MATLAB will parrot back:

A =

10

The next complication comes when assigning a string (a sequence
of characters) to a variable. For example, try:

B = apple

and MATLAB is far from happy. As it turns out, a sequence of char-
acters can also refer to a function20 in MATLAB, and this is what 20 You will see functions shortly. For now

– note that they are ’special’ (reserved)
words that perform some action and
hence cannot also be used for a variable
name.

MATLAB looks for (i.e. a match to apple in the list or variable (and
function) names). In other words, MATLAB does not know whether
you intend apple to be a string or a function. It assumes function ...
but cannot find one with that name and then gives up. To delineate
apple unambiguously as a string, you need to encase it in (single or
double) quotation marks:

B = ’apple’

Just as MATLAB creates new variables on the fly, you can re-
assigned values to an existing variable, even if this means changing
the type, e.g.

A = ’banana’

has now replaced the real number 10 in variable A, with the charac-
ter string banana. This is reflected in the updated variable list details
given in the Workspace window (and the variable type or Class is now
listed as char).21 21 Equally in Excel, you can simply type

over a pre-existing value to replace it.
e.g. you could type banana over the
contents of cell A1 (that previous held
the number 10).

Finally, it is possible to suppress output to the Command Window

when making variable assignments – simply add a semi-colon (;) to
the end of the assignment statement22, i.e.

22 Again – your personal choice as
to whether to include spaces or not
between the C, the assignment operator
=, the character vector ’banana’ , and
; (Maybe try it both ways to convince
yourself at least in this context, spaces
do not matter.)

C = ’totalbanana’;

Now, nothing is echoed back to the command line but the Workspace

is still updated to reflect this variable assignment.

1.2.2 Numerical expressions and Arithmetic operators

You can do normal maths in MATLAB. Or at least, something that
looks at least a little intuitive. (In fact, I often use MATLAB as a
calculator.) The primary/common numerical expressions are:

• exponentiation — ∧ — raises one number of variable to the
power of a second, e.g. ab, a to the power b, which is written in
MATLAB as a∧b.

28 str=’do you like bananas?’;

• multiplication — × — e.g. a×b, written in MATLAB as
a∗b.
• division — / — (written as you would expect).23 23 Entertainingly, it turns out that if you

write the reverse, backslash character
(\) in the equation, you divide the
over way (i.e. denominator divided by
numerator).

• addition — + — (guess).
• subtraction — - — again, obvious/intuitive.

Technically, these symbols are called (arithmetic) operators.
The order in which the arithmetic operators are written down is

important and will execute them in a specific order (operators higher
up the list, executed first), i.e. first ^ , then ∗ and/ (equally), and last,
+ and - (equally). There is also negation, when you change the sign
of a variable, and which is executed immediately after exponentiation.
e.g.

B = -A

The assignment operator (=)24 comes last. 24 This is NOT ’equals to’.

If you are unclear about the order numerical operators are carried
out, then place parentheses () around the component of the calculation
you wish to be carried out first to enforce a particular order (this can
also help in making an equation easier to read and ultimately, easier
to debug code). For example, consider:

A = 3;

B = 6;

C = 2;

D = C* (A/B+1)

E = C* A/(B+1)

F = C* A/B+1

G = A* C/B+1

Try these out (and make up your own combinations) and confirm
that the answers are what you would expect them to be.

1.2.3 Relational and logical operators

We will see more of relational and logical operators later when we start
to get into some proper coding. For now, you only need to know that
a relational operator is one of:

• greater than — MATLAB symbol >

• less than — MATLAB symbol <

• greater than or equal to — MATLAB symbol >=
• less than or equal to — MATLAB symbol <=
• equality — MATLAB symbol ==
• inequality — MATLAB symbol ∼=

and test the relationship between 2 variables.

elements of ... matlab and data visualization 29

Note that the equality symbol (that tests the equivalence between
two variables) is represented by TWO = characters (==), and
remember that a single = character is the assignment operator.

In everyday language, the answer to any one of these relational
tests would be a ’yes’ or a ’no’. But in MATLAB (and other computer
languages), the answer is given as the binary (logical) equivalent
where ’yes’ is represented by 1 and ’no’ by 0. You can also use true

(1) and false (0), e.g. A = true returns:

A =

1

Finally, the logical operators (again, more on this later) are:

• or — symbol ||

• and — symbol &&

• not — symbol ∼

For now – simply keep mind the existence of relational and logical
operators and what they look like and we’ll look into them some more
later.

1.2.4 Functions (built-in)

MATLAB provides numerous built-in functions25. These functions 25 We will be constructing our own
later, at which point it should become
apparent that there is nothing particular
special about them.

have specific names assigned to them, so care needs to be take not
to give a variable the same name as a function to avoid getting con-
fused further down the road. Giving an exhaustive list (and brief
description) is outside the scope of this text26. Common functions will 26 A full list of functions can be found

in the MATLAB Help Documentation
under functions.

be progressively introduced as this text progress. Note that in addi-
tion to the on-line Help documentation, information on how to use a
function and example uses is provided by typing help and then the
function name (separated by a space) at the command line.

MATLAB also provides several built-in mathematical constants
(which save having to define a variable with the appropriate number
that you no-doubt will have to look up from the internet first ...).
This are simply variables that have been already defined and assigned
values, but which you cannot change (hence the term ’constant’). For
instance, the value of π, is assigned to a built-in function with the
name pi . You can access (display) its value by typing its name at the
command line:

» pi

ans =

3.1416

In this example, the use of the function is rather trivial – you need
to tell the function pi absolutely nothing, and it spits back the same

30 str=’do you like bananas?’;

thing (the value of π) each and every time. In most other functions,
you will have to pass some information, and the return value will de-
pend on that input you provide. (This ... and what exactly a function
is, will all become apparent in due course ...)

1.2.5 Miscellaneous commands

Related to what you have seen so far and will see soon, some useful
miscellaneous commands include:

• clear — Removes all variables from the workspace.
• clear all — (Removes all information from the workspace.)
• close — Closes the current figure window.
• close all — (Closes all figure windows.)
• exit — Exits MATLAB and hence enables an additional trip
to Starbucks to be made.

Note that a useful trick – if you want to re-use a previously used
command but don’t want to type it in all over again, or want to issue
a command very similar to a previously-used one – is to hit the UP
arrow key until the command you want appears. This can also be
edited (navigate with LEFT and RIGHT arrow keys, and use Delete

and Backspace keys to get rid of characters) if needs be. Hit Enter to
make it all happen.

For example – try assigning a value of 2.14159 to the variable
my_pie . Having noted your mistake27, correct it. Do this by bring 27 An ’alternative’ pi?

back the previous command, and editing the 2 to a 3 (and hit return).
If you refer to the Workspace window, you can see that you have
indeed successfully changed the value of my_pie .28 28 The point is that this is much quicker

than typing the entire line in again.
Although later, when we start to put
lines of code into files rather than
typing everything at the command line,
fixing mistakes becomes easier.

Note that there is also a Command History window that list all the
previously issued commands and allows commands to be re-run
by double-clicking on them. Copy-paste and re-running of single or
multiple commands is also possible.

elements of ... matlab and data visualization 31

1.3 Vectors and arrays #1

So far, most of your variables have all be what are known as scalars
– i.e. single numbers (whether real or integer)29. One of the most 29 An exception are when you assigned

a string, which technically is a vector
(assuming multiple characters in the
string)

powerful things about MATLAB is its ability to represent vectors
(1D columns or rows of numbers or strings) and arrays – 2D and
higher dimensional regular grids of numbers or strings. (matrix30 is 30 Not to be confused with the film

containing bad acting by Keanu Reeves.the name commonly given to a 2-D array.)

1.3.1 Creating vectors The colon operator can be used
to much more rapidy create vectors
(as long as the elements form a
simple sequence in value) as com-
pared to typing in the list of values
explicitly. There are two variants to
the syntax:

A = j:k

and

A = j:i:k

In the first example, j and k and
the minimum and maximum values
in the sequence of numbers in the
vector. MATLAB completes the se-
quence by assuming that the values
monotonically increase and that the
elements are separated by one (1.0)
in value. e.g.

» A = 0:3
A =

0 1 2 3

Note that MATLAB is not inclined
to let you directly create a vector
of elements that decrease in value
(you’ll need to flip this puppy about
to re-order it if that is what you want
– see later).

In the second example, i is the
increment MATLAB will use to
complete the sequence from j to k .
In the example in the text, you could
have created the array B by typing:

» B = 0.5:0.5:2.5
B =

0.5000 1.0000
1.5000 2.0000 2.5000

(More commonly, you might
place the colon operator and its
min/(/increment)/max values
inside a pair of brackets, i.e. A =
[0:3]. so that it is unambiguous
that you are creating an array

Vectors are 1-D arrangements of numbers (or characters or strings).
You can enter them into MATLAB as a list of space-separated value,
encased in (square) brackets, [] , e.g.

B = [0.5 1.0 1.5 2.0 2.5]

or with the value comma-separated:

B = [0.5, 1.0, 1.5, 2.0, 2.5]

Either way, you end up with a vector on its side as a single row of
numbers which in math-speak would look like:

B =
(

0.5 1.0 1.5 2.0 2.5
)

You can also create the equivalent, upright orientated vector (as
a single column of numbers) by separating the elements by a semi-
colon:

C = [0.5; 1.0; 1.5; 2.0; 2.5]

which gives the maths-speak representation:

C =

0.5
1.0
1.5
2.0
2.5

You might ponder on (or even try out) how you would create
equivalent arrangements of numbers in an Excel sheet. From here
on, it will rapidly become apparent why you would not want to be
doing all this in Excel, although it remains a presumably familiar
place to start from and makes links to the weirdness of MATLAB
from.31

31 As such, I encourage you to still think
in Excel world as far as possible for a
little while yet, because I think it will
help get to grips with MATLAB array
notation more quickly. And indeed,
MATLAB has a very Excel-like array
editor window to help bridge the gap.

32 str=’do you like bananas?’;

1.3.2 Basic vector manipulation

There are several basic and very useful ways of manipulating vectors
(and as we’ll see later – matrices). To start with, you might want to
determine the orientation and length of a vector. There are several
different ways to go about this, which in order of grown-up-ness are:

1. Display the contents of the vector in the command window by
typing its name at the command line. Obviously, this will quickly
become useless for very large vectors32.

32 Try creating a vector from 1 to 100,000
and assign it to a variable. Refer to
the use of the colon operator (see
earlier).

You will find that adding a semicolon
to the end of the line to suppress output
and instead viewing the vector in the
Workspace Window.

2. Refer to the Workspace window, – initially, the contents of the
vector are displayed (under column Value) and you have to count,
but after a certain point, the size (and not contents) of the vector is
displayed.

Note that by default, the Size of variables is not one of the dis-
played columns (instead, it has to be added from Choose Columns

right-mouse-button-click menu item)33.

33 Although as per above – the size is
displayed under Value for a sufficiently
large vector.

3. Use the length or size function (see Box).

length
You can determine the length of a

vector A with ...

length(A)

returning its integer length, and
which could in turn be assigned to
a variable, e.g. B = length(A) .
(Technically, length returns the
largest dimension of an array.)

size (use #1)
Returns both dimensions, even

though for a vector, one of them
always has a value of 1. This does
allow you to determine its orienta-
tion though, as for the example of A
= [1:10] :

» size(A)
ans =

1 10

(1 row and 10 columns). For A =
A’ :

» size(A)
ans =

10 1

(10 rows and 1 column).

If you find that you want a different orientation (row vs. column)
of the a vector, the vector can be flipped around (converting row-to-
column and column-to-row) using the transpose operator (.’), e.g.:

D = B.’

will turn the vector B into one (assigned to the variable D) with the
same orientation as C. 34

34 Note ... MATLAB gives the syntax as
.’ , whereas I always only ever added
the ’ bit ... which works ...

You can also re-order the values in a vector (hence addressing
the restriction in using the colon operator to create a vector that the
values must be monotonically increasing rather than decreasing).
Depending on the orientation of the vector, you can use either the
flipud (for column vectors), or fliplr (for row vectors) functions to
re-order the elements (see margin box).

flipud , fliplr
These two functions allow you to

re-order a vector. Their use is simple:

» B = flipud(A)

will invert the order of elements of a
column vector, and:

» B = fliplr(A)

will invert the order of elements of a
row vector. Simples! Lesson over.

1.3.3 Addressing elements in vectors

This next bit is maybe the single most important (and weird) part
of MATLAB (or programming in general). As you go through this
section (and also the later one on matrices) – it may help to have Excel
open as a aid to visualize how MALTAB represents arrays (for the
following example, you would enter the 5 numbers, from 0.5 to 2.5,
in sequential cells, working down from A1.

In MATLAB, values can be extracted (or read) from a vector by
specifying the index (technically, this should be an integer, but MAT-
LAB is pretty forgiving and you can get away with using a real (num-
ber) when specifying an index) of the element required (counting

elements of ... matlab and data visualization 33

along, left-to-right, or top-to-bottom, depending on the vector orienta-
tion), e.g.

» B(5)

ans =

2.5000

or:

» C(3)

ans =

1.5000

The transpose operator , in
MATLAB-speak, "returns the noncon-
jugate transpose of A". Who knows
what that means. In slightly more
everyday (i.e. down here on Earth)
language, it: "interchanges the row
and column index for each element".
Or sort of, just interchanges the rows
and columns. The operation can be
written:

» B = A.’

or

» B = transpose(A)

In practice, you can get away with
being lazy (and in fact this is how it
was in the old days, and just write):

» B = A’

(but get into the habit of using the
formally correct, Mathworks official
and UN-approved, syntax of .’).

(In this text, I will refer to accessing a particular element (or ele-
ments) of a vector (or array) via its index as addressing. Unless I forget,
then I might say something else. You’ll have to keep on your toes –
don’t expect consistency here!)35

35 Recognise the parallel with Excel
here – the value in position 5 in the
MATLAB vector B, is the same as
specifying the contents of cell A5 in
Excel.

There is a MATLAB function end (see Box) that enables you to
easily address (accessing via its index) the very last value in a vector
(in MATLAB, the index of the first position is always 1).

For addressing more than one element of a vector at a time, you
can use the colon operator (see Box). 36

36 Again – e.g. in Excel, the sum of the
5 elements in column A (the equivalent
’vector’), would be =SUM(A1:A5).

As well as reading out an existing value of a vector, you can also
replace an existing value by assigning the new value to the appro-
priate index position. e.g. to replace the first element with a value of
0.0 :

B(1) = 0.0

(Here, you are saying that you would like to assign the value of 0.5

to the element in the vector given by the index 1. The previous con-
tent of the array at index position 1 is simply over-written.)

You can access more than a single
element of a vector at a time, by
means of the colon operator ,
: to define a min, max range of
indices. For example:

» B(2:4)
ans =
1.0000
1.5000
2.0000

To select all elements:

» B(:)
ans =
0.5000
1.0000
1.5000
2.0000
2.5000

end
Represents the largest index in

a vector when addressing it, or in
MATLAB-speak: "end can ... serve
as the last index in an indexing
expression".

34 str=’do you like bananas?’;

1.4 Basic graphing (aka. ’data visualization’)

So far ... I suspect this is heavy-going and there is a lot to try and
remember, such as command names, although knowing just that
certain commands exist, is enough to start with and MATLAB Help

can be used later to find out the exact name (and usage syntax). All
this, and we have not even gotten on to matrices (2-D arrays) yet ... So,
we’ll take a diversion to look at some basic plotting techniques that
will make sense now that you can create vectors of numbers to plot
(and later, important some ’real’ data). Unless you have forgotten
how to create vectors already ... :(

1.4.1 Plotting

First – create yourself a dummy dataset to plot. You are going to
need to create yourself a pair of vectors – these can have any values in
them that you like, but perhaps aim for 1 vector with values counting
up from 1 to 10 (or similar) – this will form your x-axis, and the 2nd
column ... whatever you like. 37 The command figure creates a fig-

37 Looking ahead – you could create a
y-axis vector formed of the squares of
the numbers in the x-axis vector:

» Y = X. ∧2

(The . ∧ bit says to square the value of
each and every element in the vector.)

ure window, which is where MATLAB displays its graphical output ...
but on its own, without anything in it ... useless. So, lets put some-
thing in it, with the simplest possible graphical way of displaying
data called plot .

plot
The MATLAB function plot ...

plots. More specifically, it plots pairs
of (x,y) data and by default, does not
plot the points explicitly but joins
the(x,y) locations up by straight line
segments. MATLAB calls these a
’2D line plot’, although there are
plotting options that allow you
only to display the individual (x,y)
points (making it like the scatter
function, which we’ll see later).

Its most basic usage is:

plot(X,Y)

where X and Y are vectors – of the
same length (important), but not
necessarily of the same orientation
(i.e. if one was a row vector and
one a column vector, MATLAB
would work it out, although it is per-
haps best to avoid such a situation
arising).

There are many options that go
with this function, some of which
we’ll see and use later. You can also
input matrixes as X and Y appar-
ently. But I have absolutely no clue
as to what might happen. I suspect
that the plot will end up looking like
a bad acid trip.

With any new MATLAB command (function), get into the habit
of looking up the help text (also refer to alternative/simplified help
provided in this text). The key information that will get you started
appears at the very top of the text that help returns on plot :

PLOT(X,Y) plots vector Y versus vector X.

This tells you that you need to ’pass’ to plot , your x-axis data vector
(by its variable name), followed by your y-axis data vector (by its
variable name), with the 2 variable names comma separated:

» PLOT(X,Y) ;

Do this, and depending on just what or how random your y-axis
data was, you should end up with something like Figure 1.1 in a
window captioned "Figure 1 ".38 38 If you cannot see the figure window

... check that the window is not hidden
behind the main MATLAB program
window!

This ... is easily the least professional plot ever (aside from any-
thing created in Excel). And one that breaks all the most basic rules
of scientific presentation, such as an absence of any labelling of axes.
There is also no title, although here in the course text I have added
a figure caption in the document so I can sort of get away with it.
This is the default output of the basic plot function and you’ll just
have to deal with it (i.e. add a series of commands to add missing
elements of the plot).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 1.1: Example of the default
output of the plot function.

elements of ... matlab and data visualization 35

Note that by default, MATLAB also scales both axes to reasonably
closely match the range of values in the two data vectors. In the
example here, the default min and max axes limits in fact turn out to
be the min and max values in the x and y-axis data because the data
is composed of relatively simply/whole numbers. If however the
maximum y value was very slightly larger, you’d see that MATLAB
would adjust the maximum y-axis limit to the next convenient value
so as to preserve a relatively simple series of labelled tick marks in
the axis scale. In fact, why not try that – replace your maximum data
value39, with a value that is very slightly larger (an example is given

39 Remember that you can replace e.g.
the last element of vector Y with the
value 9.9 , by:

Y(end) = 9.9;

in Figure 1.2). 40 Then re-plot and note how it has changed (if at all

40 If you have created a dummy dataset
in which the value in the last row is
the largest, replacing it is simple –
remember the use of end in addressing
an element in an array. If your dataset
does not monotonically increase and
the largest value falls somewhere in the
middle ... you could cheat’ and open
the array in the variable editor and
discover which row it occurs on.

– it will depend somewhat on what data you invented in the first
place).

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Figure 1.2: A plot illustrating axis
auto-scaling (maximum x and y values
now slightly larger than 10 and 100,
respectively).

1.4.2 Graph labelling

You have two options for editing the figure and e.g. adding axis
labels. Firstly, you can use the GUI and the series of menu items
and icons at the top of the Figure window to manipulate the figure.
I suspect you’ll prefer this ... but it is not very flexible, or rather, it
requires your input each and every time you want to make changes
or additions to a figure. The second possibility is to issue a series
of MATLAB commands at the command line. (The advantage with
the latter we’ll see later when we introduce m-files .) For now, I’ll
illustrate a few basic commands:

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Whatever values

W
ha

te
ve

r
va

lu
es

 s
qu

ar
ed

A plot of some values vs. their squares

Figure 1.3: A (only very slightly)
improved plot.

1. The first, obvious thing to do is to add axis labels. The com-
mands are simple – xlabel and ylabel . They each take a string
as an input, which is the text you would like to appear on the axis
(see Box). If you change your mind, simply re-issue the command
with the text you would like instead.

2. The command for title, perhaps unsurprisingly, is title (also
see Box). Again, pass the text you would like to appear as a string
(in inverted commas ’ ’), or pass a the name of variable that
contains a string (no ’ ’ is then needed).

3. You might want to specify the axis limits. The command is
axis (see Box) and it takes a vector of 4 values as its input – in
order: minimum x, maximum x, minimum y, and maximum y
value. e.g. axis([0 10 -100 100]) would specify an x-axis
running from 0 to 10, and a y-axis from -100 to 100.

Information as to how to use all of these commands can be found
via MATLAB help .

Employing the above 3 suggestions gives rise to the improved plot
shown in Figure 1.3, is given in the margin.

Example of adding axis labels and a
plot title ...

» xlabel ...
(’Whatever values’);

» ylabel ...
(’Values squared’);

» title ...
(’A plot of some ...
values vs the ...
squares’);

(The notation gets confusing in
a narrow box like this – the ...
indicates that the line should be
continuous and not broken across 2
different lines.)

36 str=’do you like bananas?’;

Note that in the usage of all the above listed commands, they all
require something to be passed within a set of parentheses – () . In
fact, they are all MATLAB functions and require an input (hence the
use of the parentheses). Some of the functions require a string input,
such as the name of the title in title , and this must be encased in
quotation marks – ’ ’ to designate it a string rather than a variable
name.41 This will all become clearer once you start creating your own

41 You could instead assign a string to a
variable, and then pass the variable name
(no quotation marks).

functions (computer programs) in the next chapter.

1.4.3 Sub-plots

You can also have more than one plot in a single Figure window. As an
example, create some sine waves using the sin function (see help)
over the range 0 < x < 2π, e.g.:

» x = 0:0.1:2 * pi;

» y = sin(x);

» y2 = sin(2 * x);

(Note how in the first line, the colon operator is used to create an x
vector from 0 to 2π, in steps of 0.1. The second and third lines cal-
culate the sine of all the x values, and sine of 2 times the x values,
respectively, and assign the results to a pair of new vectors, y and
y2 .)

axis
For once, helpfully, MATLAB says:
"axis([xmin xmax ymin

ymax]) sets the limits for the x- and
y-axis of the current axes."
which is about all you need to know
(other than the minimum and max-
imum limits along the x-axis are
represented by xmin , xmax, and
the minimum and maximum limits
along the y-axis are ymin , ymax).
Simply stick to the format, with a
vector of 4 values (remembering the
square bracket notation []), inside
of axis() , and you should not go
wrong!

For example, to scale the plot with
the x-axis going from 0-10, and the
y-axis from -100-100, you would
type:

axis([0 10 -100 100]);
To place several different plots on the same figure uses the subplot

command 42. The subplot command is used as: subplot(m,n,p) 42 » help subplot

where mis the number of rows of plots you want to have in your fig-
ure, n is the number of columns of plots in your figure, and p is the
index of the plot you wish to create (see: Figure 1.4).

Figure 1.4: Arrangement of subplots.

The basic code then goes something like:

» figure(1);

» subplot(2,2,1);

» plot(x,y);

» subplot(2,2,2);

» plot(x,y2);

» subplot(2,2,3);

» plot(x,-y);

» subplot(2,2,4);

» plot(x,-y2);

In this case, the 3rd and 4th subplots simply display the inverse of
the curves in the subplots above.

1.4.4 Saving graphics and figures

You might just want to save the figure. (Why create it in the first
place in fact if you are just going to throw it away ... ?) Again, you

elements of ... matlab and data visualization 37

can do this via the GUI or at the command line 43. From the GUI, 43 To export a graphic at the command
line, use the print function. To cut a
long story short (see: help print), to
print to a postscript file:

print(’-dpsc2’, FILENAME)
where FILENAME is the filename as a
string or a variable containing a string.

you have the option to save the figure in a way that can be loaded
later and re-edited – this is the .fig format option. Or you can save
(export) in a variety of common graphics formats (although once
saved in this format, the graphics can only be edited later using a
graphics package).

You can also close figure windows (see Box). No seriously. They are
not forever. ;)

To close the current (active) Figure
window, the command is:

» close
To close all currently open Figure
windows:

» close all

38 str=’do you like bananas?’;

1.5 Vectors and arrays #2

A matrix is another special case of an array – this time 2-D (rather
than 1-D in the case of a vector). MATLAB totally hearts them.

1.5.1 Creating matrices and arrays

You can enter matrices (2-D arrays) into MATLAB in several different
ways:

1. Enter an explicit list of elements. To enter the elements of a
matrix, there are only a few basic conventions:

• Separate the elements of a row with blanks or commas.
• Use a semicolon, ; , to indicate the end of each row.
• Surround the entire list of elements with brackets, [] .

2. Load matrices from external data files.
3. Generate matrices using built-in functions.

As an example, type in the following at the command prompt:

A = [15 7 11 6; 13 1 6 10; 21 17 5 3; 5 15 20 9]

MATLAB then displays the matrix you just entered44: 44 Remember that you can add an ;
to the end of the line to prevent the
results of the variable assignment being
displayed in the Command Window.

A =

15 7 11 6

13 1 6 10

21 17 5 3

5 15 20 9

In math-speak, this would be equivalent to:

A =

15 7 11 6
13 1 6 10
21 17 5 3
5 15 20 9

Once you have entered the matrix, it is automatically remembered in
the MATLAB workspace. You can refer to it simply as A.

Now go find the array you have just created in the Workspace win-

dow. Double-click on its name icon and see what goodies appear on
the screen. This is a fancy array editor which looks a bit like one of
those dreadful Excel spreadsheet things. You can see that this might
be handy to edit, view, and keep track of at least moderate quantities
of data. This is a useful facility to have. However, we are going to
concentrate on the command-line operation of MATLAB in this class
because that will give you far more power and flexibility in applying
numerical techniques to problem solving, and will form the basis

elements of ... matlab and data visualization 39

of scripting (computer programming by another name) that we will
see in a few lectures time. Close down this nice toy to leave just the
original windows.

Elements in the matrix can be addressed using the syntax:

A(i,j)

where i is the row number, and j is the column number. It is very
very easy to keep forgetting in which order the rows and columns are
indexed, but I’ll tell you here and now before I forget:

rows, columns

(You can always create a test matrix and access a specific element to
check if in doubt!) In the example above:

» A(1,3)

ans =

11

(i.e. the value of the element in the 1st row, 3rd column, is 11).
In general, the same functions and operators that applied to vectors

and you saw earlier, also apply to matrixes (or specific dimensions of
matrices).

Similarly as for vectors, you can
access more than a single element
of a matrix by means of the colon
operator , : . For example:

A(:,1) – selects the 1st column
A(3,:) – selects the 3rd row
A(2:3,2:3) – selects the 2×2

matrix of values lying in the centre
of A, while A(1:2,:) selects the top
half (first 2 rows) of the matrix.

Finally – a fundamental way of accessing data that you need to
learn and be familiar with, is to employ the colon operator to select
specific columns (or rows) of data. You’ll find that this skill ends up
inherent to many of your attempts to process and graph data. For in-
stance, if your (x,y) data to plot ended up in MATLAB workspace in
matrix form (it very commonly does) rather than as 2 sperate vectors
(as you had when you first plotted anything), you will need to select
separately the x (e.g. 1st column) data, and the y (2nd column) data,
and pass these to the plot function. For the example of matrix A
above, all the first column data can be selected by typing A(:,1) 45, 45 Remembering the HUGE hint above

in 100 pt font as to the order of rows
and columns ...

which says all the rows (:) in the first column. Similarly, all the 2nd
column data alone can be selected by A(:,2) . (You’ll practice this
endlessly later on and hopefully get it!) You can also determine the shape of

your array using the size function.
For a 2D array (matrix), when you
pass it the name of your array, it
returns the number of rows followed
by the number of columns (in that
order).

1.5.2 Basic matrix manipulation

You can treat vectors and matrices (or parts of vectors and matrices),
mathematically, as you would treat single values (i.e. scalars) but
unlike a scalar, the transformation is applied to all specified elements
of the array. This applies for all the basic arithmetic operators46. For 46 Technically ... or at least to be consis-

tent with other operations, you might
write multiplication as . * rather than
just plain old * . The preceding dot tells
MATLAB not to treat this as matrix
multiplication but to carry out the
operation on each element in turn. In
this case, it is the same thing (and both
notations work the same), but later, is
not. (This will make more sense when
you get to see it in action, later.)

example, for vector B in the earlier example,

» 2* B

ans =

40 str=’do you like bananas?’;

0 2 3 4 5

and

» B-1.5

ans =

-1.5000 -0.5000 0 0.5000 1.0000

In the following, having previously created the matrix A, you will
derive a matrix C, and then preform some operations on it. to start
with: multiply all the elements of A by the number 17 . Assign the
answer to a 3rd array (C).

Question: What is the value of the element C(2,3) ? How would
you ask for the 4th row, 2nd column element of the array C, and what
is its value?

Question: What is the sum of the 4th column of C ? (Sure – you

The function sum ... sums things.
The MATLAB Help documentation
(help sum) says:

’If A is a vector, sum(A)
returns the sum of the
elements. ’

’If A is a matrix, sum(A)
treats the columns of A as
vectors, returning a row
vector of the sums of each
column. ’

also do it by using a calculator, but you will not always have such a
small data-set as here. Perhaps you’ll get a much larger data-set in
an assessed exercise ;) So, practice doing it properly.) The MATLAB
function for this is sum.

Question: What is the sum of the 2nd row of C? For a matrix (rather
than a vector) as input, sum returns the individual sums of each col-
umn, and so on its own;

» C

C =

255 119 187 102

221 17 102 170

357 289 85 51

85 255 340 153

» sum(C)

ans =

918 680 714 476

gives you a row vector consisting of the sums of the individual
columns of the matrix C above.

This is where the transpose function (’) comes in handy (see
earlier). In this case, it flips a (2D) matrix around its leading diagonal
(columns become rows, and rows, columns)47 .

47 This is almost true. Technically the
function you want is .’ , as ’ will
change the sign of any imaginary
components. For real numbers, they are
the same.

In addition to transpose , other
useful array manipulation functions
include:
flipup – flips the matrix in the
up/down direction
fliplr – flips the matrix in the
left/right direction
rotate – rotates the matrix
(As always, refer to the help on
specific functions.)

» C’

ans =

255 221 357 85

119 17 289 255

elements of ... matlab and data visualization 41

187 102 85 340

102 170 51 153

(transposing the matrix turns the rows into columns)

» sum(C’)

ans =

663 510 782 833

Now you get a row vector consisting of the sums of the individual
columns of the matrix C, but since you have transposed the matrix C

first, these four values are actually equal to the row sums.
Finally, you could transpose the answer:

» sum(C’)’

ans =

663

510

782

833

to give you a row vector format that corresponds to the rows of the
original matrix C. 48

48 Note how you can combine multiple
functions in the same statement to create
sum(C’)’ . However, to start with, it is
much safer to do each step separately
and hence be sure what you are doing.

More recent versions of MATLAB let you calculate sums of rows
more easily, by being able to specify the dimension that you sum
across. e.g. in the original example:

» C

C =

255 119 187 102

221 17 102 170

357 289 85 51

85 255 340 153

To sum the columns:

» sum(C,1)

ans =

918 680 714 476

and then to sum the rows:

» sum(C,2)

ans =

ans =

663

510

782

833

Question: What is the sum of *all* the elements in the matrix C?
You could sum all the columns to give you a row vector of partial

sums, and then sum the elements in the row vector to give you the

42 str=’do you like bananas?’;

grant total sum of all the elements. You can do this, either in com-
pletely separate steps49: 49 In general in programming – use as

many smaller, separate steps as you like
and are most comfortable. The more
you break down the calculation, the
clearer it will be to you and the easier
to debug if things go wrong. However,
this does come at the expense of longer
and longer code and sometimes more
compact code is easier to deal with.

» D = sum(C);

» E = sum(D);

or all in one go:

» F = sum(sum(C));

It does not matter if you sum the column of C first, or the row first
– maybe test this to satisfy yourself that this is true.

More recent MATLAB versions also give you a short-cut:

» sum(C,’all’)

ans =

2788

1.5.3 Some matrix math :(

We will not concern ourselves overly with multiplying vectors and
matrices together ... but you should be aware that MATLAB can do
matrix math. For now, it is worth nothing the difference between *
and . * operators in the context of arrays. For example, consider 2
vectors, A and B:

» A = [1 1 2 2];

» B = [1 2 3 4];

To multiple the elements of A and B together pair-wise, use .*:

» C = A. * B

C =

1 2 6 8

Without the dot, you get the vector product ... well, you would if
the vectors were in an appropriate orientation, i.e.:

(
1 1 2 2

)
×

1
2
3
4

which you get by typing:

» C = A* B’

C =

17

(which is calculated from: 1 × 1 + 1 × 2 + 2 × 3 + 2 × 4).
An example of the equivalent matrix usage is:

» D = [1 1; 2 2];

» E = [1 2; 3 4];

elements of ... matlab and data visualization 43

The pair-wise multiplication of each element of the 1st matrix with
the corresponding element of the 2nd matrix is:

» F = E. * E

F =

1 4

9 16

In contrast, for matrix multiplication, written in math-speak as:
(

1 1
2 2

)

×

(
1 2
3 4

)

we would write:

» F = E* E

F =

7 10

15 22

If your matrix math is rusty and you are not following this, maybe
refresh it (your memory of basic matrix math).

44 str=’do you like bananas?’;

1.6 Loading and saving data

There are a number of different ways to load/import data into the
MATLAB Workspace. Rather than try and tediously list and describe
the commands and syntax and blah blah, we’ll be going through a
couple of (hopefully) slightly less tedious data-based examples as
we progress through the course text. In this way, if nothing else, you
might accidently learn some science even if nothing much about
MATLAB ...

1.6.1 Where am I?

Before anything – you need to know ’where you are’. If the file you
want to load in, is not in the directory MATLAB is using, it will not
find it. And if you save something and have no idea where it is being
saved ... that can hardly go well.

MATLAB has a default directory that it starts up in and looks at
first. For basic Windoz installations50 of the software, this directory

50 At installation, this directory can be
specified and hence may not be this
one. Also – different operating systems
will have different default locations.

is:

C:\Users\mushroom\Documents\MATLAB

You can determine which directory MATLAB is currently ’in’,
either at the command line:

> cd

or it should be displayed in a toolbar above the Command Window.
It is unlikely that you want to have to save all your files here. More

likely, you may have a course folder somewhere, possibly with sub-
folders for each week (or whatever), so you will need to change the
MATLAB directory that you are working in, to match the one where
your files are.

Easiest ... is to use the GUI – the toolbar above the Command Win-

dow can be used to change the current (working) folder. The con-
tents of the current folder are automatically displayed in the Current

Folder pane on the left. (If the Current Folder pane is not present in
your MATLAB layout, it can be selected form the Layout drop-down
menu.)

You can also do this at the the command line ... which is much less
fun and you are less likely to need to do it this way. The instructions
are included below for completeness ... but you can skip over them if
you wish 51 ... 51 Just remember that there are ways

of navigating around your computer
storage via the command line.

addpath
The command addpath will

add a search path to the MATLAB
workspace. The syntax is:

addpath(DIRECTORY_PATH)
where DIRECTORY_PATHis

a string (characters in between
inverted commas) or name of a
variable containing a string.

You can change the directory that MATLAB is working from by
typing:

» cd DIRECTORY_PATH

elements of ... matlab and data visualization 45

where DIRECTORY_PATHis the path to the directory in which you
want to work from and where you want your data files (and later,
code files) to live. Foe example, if (in Windoz) you have mounted a
USB drive, it might be assigned drive letter E:. To change MATLAB’s
working directory to this drive, you would type:

» cd E:

If, you have a directory working on the USB drive, you could change
MATLAB’s working directory by:

» cd E:\working

Note that an alternative format (syntax) for cd is as a function, e.g,

» cd(’E:\working’)

with the directory path passed as a string.
Another alternative is to add a ’search path’ (addpath) so that

MATLAB knows of an additional place to look for files. For example:

» addpath(’E:\working’)

would keep your current working directory unchanged, but tell
MATLAB to also look in the directory E:\ for files.

In summary: go with whatever works best for you in terms of
working directory.

1.6.2 Loading and importing data

load
Loads variable from a file into the

workspace. The syntax is:

» load(FILENAME)

where FILEMANE is the name of the
file (remember: FILEMANEneeds to
be a string and enclosed in quotation
marks, OR, a variable that points to
a string.

The file might be plain text (ASCII)
or a MATLAB workspace file (see
below). To force MATLAB to treat
the file input as ASCII or a MAT-
LAB workspace file, pass a second
parameter (separated from the file-
name by a comma) – ’-ascii’ for
ascii, and ’-mat’ for a MATLAB
workspace file, i.e.

»load(FILENAME,’-ascii’)

would specify that a plain text
(ASCII) file is loaded.

Note that in loading an ASCII
data file, any line starting with a %
is ignored. Also note that the data
must be in a column format with no
missing data.

For an ASCII file, the name of the
variable created to hold the data
being imported is automatically gen-
erated. So in the example of the data
file being called ’twilight.txt’ ,
the variable generated will be called
twilight . You can instead chose
to assign the imported data to a
variable name of your choice, by e.g.:

» sparkle =
load(’twilight.txt’);

(all one line)
Newer versions of MATLAB

can tell between ASCII and MAT-
LAB workspace formats, and the
’-ascii’ bit is generally not
necessary.

The simplest way to import data into MATLAB is also to use the
GUI – from the File menu, selecting the option Import Data.. .
will run the data import Wizard – note that you might have to select
All Files (* . *) from the file type option box in order to find
the file. I’ll leave you to work the rest out for yourselves ... Maybe
try importing the data into MATLAB this way once you have done
it successfully using the load function at the command line. The
GUI can also be used to change the directory you are working from
(duplicating the functionality of the cd command) and add paths to
search (duplicating the functionality of the addpath command).

A more flexible way and one you can embed in programs, is to use
the load function (see Box)52 and we’ll concentrate on that method 52 There is also a much more flexible

way of loading text-based data using
the function textscan , but that also
requires files to be explicitly opened
and closed using fprintf . We’ll see a
little of this later.

in this course.
As a brief exercise and practice in using load – first download the

data file etheridge_etal_1996.txt (labelled as ’historical ice-
core pCO2 record data’) from the course webpage53. Note that you 53 http://www.seao2.info/teaching.html
need to either save this file directly in the folder you intend to work
from (and which you have directed MATLAB to by changing its

46 str=’do you like bananas?’;

working directory), or copy the file from your computers ’Download’
folder if it ends up there, to the working directory.

You might start by viewing the contents of the file by opening it
in any text viewer (or Excel54). This is always a good place to start as 54 In fact, you could even try first

plotting it in Excel.it enables you to see what you are getting yourself in to (i.e. format
of the file, any potential formatting issues, approximate size and
complexity of the dataset, etc).

Now, import the data into the MATLAB workspace using the
load command. Because the data is a plain text (ASCII) format and
not a special MATLAB .mat file, you need to specify the format as
’ascii ’ when using the load command (see box or help). This looks
like:

» load(’etheridge_etal_1996.txt’);

If you tell MATLAB nothing different, it will create a variable
for you containing the file content, with the variable name based on
the filename (minus the extension). If you prefer a different vari-
able name, then simply pass the results of the load command – the
contents of your file – to a different variable, e.g.

» MYDATA = load(’etheridge_etal_1996.txt’);

is exactly the same as before, but instead assigns the load -ed data to
the variable MYDATArather than to an automatically-generated default
filename.

Try typing the name of the variable that was automatically created
(etheridge_etal_1996) (or the one you chose if you assigned
the imported data to a specific variable name as per detailed in the
Box) to provide a crude view of the data. A better way to view the
contents of the variable is through the Variables window – double click
on the name of the variable in the MATLAB Workspace window. This
should open up a spreadsheet-like window in which the data can be
viewed, sorted, and even edited.

For practice, try plotting the data55 and remembering to label

55 using plot

the figure appropriately56. However ... remember, the format of the

56 FYI: the first column of the data and
x-axis is year, and the 2nd column of
the data and y-axis is the mixing ratio
of CO2 in air in units of ppm.

MATLAB plot function is:

plot(X,Y) plots vector Y versus vector X

so you will need to specify each column of the data (i.e. each vector)
separately and explicitly.57

57 If you just type plot and pass the
(here: default) name of the data array:

»plot(etheridge_etal_1996);

... strange ... things are happening (as
per Figure 1.5). In fact, MATLAB is
doing what Excel would in a Line Chart
with 2 columns of data selected – rather
than plot y (2nd column) vs. x (1st
column), the values of both columns
are plotted against row number. Which
is why you should remember to use
the Scatter (or (X,Y)) Chart in Excel for
plotting (x,y) data.

0 50 100 150
200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 1.5: Result of simply throwing
the entire data matrix at plot

You can do this step-by-step, and create yourself 2 vectors, one for
the x-values and one for the y-values, and then plot :

» X = etheridge_etal_1996(:,1);

» Y = etheridge_etal_1996(:,2);

» plot(X,Y);

elements of ... matlab and data visualization 47

Or, if you are comfortable with more complex, single lines of code,
go straight for the kill:

» plot(etheridge_etal_1996(:,1),etheridge_etal_1996(:,2));

Breaking things down into multiple bite-sized chunks rather than
single long and complex lines, is an equally valid way of doing
things. It is longer ... taking 3 lines rather than 1, but the most im-
portant thing is to be happy that you understand what is going on. If
breaking things down into multiple lines and creating new variables
helps – DO IT! Ultimately, and regardless of the method, you should
end up with something like Figure 1.6.

1820 1840 1860 1880 1900 1920 1940 1960 1980

Year

280

290

300

310

320

330

340

C
O

2 m
ix

in
g

ra
tio

Figure 1.6: Spline fit to measured
changes in CO2 concentration in Law
Done ice core, following Etheridge et al.
[1996].

(If you plot ends up looking like Figure 1.5 – re-read the instructions
carefully.)

1.6.3 Saving and exporting data

Specific variables can be saved in a plain text (ASCII format) by
means of the save function (and then re-loaded in using load).
You have to specify that you want a text format (rather than the de-
fault MATLAB .mat workspace format) – see Box. Try re-saving the
ice-core data as an ASCII format text file (with a new filename) ...
and then load it in again.

1.6.4 Loading and saving the workspace

The entire workspace (including all variables and their values, or
just the values in a single variable if you wish) can be saved to a file
and then later re-opened. The file format is specific to the MATLAB
program and the file-name extension by default is .mat 58 You might

58 MATLAB’s proprietary file format
for saving the contents of your current
Workspace is indicated by a .mat file
name extension (in Windoz).

find this very helpful to use in long lab exercise or large modelling
projects, particularly if you do not come back to work at the exact
same computer each time or wish to use continue the same piece of
work on a laptop elsewhere. Try saving the current Workspace, then
close down the MATLAB program. Re-running it, and then loading
in your saved .mat file. 59

59 This sequence is going to look some-
thing like:

» save MYSTUFF
» exit

...

load MYSTUFF

Remember that when you re-start
MATLAB you may have to change
directories, add a path (addpath), or
provide a full path to the .mat file,
depending on where you saved it.

save
Saves variables from the workspace

to a file. There are two main forms
(syntaxes) of the command:

» save(FILENAME)

which saves the entire workspace
to a .mat file (with the filename
given by the string FILENAME(in
quotation marks), and:

»save(FILENAME,A,’-ascii’)

saves the data in the variable A
(which must be given as a string, i.e.
also enclosed in quotation marks) in
plain text (ASCII) format.

For example, if you had a vari-
able bananas , and you want to
save the contents (data) as the file
bananas_data.txt , you would
write:

»save(’bananas_data.txt’,
...’bananas’,’-ascii’)

(remembering this should be a single
line and the ... simply indicates
that the line should be continuous)

Hopefully ... all your loaded/created variables etc. have been
recovered ... ?

48 str=’do you like bananas?’;

1.7 Basic data processing (and yet more plotting)

This section runs through a couple of common basic data manipula-
tion/processes techniques follow, plus some further plotting/visual-
ization.

1.7.1 Sorting data (in arrays)

As an example to kick-off some data-processing tricks, load in the
dataset of (’proxy’) reconstructed atmospheric CO2 concentrations
spanning the Phanerozoic: paleo_CO2_data.txt (labelled as ’Phanero-
zoic pCO2 proxy data’). You can just import it into MATLAB using
the load function as before – remember the specific syntax of load:

» load(FILENAME)

where your FILENAME is paleo_CO2_data.txt and needs to be passed
to load as a string, i.e.

» load(’paleo_CO2_data.txt’)

If you tell MATLAB nothing different (and do not assign the re-
sults of the load function to a different variable name), MATLAB will
again automatically create a variable called paleo_CO2_data (see
Workspace) and assigned the loaded data into that.

If you view the contents of the variable paleo_CO2_data (or
whatever you might have passed the load -ed data to), you will see
that there is a slight complication – unlike the ice core CO2 dataset,
you now have 4 columns in this array60. The first column is age (Ma), 60 Remember that you can diagnose

its size with ... size (or refer to the
Workspace window)

the second the mean CO2 value, while the 3d and 4th columns are
the low and high, respectively, uncertainty limits of the estimated
past CO2 value.

Recalling how to reference specific columns of data in a matrix61, 61 HINT: the colon operator (see
earlier).and either referencing the columns of the array directly, or creating

yourself separate vectors X and Y (see earlier) – plot the mean paleo
CO2 value as a function of age (in Ma). If you closed the previous
Figure window (see earlier), it is not essential to explicitly open one
(using the Figure command) – when you use the plot command,
if there is no open Figure window, MATLAB will kindly open one for
you. How thoughtful. The result of:

» plot(paleo_CO2_data(:,1),paleo_CO2_data(:,2));

(plotting the 2nd column out of the 4 columns, vs. the 1st column),
should be something like 1.7 ...

O dear ...

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.7: proxy reconstructed past
variability in atmospheric CO2.

elements of ... matlab and data visualization 49

So ... that was not so successful. Why? What is happening in the
default behaviour of plot , is that the (x,y) location defined by each
subsequent row of data is being joined to the previous one with a
line. This was fine for the ice-core CO2 example dataset because
time progressed monotonically in the first column, e.g. the data was
ordered as a function of time. If you view the paleo CO2 data, this is
not the case and time (age in Myr) does not progress monotonically
in an always-getting-older (or always-getting younger) fashion.62 62 In fact, in the original, full version of

the data, ordering is by proxy type first,
and then study citation, and only then
age ...

Your options are then:

1. You could import the data into Excel, then re-order (sort) it,
then export (save) it, then re-load it ...

2. You could sort it in MATLAB using the GUI variable view
window. But lets not cheat for now.

3. You could sort it in MATLAB at the command line. How? Well,
a reasonable gamble is to try:

» help sort

However, reading the help text carefully (and you can always try it
out and see what exactly it does if you are not sure), you will find
that the function sort will sort all columns independently of each
other, whereas we want the first column sorted and the remaining
columns linked to this order. So this is not the function that you are
looking for.

This is where it is worth paying attention to the bottom of MAT-
LAB help and the see also section. In this case, MATLAB lists sortrows

as a possibility. The help text on this looks a little more promising. It
is still slightly opaque (so also see Box), so the best thing to do is to
try it (and view the results)!

» sorted_data = sortrows(paleo_CO2_data)

where the result of sorting the rows (of all columns) I have assigned
to the variable sorted_data . If you now try plotting this, e.g.

» plot(sorted_data(:,1),sorted_data(:,2));

it looks rather better – Figure 1.8. (This is a good illustration of a
guess of a function that was not quite what was needed, but following
up on the help suggestions leads to a more appropriate function.) At
least now the curve is reminiscent of past changes in global temper-
ature and the geological Wilson cycle, with high CO2 values in the
Cretaceous and Jurassic and then lower again in the Carboniferous
(roughly matching the progression of ice and hot house (and then
back to recent ice ages) climates).

sortrows
In its simplest usage:

» B = sortrows(A)

... "sorts the rows of a matrix in
ascending order based on the el-
ements in the first column. When
the first column contains repeated
elements, sortrows sorts according
to the next column and repeats
this behavior for succeeding equal
values."

So, if the first column of the matrix
was time, the data would be sorted
into ascending time.

Beyond this usage, if you wanted
to sort by a different column to the
first, you would use:

» B = sortrows(A,N)

where N is the column number.
You can also sort in descending

order:

» B = ...
sortrows(A,’descend’)

(ascend is the default).

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.8: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

50 str=’do you like bananas?’;

A little later you will meet an alternative plotting function that
does not require the data to be sorted into any sort of order (scatter).
But you should note that you can also use plot , but omitting the line
segments by specifying only a symbol, e.g.

plot(x,y,’ro’);

(here, plotting circles for the data points in red) so that it does not
matter in which order the individual points are plotted (and the same
result is obtain from both sorted and un-sorted data).

1.7.2 Data scaling

As an example practicing some basic data scaling: download the
historical global temperature anomaly dataset63: 63 NOAA

temperature_globalanom.txt

(Labelled on the website as: ’Observed global mean temperature
anomaly data’.)

The columns are: (1) year, (2) annual mean ocean+land surface
temperature anomaly (i.e. temperature change relate to some refer-
ence value, where here is the observed 1901-2000 mean). Remember,
you can load and assign data to an easier-to remember variable by
e.g.:

» data1 = load(’temperature_globalanom.txt’);

Plot the annual mean temperature anomaly for the full range of
years, as per Figure 1.9. (plus labels, title, etc etc), remembering again
that you cannot pass only the entire array to plot, as per:

» plot(data1);

but instead, must pass the 2 vectors (of x, and y-axis data), sepa-
rately:

» plot(data1(:,1),data1(:,2));

(where e.g. data1(:,1) specifies all the rows of the 1st column of
array data1).

1880 1900 1920 1940 1960 1980 2000 2020
-0.5

0

0.5

1

Year

T
em

pe
ra

tu
re

 (
de

gr
ee

s
C

)

Observed global annual mean surface temperature anomoly

Figure 1.9: Observed annual global
mean surface temperature anomaly
(compared to year 1910 to 2000 aver-
age).

We are not going to transform the data so that it is as an absolute,
rather than relative, temperature. The 20th century average global
temperature across land and ocean surface is apparently 13.9°C. So
first – change the temperature anomaly data into absolute temper-
atures – you’ll do this by by adding the 20th century global aver-
age value, 13.9, to all the data values in the second column of your
array.64 (If you are being good and reading the margin text ... the

64 Remember – you can increase the
value of every element in an array, by
simply adding that number, e.g. if A
is you array of data, and B is a scalar
(the value you want to increase all array
values by);

» C = A + B;

will have the effect of adding B to
ever element in A, and assigning to a
new array, C. Or alternatively, you can
replace the contents of array A with the
new values:

» A = A + B;

In your specific example:

» data1(:,2) = ...
data1(:,2) + 13.9

(all one line) will have the effect of
taking the 2nd column of the array
data1 , adding 13.9 to all the values,
and writing the new values back into
the 2nd column of the array data1 .

answer is there ...)

elements of ... matlab and data visualization 51

Now re-plot.
Next, convert the temperature units from °C to °F. An approximate

conversion is:

T(°F) = 1.8 × T(°C) + 32

where T(°F) is the (new) temperature in °F, and T(°C) the (old) temper-
ature in °C.

For this, you will need to take your data (which is the 2nd column
of the array), e.g. data1(:,2) , multilpy it by 1.8 as per the equation
(1.8 * data1(:,2)) and then add 32 (1.8 * data1(:,2) + 32)65. 65 If you have any doubts as to the order

in which the operators are applied, add
a set of parentheses, e.g.

(1.8 * data1(:,2)) + 32

And ... assign the results of this to a new vector or array. Or you can
replace the original column (if you are feeling totally confident), e.g.

» data1(:,2) = 1.8 * data1(:,2) + 32;

The aim is to obtain a modified data array in MATLAB, with year
as the first column (year, as per the original data) but with the 2nd
column now being annual mean temperature in units of °F.

If it helps – play the data conversion game in Excel first (e.g. cre-
ating new columns in a spreadsheet to firstly hold absolute temper-
atures rather than anomalies, and then temperatures in °F rather
than °C). Also if it helps – create a new array with the modified tem-
perature units data in (rather than replacing the 2nd column of the
original array, data). You can also do the conversion in 2 stages –
multiplying the (absolute) temperature (°C) by 1.8 first (perhaps cre-
ating a new array to hold this in), then adding 32.

Re-plot (in MATLAB) once again the final temperature trends in
°F. This should look like Figure 1.10.

1880 1900 1920 1940 1960 1980 2000 2020
56

56.5

57

57.5

58

58.5

59

Year
T

em
pe

ra
tu

re
 (

de
gr

ee
s

F
)

Observed global annual mean surface temperature

Figure 1.10: Observed annual global
mean surface temperature.

52 str=’do you like bananas?’;

1.8 Nicer graphing

This section covers how to create slightly fancier plots in MATLAB
and combines this with some more data loading practice.

1.8.1 Modifying lines/symbols in plot

The first deviant activity you can engage in with plot , is to graph
the data without the line joining the points. Scrolling a little the way
down » help plot , it turns out that there are a number of options
for color, line style, and marker symbol that you list together as a
single parameter, straight after the parameters for x and y vectors. By
default, MATLAB plots a solid line in blue with no marker points.
Obviously, we could forego the sorting and plot a sane graphic
(hopefully) by plotting just points and having no line between them.
Hell, you could even be radical and use a different color ... Or, you
could specify a symbol and no line. The choice of colors is your oys-
ter, as they (almost don’t) say. e.g. Figure 1.11.

A summary of a few of the more common plotting options is pro-
vided in the Box. For any previous plot you have made, try changing
the line style (or no line), and the marker shape and color.

The main (i.e. not an exhaustive list)
data display options for the plot
function are:

(1) point style
. – point, o – circle, x – x-mark,
+ – plus, * – star, s – square, d –
diamond, v – triangle (down).

(2) line style
- – solid, : – dotted, - – dashed,
and when specifying a point style,
not specifying a line style results in
no line.

(3) color
b – blue, g – green, r – red, y –
yellow, k – black, w – white.

To use them, add a new parameter
when you call the plot function
– whereas before, you typed, for
plotting a vector y against x:

plot(x,y);

you now add, following a comma,
the point and line style option you
want, which must be encased in a
pair of inverted commas, e.g. for a
red, dashed line, you would type:

plot(x,y,’r-’);

and for blue circles (with no line):

plot(x,y,’bo’);

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.11: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

1.8.2 Plotting multiple data-sets

So far, so good. But so boring, although simple marker-only and
joined-by-line plots have their place. For a start, the original data-set
included an estimate of the uncertainty in the CO2 reconstructions
in the form of the min and max plausible value for each ’central’
(best guess?) estimate. As a visual indication of the uncertainty in
the CO2 reconstructions, one could plot the min and max values as
points, using different symbols. This requires a further little trick
in MATLAB, which involves the command hold . This is nice and
simple and takes the additional (2nd) word: on , or off .

» hold on – will enable you to add additional elements to a
graphic,

» hold off – returns to the default in which a new graphic
replaces the current on in a Figure window.

hold
According to MATLAB help:
hold on – retains plots in the

current axes so that new plots added
to the axes do not delete existing
plots.

hold off sets the hold state to off
so that new plots added to the axes
clear existing plots and reset all axes
properties.

As an example – set:

» hold on

and then plot the minimum and maximum CO2 values (columns
#3 and #4) in different symbols and different colors, on top of your
existing plot. If you want to then label what the different lines or

elements of ... matlab and data visualization 53

sets of points are, you can add a legend with the legend command.
For instance, if you have managed to successfully plot the mean CO2

values as discrete black circles, and the minimum and maximum
uncertainty limits as blue and red lines, respectively, you could type:

» legend(’Mean CO_2’,’Lower uncertainty limit’,’Upper

uncertainty limit’);

(all one line) and it should end up looking like Figure 1.12.

legend
According to MATLAB help:
The command legend on its own,

by default will label your datasets,
’data1’, ’data2’, etc etc, which is
probably not what you want ...

So you have to supply strings –
one for each dataset plotted:

legend(’DATANAME1’,’DATANAME2’,
...,’DATANAMEN’);

So if your plot had 2 greenhouse
datasets – ’CO2’ and ’CH4’, you
would type:

legend(’CO2’,’CH4’);

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Mean CO
2

Lower uncertainty limit
Upper uncertainty limit

Figure 1.12: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

errorbar
Works like plot , except it adds

error bars. The 2 most useful usages
are:

errorbar(x,y,err) plots y
versus x and draws a vertical error
bar at each data point. All of x , y ,
and err , are vectors (all of the same
length).

errorbar(x,y,neg,pos) draws
a vertical error bar at each data
point, where neg determines the
length below the data point and pos
determines the length above the data
point, respectively. All of x , y , neg ,
and pos , are vectors (all of the same
length).

It is not something to worry about here (or even necessarily try), but
just to make you aware that MATLAB has a function – errorbar

– to help you to visualize errors, including non-symmetric errors,
relatively easily. (See MATLAB help and the margin Box.)

The complication here is that none of the options for errorbar

allow for absolute values to be used for error plotting. So to use it
in this particular example, we need to replace the absolute min, max
column values, with their respective deviations from the mean value
(2rd column). Hopefully, you can see the way to do this. For instance,
to create an error for the maximum estimate (4th column):

sorted_data(:,4) = sorted_data(:,4)-sorted_data(:,2);

where we are saying: take all the values in the 4th column of the
array, subtract the values in the 2nd column of the array, and assign
the values back into the 4th column (hence replacing the absolute
maximum estimate with the deviation of the maximum from the
mean, i.e. the +ve error). (And then do similarly for the minimum
values of the 3rd column.)

1.8.3 Changing label font size (and type)

The axis and title labels, by default, can be difficult to read when the
graphics are saved and then imported into a document/paper. You
can change the size of text as you create axis captions and figure titles
etc., by specifying the value of an additional (text size) parameter in
the function. For example, to increase the size of the x-axis label to a
14pt font:

» xlabel(’Year’,’FontSize’,14);

Here – after the you have passed the string you wish to appear to
the MATLAB xlabel function (’Year’), there is a pair of additional
parameters:

’FontSize’,14

54 str=’do you like bananas?’;

The first additional parameter specifies the aspect of the axis label
that you wish to change (here: ’FontSize’), and the 2nd parameter
of the pair, is the (new) value (here: 14).66 Similarly, the y-axis label 66 See help on xlabel .

and title text size can be adjusted in exactly the same way.
Other property parameters67 that might be useful (to change), are 67 Again – refer to MATLAB help.

(with example changes):

’FontName’,’Courier’

’FontWeight’,’bold’

’FontAngle’,’italic’

(You can, of course, also adjust everyting about the look and feel of
your plot via the figure window GUI.)

1.8.4 Scatter plots

Returning back to the Phanerozoic proxy (CO2) data, we can now put
a different (graphical) spin on it.

scatter
"... creates a scatter plot with circles at

the locations specified by the vectors x
and y. This type of graph is also known
as a bubble plot."

The simplest usage is:

scatter(X,Y)

where is works pretty much like
plot , except without the joining line
segments. (X and Y are vectors of the
same length)

scatter(X,Y,20)

specifies the marker size (in points),
and:

scatter(X,Y,20,’filled’)

then fills the markers. Finally:

scatter(X,Y,20,Z,’filled’)

colors the points according to the
data in the vector, Z, or instead scales
the marker size with Z, via:

scatter(X,Y,Z,’filled’)

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.13: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Consider ... scatter . In fact, don’t just considered it, help on it
(» help scatter). The simplest possible usage is, apparently:

SCATTER(X,Y) draws the markers in the default size

and color.

(where X and Y are vectors). This almost could not be more straight-
forward. Make yourself an X and Y vector out of the loaded-in
dataset (or if you are feeling brave, you can pass in directly the ap-
propriate parts of the dataset array), close the existing Figure win-
dow, and scatter -plot the (mean) CO2 data.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 1.14: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Perhaps a little disappointingly, the default (Figure 1.13) (plus
added labels) looks a little like one of the plots before. However,
scatter can plot color-filled symbols, but more powerfully, can
scale the fill color to a 3rd data value (vector), in a sort of pseudo
3D x-y-z plot. For instance, it will be duplicating information that is
already presented (y-axis), but you could color-code the points by the
y-value, i.e. the atmospheric CO2 value. e.g.

SCATTER(data(:,1),data(:,2),20,data(:,2))

draws the markers with an (area) size of 20 (points), in different
colors. Coloring just the outlines of the circles is perhaps not ideal
(difficult to see all of the color differences), so the circles can be filled
in instead (and you could make them a little larger too):

SCATTER(data(:,1),data(:,2),40,data(:,2),’filled’)

resulting in Figure 1.14.

elements of ... matlab and data visualization 55

1.8.5 Simple 2D data and bitmap visualization

There are 2 different simple MATLAB commands for visualizing a
2D dataset (i.e. a matrix) as a bitmap image (and via a 3rd command,
viewing various bitmap photo and image format files too).

As something (2D data) to play with – load in the data matrix:
model_grid.txt (labelled as: ’2D model grid data’). Then, view
the data in the array viewer, just to get a feel for what you are dealing
with here (although you are unlikely to be much wiser after doing
so). Lastly, go ahead and employ the pcolor function in its simplest
possible usage (see Box) to visualize the data. You can see (Figure
1.15) that it is ... something. Maybe a little like the continents, but
up-side-down at the very least. What to do?

Well, it is a good job that you remember how to re-orientate arrays,
right? If you guess right first time (three different basic transforma-
tions of a matrix were described), you will get Figure 1.16.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 1.15: A 2D plot of some random
gridded model data.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 1.16: A 2D plot of some random
gridded model data ... but with the
underlying data matrix re-orientated
before plotting.

Next try something very similar. but using the image function.68

68 Now the model grid is the correct
way around! I have absolutely no idea
why and why it is reading the matrix
dimensions differently from pcolor .
I am sure you could Google and find
out. But you would have to actually
care first.

pcolor
MATLAB claims that pcolor(C)

plots; "a rectangular array of cells
with colors determined by C. Ac-
tually, I believe MATLAB on this.
So if you have a matrix, MATLAB
will plot a regular arrays of cells,
with each cell representing one of
the elements in the matrix, and will
color that cell according to the value.
(pcolor will by default, autoscale
how the color scale maps onto the
data in the matrix such that both
extreme ends of the color scale are
used.)

image
You can import an image, such

as in .jpg , .tiff , or .png for-
mat, using imread – simply pass
it the name of an image file (as a
string, this variable name needs to
be encased in inverted commas) and
assign the results to a variable name
of your choice. Then plot (using
image) that variable.

What is the point of this? You now have the ability to simply vi-
sualise a gridded dataset. Later, we’ll be doing it more formally and
it gets rather more involved when you have to create matrixes to
describe the grid dimensions (e.g. lon and lat) for yourself.

As your very last exercise – find an image on the internet that
amuses you, download it, load it into MATLAB (using imread),
visualize it using image , and then ... well, that depends on how
amusing it is. Maybe try plotting something on top of it (using hold

on) or simply go home.

56 str=’do you like bananas?’;

1.9 Further matrix math (systems of equations)

You can also use MATLAB’s powerful matrix functionality to solve
real-world problems for you.

As an example – consider the Great Lakes – the largest lake system
in the world. They have on their shores some of the greatest cities
... as well as some of North Americas worst hockey teams. More
importantly, much of the region is heavily industrialised and there
is hence an exciting potential for pollution input into the lakes and
hence a contrived numerical modelling exercise.

The layout of the lake system is shown schematically in Figure
1.17, together with the mean volumes of the lakes and the annual
flow rate of water out of them.

We can analyse the net result of a cocktail of heavy metals pouring
into each lake, the amount dependent largely upon the population
within the catchments of the lake. The assumed input rates to each of
the 5 lakes are given below.

Lake Heavy Metal Input (kg yr−1)

Superior 1.0×103

Michigan 4.5×103

Huron 1.0×103

Erie 3.5×103

Ontario 3.0×103

Table 1.1: Pollution input input rates to
each of the 5 lakes.

The steady state concentration of heavy metals in the Great Lake
system (the steady state solution being the state in which none of
the concentrations in any of the lakes is changing) is something that
you can find an analytical solution for. You have 5 unknowns (the
concentration in each of the 5 lakes) and you can write down a series
of 5 equations involving these unknowns. (There is slightly more to it
than this, as there must also exist an inverse for the matrix, which is
not always the case ...)

Figure 1.17: Lake volumes and river
flow rates in the Great Lakes system.

Lets call the concentrations (kg km−3) of heavy metals in the lakes;
cS, cM, cH, cE, and cO (for; Superior, Michigan, Huron, Erie, and
Ontarion, respectively). At steady-state, the inputs of heavy metals
must exactly balance the outputs from each lake (otherwise, the
concentration in the lake would change and the system would not
be at steady-state). We can write a series of mass-balance equations
for the 5 lakes. For instance, in Lake Superior, the metal input flux is
1.0×103 kg yr−1 (1000 kg yr−1). This must balance the loss of metals
in the river outflow if the concentration of metals in the lake is to
remain constant. The water outflow rate that is given to you is 63
km3 yr−1. The metal outflow flux is then just the concentration of

elements of ... matlab and data visualization 57

metals in the water (cS), times by the water flow; 63* cS. Thus, for
Lake Superior, we can write 1000 = 63 * cS. The other lakes can be
similarly analysed, to give a set of 5 equations:

1000 = 63 * cS

4500 = 47 * cM

1000 + 63 * cS + 47* cM = 157* cH

3500 + 157 * cH = 173* cE

3000 + 173 * cE = 208 * cO

It is not hard to work your way down these, solving first (cS =

1000/63 is not so hard to solve ...) and then the 2nd, which then
allows you to solve the 3rd, before then solving the 4th and 5th in
turn However, the system of equations you might have to solve
could be (and usually is) much more complicated. Fortunately, we
can get MATLAB to do the work. :) It may be far from obvious what
MATLAB has to do with this, so I’ll do a little re-arranging of the 5
equations:

63* cS + 0* cM + 0* cH + 0* cE + 0* cO = 1000

0* cS + 47* cM + 0* cH + 0* cE + 0* cO = 4500

-63 * cS + -47 * cM + 157* cH + 0* cE + 0* cO = 1000

0* cS + 0* cM - 157 * cH + 173* cE + 0* cO = 3500

0* cS + 0* cM + 0* cH - 173 * cE + 208 * cO = 3000

This is starting to look scarily like some matrix stuff. Satisfy your-
selves that these two sets of equations are the same, and that all I
have done is to write them with the unknowns on the left hand side
(cS, cM, cH, cE, and cO) and the knowns (the metal input fluxes) on
the right hand side. In fact, this can be written in matrix form:

63 0 0 0 0
0 47 0 0 0

−63 −47 157 0 0
0 0 −157 173 0
0 0 0 −173 208

×

cS
cM
cH
cE
cO

=

1000
4500
1000
3500
3000

Brush up on your matrix maths and check that this is exactly the
same as before. It is just the series of 5 separate equations, but rep-
resented in matrix math form. Write out the matrix multiplication
in full to get the 5 separate equations back again if you are not con-
vinced that this is the case.

In a new MATLAB m-file, create a 5×5 array containing the values
in the matrix on the left hand side of the equation above and assign
it to the variable R (for River flow). Create a 5×1 array containing the
vector values on the right hand side of the equation and assign it to
the variable F (for heavy metal Flux). The solution to this problem is
the set of (steady-state) concentrations of heavy metals in the 5 lakes.
(Call this variable C.) We thus have the equation:

58 str=’do you like bananas?’;

R × C = F

If we could determine the inverse of R, we could write:

R−1 × R × C = R−1 × F

(I have simply multiplied both sides of the equation by R−1.)
Recognizing that a matrix (R) multiplied by its inverse (R−1) is the

Identity matrix (I), and that I leaves everything it multiplies alone,
we have:

I × C = R−1 × F
⇒ C = R−1 × F

We are there! We have R and F, so by multiplying F by the inverse
of R, we get our set of 5 solutions (in the 5×1 vector C). And MAT-
LAB will give you the inverse of R (if it exists) on a plate.69 Sweet 69 At the command line; type:

» help inv

to find out how to get your paws on
the inverse of R. You can also lookup
’inverse of a matrix’ in the Index of
MATLAB Help.

deal!
Now you have everything you need – go solve the steady-state

problem for the unknown metal concentrations in the 5 lakes (the
vector array C) using the inverse of R. You can always plug these
values into the original equations to satisfy yourselves that it all
works out.70 70 Note that the equations above are

written in normal maths language,
e.g. with a × rather than the * that
MATLAB understands.

2

Elements of ... programming

Nerd. This is what you are now going to become. And lose all your social skills. And sit at home all day in
front of your computer. Which has become your only friend.

You will achieve this higher state of Being by starting to learn to write and use scripts and functions (aka
m-files) in MATLAB. Actually, at this point you are now writing computer programs (of a sort) rather
than endlessly typing stuff at the command line in the forlorn hope that something useful might occur.
You will also be doing a great deal of code debugging ...

60 str=’do you like bananas?’;

2.1 Introduction to scripting (programming!) in MATLAB

Commands in MATLAB can become very lengthy, and you typically
end up with multiple lines of code to get anything even remotely
useful done. And as you have noticed, it can take a lot of time to en-
ter in all these lines. When when you log off and go home ... it is all
gone. 1 ... If only there was some way of storing all these commands

1 MATLAB remembers all the com-
mands used in previous session (al-
though this may not be the case of
shared, lab computers) and lists them
in the Command History window. You
can recover and re-execute a previous
command in this list by double-clicking
it. You can also re-run more than one
line at a time by selecting multiple lines
and pressing F9 (or Evaluate Selection
from the (R-mouse button in Windows)
context menu).

in such a way that they could be worked on and run again with the
press of a button (as a wild guess, how about F5?), without having to
enter them all in, all over again from scratch ...

m-file
... is nothing more than a simple

text file, in which a series of one
or more MATLAB commands are
written and which via the .m file
extension, MATLAB interprets as
a program file (script or function)
that can be edited and executed (or
rather, the list of commands inside,
can be executed in sequential order).

Assume a similar convention to
that for variables in the naming of
m-files.

Your wish is granted! In MATLAB, it is possible to store all of
your commands in a single text file, and then request that they (the
list of commands) are all executed (sequentially) at one go. MATLAB
gives this text file a fancy name (because it is a very fancy piece of
software, after all) – a script2, otherwise known as an m-file. To cre-

2 The conception of a function, will be
introduced later.

ate a new m-file; from the File menu, select Script (a common type of
m-file)3. You will see a text editor (more fancy-ness) appear in front of

3 In order version of MATLAB: File/New
menu, and select: Blank M-file.

your very eyes, containing your requested (but currently empty) m-
file. Save the m-file to your directory of choice. (Alternatively, simply
create a new (blank) text file and save it with the extension .m, rather
than e.g. .txt – this creates you a (script) m-file, illustrating that an
m-file is nothing more than a text file with a .m file extension.) From
an m-file, you can issue all the MATLAB commands you previously
would have entered individually, line-by-tedious-line, at the com-
mand line. Furthermore, having created and saved a MATLAB script,
it can be executed again and as many times as you like.

You can execute an m-file by typing its name into the Command

window (omitting the .m file extension). Ensure that MATLAB is
operating in the same directory as the directory that you have saved
your m-file. You can also run the script (m-file) by hitting the big
bright green Run icon button at the top of the m-file editor4. The

4 In older versions of MATLAB – select:
Debug/Run from the ’debug’ menu of
the Editor window.

short-cut for running it is to whack your paw down on the Function
Key F5.

disp
... displays something (the contents

of a variable) to the screen.
In the example of:

disp(STRING)

where STRING is a string, you
get the string displayed as text at the
command line.

I n general, you can pass the name
of any variable

disp(VARIABLE)

and get the contents of VARIABLE
displayed.

Note that the difference between
using disp and simply typing the
variable name:

» VARIABLE

is ... well, find out for yourself!
Note that there is no effect of in-

cluding the semi-colon (;) at the end
of disp() .

OK – you are now ready for your very first program ... inevitably
... this has to be to print ’Hello, World’ to the screen. No, really.
(Google it.)

Create a new m-file, calling it e.g. hello_world.m (remembering that
spaces are NOT allowed in filenames). Make sure it is in the same
directory that MATLAB is working from ... You are going to use the
function disp (see margin help box and/or type » help disp to
find out the MATLAB function syntax and usage). This command
(/function) will print to the screen, either any text you specify (in in-
verted commas), or the contents of any variable (you pass the variable
name to disp (without inverted commas)). For now, simply pass the

elements of ... programming 61

text directly.
Your program needs just a single line in the m-file (not at the com-

mand line):

disp(’hello, world’)

Save the file (to your working directory). Run it at the command line
by typing its name (omitting the .m extension):

» hello_world

Your first program is a success!(?)5

5 If MATLAB gives you an error mes-
sage something like

Undefined function or
variable ’hello_world’
then it is likely you are simply not
in the same directory as the m-file,
and/or the location of the m-file is not
in one of the directory paths MATLAB
knows about (see previous Tutorials for
comments on changing directory vs.
adding paths.).

You could extend this to a mighty 2-line program by defining
the string as a variable on the first line of the file (program), and
displaying the contents of the variable (on the second). In a new
script m-file (saved as e.g. hello_world2.m), add the lines:

message = ’hello, world ... again!’;

disp(message)

and then save and run it.6,7

6 Remember that when a function
requires a string input, you can either
pass the string directly (encased in
inverted commas), or assigned the
string to a variable, and pass the name
of the variable (no inverted commas).
7 If you get the message repeated
twice, you might have committed the
semicolon form the end of the first line.

For further practice – pick one of any of the previous exercises in
which multiple lines of code were required, such as loading and then
plotting a data set – place these lines of code into a new m-file (either
by re-typing them in or copying them out of the Command History win-

dow), save the file (to the same directory that you are working from),
and then run it my typing its name at the command line (omitting
the .m extension).

2.1.1 Programming good practice

A few tips about good practice in (MATLAB) programming before
we go on (and on and on and on):

Creating help text in an m-file
MATLAB allows you to crete a

’help’ section in the m-file – text that
is outputted too the screen if you
type help on that particular script
(or function). The text is defined by
a block of comment lines at the very
top of the script file (or after the
function definition in the case of a
function). The last sequential com-
ment line is taken to be the end of
the help section. Note that the help
section can be a minimum of eon
single line. A typical basic format is:

1. Name of (in capitals), and very
brief summary, of the script
(/function).

2. List and description of the dif-
ferent forms of use (if there are
one or more optional parameters)
including definition of the input
parameters.

3. Examples.
4. A See also section listing

similar or related scripts or
functions.

• Choose helpful variable names so that it is clear what each vari-
able represents. Avoid *excessively* short names, except for simple
index and counting variables. At the other extreme – excessively
long names, which the might be wonderfully descriptive, can lead
to even simple calculation stretching over multiple lines of code
(which can make it more difficult to see what is going on in the
code overall). It is also very easy to create typos in trying to use
very long variable names.

• Use comments within your m-file to add explanation and com-
mentary on your program. Anything after a %on the same line is a
considered a comment8, and is ignored by MATLAB.

8 Your % commentcan start on a new
line, or follow on from the end of a line
of code, whichever is more helpful.

• Structure the code nicely. You can break the code up into sec-
tions, e.g. by adding a blank line. You might also start each section
with a label (comment) summarizing that it is going to do (via the
addition of a comment line).

62 str=’do you like bananas?’;

• To start with - create the- program in as simple a step-by-step
way as possible. Breaking a complex calculation into several lines
of simpler calculations is much easier to debug and work out what
you were doing later, particularly if comments are also added. For
all practical purposes – at this level, everything will run just as fast
whether as a complex calculation on one line, or simple bite-sized
calculation spread over 4 lines with comments in between.

• Always save your changes before running your program (or
you may unknowingly be running the previous version).

• If using the script to do some plotting, sometimes (but not
always) it is convenient to add at the top of the m-file,

close all;

This command close all currently open figures, plots, images,
etc. so that if you repeatedly run the script such as you might in
developing and debugging it, you don’t end up with 1000000000s
of Figure windows open ...

An illustration (and a far from perfect illustration) of a short function
(m-file) exhibiting at least a few examples of good practice, is:

Figure 2.1: Schematic of the example
program.

function [dum_temp] = ebm_basic(dum_S0)

% 0D case of EBM - analytical solution

% function takes one parameter - the solar constant

(units of W m-2) [NB. modern value: 1370.0]

%

% define constants

const_0C = 273.15; % (units: K)

const_sigma = 5.67E-8; % Stefan-Boltzmann constant

(units: W m-2 K-1)

%

% define model parameters

par_emiss = 0.62; % (non-dimensional)

par_albedo = 0.3; % mean albedo

%

% solve for surface temperature

% equilibrium equation:

% (1.0-par_albedo) * (par_S0/4.0) = par_emiss * const_sigma * loc_temp ∧4.0

% then re-arranged to:

loc_temp = ((1.0-par_albedo) * ...

(dum_S0/4.0)/par_emiss/const_sigma) ∧0.25;

%

% convert temperature units (Kelvin to Celsius) and

set value of return variable

dum_temp = loc_temp - const_0C;

end

elements of ... programming 63

The schematic for the program structure is shown in 2.1. (Don’t
worry what this particular program does, just note how I have struc-
tured it.)

This example also illustrates one possibility for a consistent vari-
able naming convention – constants (variables which never change
in value) start with a const_ and parameters (variables whose val-
ues might be changed) with par_ , temporary (’local’) variables with
loc_ and variables passed into and out of the function: dum_. Note
the use of the semi-colon at the end of every line to prevent (here un-
wanted) printing of results to the screen. (Don’t worry about what a
function is yet ... just not the degree of commenting and that there is
some sort of consistent and meaningful naming convention.)

In the file, you can create as much ’ASCII art’ as you like if it helps
to make the code clearer, e.g. adding separator comment lines ...

% --------------------------------

... or highlighting certain section headers, e.g.

% *** PLOTTING SECTION ***

If it (a line) starts with a percentage symbol, then MATLAB ignores it
and you can type whatever you like after it (on the same line).
Also note, if it helps – you can run a single line of code over 2 lines of
the file by adding:

...

at the end of a partial line (that is to be treated by MATLAB as joined
continuously to the next line).

Figure 2.2: Schematic of the Hello
World program.

Your Hello World program might look like the following once it has
had a little tune-up (although in this example this is pretty much
over-kill):

% program to print ’Hello World’ to the screen

% *** START ***
% first - define the text to display and assign it

% to the variable message

message = ’hello, world’;

% second - display the contents of variable message

disp(message)

% *** END ***

The book schematic structure of this program (script) is shown in
Figure 2.2.9 9 Note that not all of the comment lines

are shown in the structure schematic –
only the main program summary at the
top.

Finally, and related to the next subsection – code in stages, testing
the (partial) code at each step. Do not try and write all the code in
one go and only try it out at the end10. 10 Because it will not work 99 times out

of 100 ...

64 str=’do you like bananas?’;

2.1.2 Debugging the bugs in buggy code

What programming is mostly about is not writing new code so much
as debugging11 what you have already written. Key then, is to reduce 11 The art of fault-finding in computer

code.the incidence of bugs occurring in the first place, and when they do
occur, firstly to have code that lends itself to debugging and secondly,
knowing how to go about the debugging. The first two facets are
at least partly addressed through good programming practice (see
earlier)12. 12 And by the discipline of software

engineering, which is way out of scope
of this course.

Here is an example to try out to start to see what might be in-
volved in debugging, loosely based on a previous plotting example
– go create a new m-file called: plot_some_dull_stuff.m13. Then add the 13 Remember – you are advised to name

your m-files as something vaguely
descriptive of what the script actually
does (and you do ont have to go with
this choice, although it might turn out
to be perfectly descriptive ;) (i.e. you do
not have to call it this!)

following lines to the file (you can probably just directly copy-paste
from the PDF file):

% my dull plotting program

% first, initialize variables and close existing

% figure windows

close all ;

% set up variables to plot

x = -2 * pi:0.1:2 * pi;

y1 = sin(x);

y2 = cos[x];

% open a figure window and plot the sine

figure;

plot(x,y1, ’r’);

% add the cosine

hold on;

plot(x,y2,k);

and then save and then run it (refer to earlier for how).
Pretty dull stuff eh? Wait – maybe you didn’t get a figure appear-

ing on the screen with a pair of sines and cosines on. Has MATLAB
given you an error? If you typed in the above ’correctly’, you should
see:

Error: File: plot_some_dull_stuff.m Line: 6 Column:

9 Unbalanced or unexpected parenthesis or bracket.

Actually ... if this were your program, you should have paid attention
to earlier and not have written it all at once before testing it! But
at least MATLAB is giving you some sort of feedback. The actual
error reported might not always mean that much to you but the line
number at which the problem occurred is gold-dust. The line of code
is does not like is line 614, which is: 14 Note that although MATLAB ignores

comment lines (in the context of exe-
cuting code), it does count them when
telling you which line of the program
code an error occurs at.

y2 = cos[x];

Maybe the mistake is already obvious? If it is – go fix it and re-run
the program. If not, maybe test out the line more simply and in isola-
tion (of the rest of the code) at the command line, passing in a value

elements of ... programming 65

directly to the function cos and not bother assigning the result to a
different variable, e.g.

» cos[0.0]

to which you get told:

» cos[0.0]

cos[0.0]

↑
Error: Unbalanced or unexpected parenthesis or

bracket.

Now you have reduced the use of the cos command to its simplest,
whilst retaining the usage in your program that seemed to cause an
issue. Hopefully, now the error is apparent. If still not, check out help
on the cos function, or search cos in the MATLAB help (from the
question mark icon in the toolbar).

Is it important to recognise that (1) bugs will not always be flagged by
MATLAB with a line number, and you can have valid code but nonsensical
results, and (2) the mistake is often made earlier in the code than when
MATLAB flags up a problem line.

Other strategies for helping debug include:

1. Checking what the values of the variables were at the point
at which the program derp-ed – the current (and the point of
program crash) variable values are listed in the Workspace window.

2. Changing the relevant variable value(s) (here x) and re-typing
the problem line to see if it makes a difference15. 15 This is sort of similar to the example

given of simply testing a specific value
directly.3. Commenting out (%) lines of code temporarily, or adding in

additional (temporary) lines of code, and re-running. Where cod-
ing in bite-sized chunks is an advantage in this respect, is that if
a program stops working after you have added a new section o
code, you can go comment out the new code (never normally just
delete it all), check that the original section of code still works, and
then line-by-line, un-comment the new code until the problem line
is found.

4. You can also put your program on hold just before the problem
line and explore the state of the variables at that point (see Box),
although in this particular example of a bug, MATLAB does not
allow this, presumably because if feels that the mistake is simple
and can be easily fixed.

Debugging – breakpoints
Breakpoints are indicators in the

code that tell MATLAB to pause that
that point. This allows for in-depth
testing of variable values and lines
of code without having to exit the
program.

To add a breakpoint in the code –
click in the (grey) margin of the code
editor on the problem line or before,
and MATLAB adds a red circle to
indicate a ’breakpoint’ has been set.
The presence of a breakpoint tells
MATLAB to pause that that line.

To unset a breakpoint, click on the
red circle or you can clear one or
more from the drop-down Break-
points menu in the toolbar.

Once you have fixed this, re-run the program. Ha ha – it still does
not work. (It is far from unusual to have multiple mistakes in the
same piece of code, hence why writing the code in chunks and test-
ing each time is helpful.) Now we apparently have a problem on line
12:

66 str=’do you like bananas?’;

Undefined function or variable ’k’.

Error in tmp2 (line 12)

plot(x,y2,k);?

Now MATLAB does not like function or variable ’k’ be-
cause it cannot find that it has ever been defined. Is k meant to be
a function or variable, or something else (e.g. a line style descriptor)?
Look up help plot to remind yourself of the correct syntax if the
problem is not immediately obvious.

Once you have fixed the second bug; saved, and re-run the script,
you should see Figure 2.3. (unless there were further bugs to find ...) -8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Output from the (bug-fixed
version of) plot_some_dull_stuff m-file.

elements of ... programming 67

2.2 Functions

Functions in MATLAB, are really just fancy scripts. Again – just plain
old lines of code in a text file that is given a .m extension (making it
an m-file). The big difference from a script in MATLAB is that a func-
tion can take variables as input and/or return variables (or variable
values) as an output. (In contrast, a script takes no input and returns
no outputs, other than plots or data files that might be saved.)

A function is defined (and differentiated from a script) by a special
line at the very start16 of the m-file (see Box). You must follow the 16 Literally: line 1. Not even a comment

line is allowed to appear before the
function definition line.

MATLAB syntax exactly in defining a function.

Functions
The all-important fancy first line

of a function, as defined in MATLAB
help, looks like:

function [y1,...,yN] =
myfun(x1,...,xM)

Thanks MATLAB (this seems overly
complex to say the least)!

OK – lets break this down. Lets
assume that you call the m-file
calc_stuff. The minimal definition of
a function then looks like:

function [] =
calc_stuff()

(The syntax is critical and the defini-
tion line must look like this.) Here
we are saying – pass in not parame-
ters and return no values either. So
exactly like a normal script would
work and you would execute the
function calc_stuff by typing at the
command line:

» calc_stuff()

(Maybe you can get away without
the () bit.)

If you wan to pass in a single
parameter (here: X), then you define
the function:

function [] =
calc_stuff(X)

(To pass in more than 1 variable,
simply comma separated the vari-
able names.)

To pass out a parameter (here: Y)
(and no input):

function [Y] =
calc_stuff()

Lastly, at the end of the function,
you include the line:

end

This is all not as weird as you might think. For example, you have
already used the function sin – this takes a single input (angle in ra-
dians), and returns a single output (the sine of the angle). If you were
to write your own function for sin , the file would start something
like:

function [Y] = sin(X)

You can’t, of course, go re-defining pre-defined MATLAB function
names17. So how about if in your work, you found you frequently

17 Actually you can, but it is best not to.

needed to use the square of the sine of a number. You could keep
writing:

Y = (sin(X)) ∧2

or, if you were a little more devious, you could create your own func-
tion for returning the square of the sine of a number.

In this example, the contents of your m-file, which here we’ll call
sin218, would look like:

18 And hence filename sin2.m.

function [Y] = sin2(X)

Y = (sin(X)) ∧2;

end

but of course with lots of comments to remind you what the function
does etc. (Try this out – create a new blank script m-file, add this code,
save the file, and run it.)

Your new function is used pretty much as you would expect and
have used previously, e.g.

» sin2(0.5)

will return the square of the sine of a value of 0.5 and dump the
answer to the command line, and

» Y = sin2(0.5);

does the same but assigns the answer to the variable Y (with the
semi-colon suppressing output to the command line).

NOTE that you can make a new function in 2 different ways:

68 str=’do you like bananas?’;

1. Create a new (blank) script m-file.
By adding the function definition line on the very first line of the
file (e.g. function [] = calc_stuff()), and end at the end,
you turn the script into a function.

2. From the MATLAB Editor or main window menu, you can also
chose: New -> Function.
This creates you a generic function template file with a bunch of
lines of stuff already in it:

function [outputArg1,outputArg2] = untitled3(inputArg1,inputArg2)

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

outputArg1 = inputArg1;

outputArg2 = inputArg2;

end

If you find this too confusing, particularly early on in the course,
just stick to method (1).

NOTE2: You do not want MATLAB Live Script.

Now go practice and make up your own function. Start by creating
one that takes a single input and returns a value equal to the sine of
the square of the value (rather than the square of the sine as above).
Test it (i.e. compare the output of your function with the equivalent
calculation typed in at the command line).

When you are happy with this, create one with 2 inputs (refer to
MATLAB help on function and/or refer to the previous Box),
that returns a value equal to the sine of the first input, divided by the
cosine of the second input19, i.e. 19 Mathematically, the answer is not

valid for all possible values of the 2
inputs (why?), and later we’ll learn
how to pro-actively deal with such a
situation.

y = sin(x1)
cos(x2)

)

Note that you have used other functions, perhaps without knowing
it, and some of them return values, but because you have not at-
tempted to assign the returned values to a variable, you may not have
not noticed. For example, plot and scatter are in fact functions,
and return an ID of the plot graphic. We simply have not been asking
for the returned value so far. As per MATLAB help :

H = SCATTER(...) returns handles to the scatter

objects created.

with the handle , H, being an identifier of the graphic which could
prove to be useful if e.g. you would like to modify one of the proper-
ties of an existing graphic.

Debugging – functions
Functions are a prime example

of the importance of being able to
pause code part the way through
(e.g. by setting a breakpoint) be-
cause when a function terminates,
or crashes, you get to see none of
the values of any variables created
within the function, unless they have
been returned as output (and assum-
ing here that the code did not crash
and managed to get to the end).
Setting a breakpoint allows you to
interrogate the values of any internal
variables.

Finally, it is important to note that by default, any variables cre-
ated within a function are TOP SECRET, and by that, I mean that
they are not accessible to the main MATLAB workspace and do

elements of ... programming 69

not appear listed in the Workspace window. To see that this is a non-
Trumpian true fact, create the following function (basically, the first
example but split into 2 steps):

function [Y] = sin2new(X)

tmp = sin(X);

Y = tmp∧2;

end

Here, we have created a variable tmp to hold the value of the partial
calculation. It does not appear in the Workspace window when you use
the function. The advantage of this is that you could create a second
function that also created a temporary variable internally called tmp

with both instances of tmp treated entirely sperate and isolated by
MATLAB (i.e. setting the value of one instance of tmp does not affect
the value of the other).

The private nature of variables created within functions does how-
ever does lead to some additional complications in debugging func-
tions because when the function terminates, you have no record of
what occurred during its execution (in terms of not being able to ac-
cess the value of any of the variables used within the function). Try
setting a breakpoint at the start of the line where the square of tmp

is calculated – note that tmp now appears in the Workspace window.
Continue the function and when it terminates, note that tmp is now
gone from the list.

70 str=’do you like bananas?’;

2.3 Conditionals ’101’

2.3.1 if ...

One of the most important programming constructs is the conditional
statement, in which whether one or more statement(s) are executed
(and hence the overall outcome) is conditional on the ’truth’ or other-
wise (i.e. it being true or false) of a given expression.20 20 Pause ... and deep breath.

Conditional Statements
The principal conditional statement

in MATLAB is: if ... end
The basic if structure is:

if EXPRESSION (IS
TRUE)

STATEMENT(S)
end

in which the code CODEis executed
if EXPRESSIONis evaluated as
true . No code is executed other-
wise (and STATEMENTis false).

A variant addition – else – which
allows for an alternative block of
code (OTHER STATEMENT(S)) to be
executed if EXPRESSIONis instead
evaluated as false , is:

if EXPRESSION (IS
TRUE)

STATEMENT(S)
else

OTHER STATEMENT(S)
end

Finally, there is 3rd variant including
elseif :

if EXPRESSION (IS
TRUE)

STATEMENT(S)
elseif EXPRESSION (IS
TRUE)

OTHER STATEMENT(S)
else

OTHER STATEMENT(S)
end

Now, assuming that the first EX-
PRESSION is not true, a second
EXPRESSION is evaluated, and
only if that second EXPRESSION is
also not true, will the final possible
STATEMENT be evaluated. (Here,
this final variant is shown with an
else ... included at the end, but
this is not a formal requirement to
include.)

This is embodied in MATLAB (and similarly in most languages)
by the if ... end construct (see Conditional Statements Box).

In creating an if ... end construct, the statement tested for
truth can be any one of:

1. A variable having a value of true (1) or false (0). e.g.

if happy

...

where happy is a variable.

2. A MATLAB function returning a true or false , e.g.

if isnan(A)

...

where variable A, may or may not be a NaN.

3. A relational operator (see earlier), i.e. one of e.g.:

>, <, <=, >=, ==, ∼=, &&, ||

and applied to a pair of variables, one variable and one value, or
two values, e.g.:

if A > B

...

where A and B are numbers.

All this will hopefully become apparent during this and later
weeks, so don’t worry about the details ... just yet.

An initial and rather computer programming textbook-like
example follows. There are different stages in the development of the
final program. Consider creating a new m-file for each stage.

Designing a program (a MATLAB script saved as an m-file) that
asks whether or not you like bananas, and if you answer ’yes’, tells
you ’Correct – they are a great fruit!’.

But before we worry about anything else (e.g. how to apply a con-
ditional statement), you’ll need to know about inputting information
into a MATLAB program from the keyboard21. Amazingly, you can

21 All programming languages have
such a facility and man basic pro-
grams, at least in the Old Days prior
to widespread GUIs, make use of
keyboard input

guess (I actually just did) the command for requesting input – it is

elements of ... programming 71

input (for ’input’ – a rare occasion when everything is logical and
simple!) (see Box).

Armed with this important new information (how to get MATLAB
to ask for input and then receive and do something with keyboard in-
put) – firstly create a blank m-file and save with a ’suitable’ filename.
(You are going to be typing code into the script m-file (not at the com-
mand line.) Maybe add a header line comment (a 1st line or lines
starting with a %) to remind you what this script is going to do.

Secondly, (and on the next line) – define the text (question) that
you are going to ask and assign this string to the variable MY_QUESTION

(substitute your own variable name here).
Then place the input command (on the next, now 3rd line) for

string input, and assign the input string to the variable MY_ANSWER

(again, you can pick your own variable name).
You should now have a program consisting of 3 (or more, de-

pending on how many comment lines you include) lines – an initial
comment line, a line defining the question and assigning this string to
a handy variable (MY_QUESTION), and a line taking the results of the
input function, and assigning it to a second variable (MY_ANSWER).
The structure of your program should look like Figure 2.4. To help
you out, a complete program looks like:

input
There are two variants – one for

inputting numerical information
and one for inputting a string (as 1
could be either the value one or a
1-character string ...).

For inputting a numerical value:

X = input(PROMPT)

will display the text in the string
variable PROMPTand set the value
of variable X to whatever number
is entered (and after RETURN is
pressed).

For inputting a string:

STR =
input(PROMPT,’s’)

will display the text in the string
variable PROMPTand set the value
of STRwhen a string is entered
(and after RETURN is pressed). Note
that the second parameter passed
to the function input (’s’), tells
MATLAB that the input is a string
rather than a number.

Figure 2.4: Schematic structure of the
simple bananas question program.

% === a program to ask whether I like bananas ===

% first - specify the question

% (and assign to a variable)

var_question = ’Do you like bananas?’ ;

% now ... ask the question!

% (and store the response in a variable)

var_answer = input(var_question, ’s’);

Run the program thus far. You should see the question displayed,
and when you type in an answer and hit RETURN, the program will
end. Because your m-file is configured as a script and not a function
(see earlier), you can see the variable MY_ANSWERin the variable list
and you can hence check its value – it should contain a string with
the answer you gave to the question. Make sure it all works like this
so far.22 22 HINT: When you type the answer,

it appears on the screen immediately
adjacent (and untidily) to the end of
the question. You can make this look
nice(r) by adding a space at the end
of the question string you assigned
to prompt, e.g. PROMPT = ’Do you
like bananas? ’; .

OK – aside from the use of input , there is nothing new here. Yet.
The ultimate purpose of the program is to give a reply that depends
on the answer given. This is where we are going – to utilize a condi-
tional statement – depending on whether the answer is ’yes’ or not, we
are going to display a different message. This is a fundamental pro-
gramming element – different code (the statements in the conditional
definition) will execute depending on the value of a variable – in this

72 str=’do you like bananas?’;

example, the ’different code’ is a different message and the value of
the variable is ’yes’ or ’no’ (or other answer).

Copy your previous m-file and give it a new name, so you retain a
copy of your previous working program before you start developing
it further. Work from this new file.

You are going to add an ’if ... ’ statement to the code (start-
ing on at the end of your current code) to test whether the answer,
held in the variable MY_ANSWER, is equal to ’yes ’. In the language of
MATLAB syntax (see Box), the expression is whether the string con-
tained in MY_ANSWERis ’yes ’. How do we ask MATLAB to compare
the value of MY_ANSWERwith ’yes ’?

Once upon a time, long long ago, MATLAB was simple and help-
ful and you could write:

if (my_answer == ’yes’)

[MESSAGE]

end

where [MESSAGE] you will later replace by a message that you will
display using the disp command that you saw before. (In this stupid
example it might be: ’Correct – they are a great fruit!’). In this (now
illegal!) usage, we are trying to ask whether the contents of the vari-
able my_answer , are equivalent (the ==) to the string ’yes’ .

strcmp
For once, the MATLAB help ex-

planation is relatively simple and
straightforward:

tf = strcmp(s1,s2) compares s1 and
s2 and returns 1 (true) if the two are
identical. Otherwise, strcmp returns 0
(false).

Which is pretty well much how we
expected asking: s1 == s2 to pan
out.

(In MATLAB help – tf , the vari-
able name used in the example, is
short for ’true-false’.)

Life is no longer this simple. MATLAB is going to make us use the
function strcmp (see Box). In using strcmp we might break things
down into 2 steps – the first comparing the 2 strings (MY_ANSWER

and ’yes ’) and returning to us a value of true or false that we will
store in a new variable. In the second step, we’ll ask the conditional
to act on the value of the variable. The code will now look like this:

COMPARISON_RESULT = strcmp(MY_ANSWER, ’yes’);

if COMPARISON_RESULT

[MESSAGE]

end

Or, we could have made this more compact:

if strcmp(MY_ANSWER, ’yes’)

[MESSAGE]

end

Your code should now comprise something like the 3-5 or so lines
from before (comment, define question, get input) followed by 4
lines of code of the conditional structure, comprising: the strcmp

function, the if ... , use of disp to display a message, and lastly,
end . The structure should look like Figure 2.523 or if you assign

23 The red triangle denotes a branch
point, where the code can go in differ-
ent directions depending on the result
of the conditional. In this example –
there is only one branch, corresponding
to the answer being ’yes’.

the message to a 2nd variable, like Figure 2.6. A complete example
program ... to help you follow all the above, would look like24:

24 Note the indentation of the contents
of the if ... end structure. This is
very common programming practice.
You can make MATLAB do this for you
by selecting a single line, or highlight-
ing a block of lines, and clicking on the
Indent icon in the code editor.

elements of ... programming 73

Figure 2.5: Schematic structure of the
extended bananas question program.

% === a program to ask whether I like bananas ===

% === (and now give an answer!) =================

% first - specify the question

% (and assign the string to a variable)

var_question = ’Do you like bananas?’ ;

% second - specify the response

% (and assign the response string to a variable)

var_response = ’Me too! OMG I could die!’ ;

% now ... ask the question!

% (and store the response in a variable)

var_answer = input(var_question, ’s’);

% test the answer ... and reply if ’yes’

if strcmp(var_answer, ’yes’)

disp(var_response);

end

Figure 2.6: A slight variant on the
schematic structure of the extended
bananas question program.

(Please – do not just copy-paste the code ... write your own version of
the code and only use this code as a guide.)

Re-run (after saving) the program and confirm that it works (ask-
ing whether you like bananas and if you answer ’yes’, tells you ’Cor-
rect – they are a great fruit!’). If not – time to de-bug! Note that if
you tested the code in two stages, any bug at this point is only in the
conditional structure. Start by double-checking the syntax required
for the if ... structure. You could also try commenting out the
message line and re-running.

You can also turn this around, and test for an answer that is not
’no’ (the ∼ is making the test, not ’no’), i.e.

if ∼strcmp(MY_ANSWER, ’no’)

[MESSAGE]

end

Now you are asking whether the answer is something other than ’no’
(which might be ’yes’, but not necessarily so) – in the logical con-
struct – whether the (string) contents of answer are not equivalent to
’no’.

Next, you might display an alternative message is the answer is not
’yes’. Refer to help / the margin Box on if ... and note that you can
extent the structure with an else which would be followed by a line
displaying the alternative message (e.g. ’Then you need to get a life,
apple-lover.’)25.

25 And then the line with end after
that – follow the prescribed structure
exactly.

Copy your previous m-file and give it a new name, so you retain a
copy of your previous working program before you start developing
it further. Work from this new file.

74 str=’do you like bananas?’;

Try this first – extend you program with an else line and then a
an alternative message. The structure should now look like Figure 2.7
and the code like:

Figure 2.7: Schematic of the bananas
program using the if ... else
... construct (and displaying alterna-
tive messages).

if strcmp(MY_ANSWER, ’yes’)

[MESSAGE1]

else

[MESSAGE2]

end

Finally – you could extend this example further and tackle the
situation of there being 3 possible answers – ’yes’, ’no’, and ... ’I don’t
know’ (or any other answer). Now the basic structure becomes

if strcmp(MY_ANSWER, ’yes’)

[MESSAGE1]

elseif strcmp(MY_ANSWER, ’no’)

[MESSAGE2]

else

[MESSAGE3]

end

Here – we are now adding an elseif ... line (followed by its
specific message) (and see Box/help).

Try this extension to your program and test it fully – inputting a
’yes’, a ’no’, and some other answer, and confirming that you get the
correct message displayed.

Continuing to beat this same tired example to death ... what if
some wise-crack answered ’YES’ rather than ’yes’?26 One could write: 26 This goes to the heart of all software

testing – what if the user does some-
thing you were not expecting? Hence
why all software undergoes extensive
testing by user or people who did
not test it. Sometimes there are pre-
releases (’alpha’ or ’beta’ versions or
simple ’pre-release’) of software to all
or specific parts of the user community,
precisely to provide feedback, find
bugs, and see whether they can break it
...

if strcmp(MY_ANSWER, ’yes’)

[MESSAGE 1]

elseif strcmp(MY_ANSWER, ’YES’)

[MESSAGE 1]

end

This will work, but you might note that you have had to exactly du-
plicate the MESSAGE line. If instead of displaying a simple message,
a complex calculation was carried out – all the lines of the code fol-
lowing the if ... would have to be exactly duplicated after the
elseif While it might seem trivial to simply copy-paste
the required lines, this is27 dangerous – if the first set of lines are 27 Note quite in the same way that

driving down a mountain highway with
your eyes shut or hungry sharks are
dangerous.

ever changed (due to a bug-fix or simple further development of
the code), the same changes MUST then be exactly duplicated in
each and every instance, or the code will not longer work correctly.
This is *very* easy to forget to do, particularly for extensive code or
code that you have not looked at for ... years. Code duplication also

elements of ... programming 75

makes the overall code unnecessarily long (and hence harder to look
through).

Instead, we can nest statements containing relational operators.
What does this mean? Well, in the example of the answer being ’yes’
or ’YES’, logically, what we want is:

(1) the contents of answer is equivalent to ’yes’
OR

(2) the contents of answer is equivalent to ’YES’

In code, this is written:

strcmp(answer, ’yes’) || strcmp(answer, ’YES’)

Make sure you are happy with what this means (it is pretty well
much exactly as it looks == logic).

So – go modify your code to allow for a ’YES’ or a ’yes’. Hell,
try allowing for a ’Y’ or a ’y’ as well.28 (You could extend it to ’no’ 28 Sort of for this reason and that there

are many different ways of writing
’yes’, software often requires you to
answer ’yes’ in a restricted number of
ways – this restriction is made clear
as part of the message that asks the
question. Common is to restrict the
answer to ’Y’ or ’y’.

also but I think you get the point ...) Be careful with all the nested
parentheses – an source of mistakes/bugs. You might write it like
this, for example:

if (strcmp(answer, ’yes’) || strcmp(answer, ’YES’))

A non-text and non-fruit related example. Almost.
How many bananas could you eat in a day? I bet it is less than ten.

We’ll let the computer ask and if the answer is 10 or more, you (the
computer) replies: ’liar!’.29 29 This example is even more stupid

than the last one. But no more stupid
than in any computer programming
textbook and it will at least demon-
strate a subtly different usage of if
... .

The basic code is very similar to before. Create a new m-file, add
a comment line, define your question (’How many bananas do you
think you could you eat in a single day?’) and then get MATLAB to
ask it and pass back whatever is entered in at the command line.

The only difference at this point – refer to the usage of input (see
earlier Box) – is that we want a number input rather than a string. So
instead of:

MY_ANSWER = input(MY_QUESTION,’s’);

where MATLAB is going to treat whatever you enter as a string, we
have:

N_BANANAS = input(MY_QUESTION);

where MATLAB is going to treat whatever you enter as a number.
In the if statement, we now want to test whether the value of

N_BANANASis greater or equal to 10 (or equivalently, greater than
9), i.e.

76 str=’do you like bananas?’;

if (N_BANANAS >= 10)

[MESSAGE1]

else

[MESSAGE2]

end

or equivalently:

if (N_BANANAS > 9)

[MESSAGE1]

else

[MESSAGE2]

end

Write this code and get it going. Start with a new blank script m-
file. Your code will look almost identical to previously, except for the
different usage of input , and the form of the conditional.

Feel free to switch fruit / fruit consumption threshold, ques-
tion/answers, or whatever.

2.3.2 switch ...

A slightly less commonly used alternative to if ... is:

switch ... case ...

and is helpful in the case of multiple possible correct answers and/or
multiple different answers.

Conditional Statements (2)
The other main conditional state-

ment is: switch ... case ...
end

The basic switch structure is:

switch VARIABLE
case VALUE(s)

STATEMENT(s)
end

which deviates rather from how
MATLAB describes it, but this
makes more sense to me (and hope-
fully to you). Here, VARIABLE is
a variable and it is compared with
one or more VALUE(s) . If the value
of VARIABLE matches that of the
VALUE(s) , then STATEMENT(s) are
executed.

A common variant adds a default
set of STATEMENT(s) to be executed
if the value of VARIABLE does not
match any of the VALUE(s) , e.g.

switch VARIABLE
case VALUE(s)

STATEMENT(s)
otherwise

STATEMENT(s)
end

You can also have multiple case
possibilities:

switch VARIABLE
case VALUE(s)

STATEMENT(s)
case VALUE(s)

STATEMENT(s)
otherwise

STATEMENT(s)
end

For instance, and back to the ... fruit ... Consider the situation
in which you want the same answer for multiple different kinds of
fruit. Trying to code up the program that would give you ’A great
fruit!’ for any of ’banana’, ’kiwi’, ’apple’, ’pineapple’, and ’cucumber’
(yes they are technically fruit – Google it), you will find either that
you have many lines of code and many duplicated lines of the same
message, or a very long line after if ... with loads of strcmp and
ORs (||).

Using switch ... case ... the code might instead look like:

switch MY_ANSWER
case {’banana’, ’kiwi’, ’apple’, ’pineapple’, and ’cucumber’}

disp(’A great fruit!’)
otherwise

disp(’yuck!’)
end

where MY_ANSWERis the variable containing the name of a fruit
entered in, in response to input, e.g.

MY_ANSWER = input(’What is your favourite fruit?,’s’);

Note that for a list of multiple possible values, MATLAB requires
the list after case to be encased in curly brackets: {} . For a single
answer, it would just be:

elements of ... programming 77

case ’banana’

for a string, and for a number:

case 10

Try re-formulating one of your earlier yes/no if questions in the
form of a switch ... case ... code structure, with multiple
possibilities for the form of e.g. a ’yes’ dealt with by:

case {’YES’, ’yes’, ’Y’, ’y’}

78 str=’do you like bananas?’;

2.4 Loops ’101’

loops in MATLAB
for
The basic for ... end struc-

ture is:

for n = VAL1:VAL2
CODE

end

where VAL1 and VAL2 are the limits
that n will count between (start-
ing at VAL1 and ending at VAL2),
meaning that STATEMENT(S)will
be executed (VAL2-VAL1)+1 times
in total. STATEMENT(S)can be one
or more lines of code, that will all be
executed on each and every cycle of
the loop.

The loop need not count in in-
crements of one (1), the default,
e.g.:

for n = VAL1:INC:VAL2
CODE

end

counts with an increment of INC .
It is also possible to count down (a
negative value of INC).

while
The basic structure is similar to

that for for ... end :

while STATEMENT (TRUE)
CODE

end

while differs from if in that there
are no alternative branches of code
that can be executed. The while
... end loop cycles and CODE
continued to be executed (for ever)
until the STATEMENTis evaluated to
be false .

The next main program construct that you are going to see is the
loop. There are a number of different forms of this in MATLAB (see
loops Box) (and also in other programming languages), but the basic
premise is the same – a designated block of code (one of more lines
of code30), is repeated, until some condition is met. That condition

30 It is possible to for the block of code
to be only a fragment of a single line
and hence the entire loop plus code
block, to be written on a single line.

might be something as simple as a count having been reached, e.g.
the block of code is always executed n times, or the condition might
be slightly more complex and involve a conditional statement (see
later). Will explore a very basic loop though an example, almost as
contrived as for conditionals :o)

2.4.1 for ...

In this subsection we’ll start with a very straight-forward and some-
what abstracted usage of for ... , which hopefully will get you
in the mood for loops. Then we’ll go through some slightly more
problem-focused examples.

Loops Ground Zero. Basically – for loops cycle through a series of
numbers between specific limits, or if you like, ’count’ up (or down)
through a series of numbers. As the loop counts (cycles), it allows
you to execute some code, so for each count (or cycle), the (same)
block of code is executed. We’ll worry about what you might ’do’31

31 Note intentionally a joke. Actu-
ally, this is only funny if you know
FORTRAN, and even then it is only
marginally funny.

(i.e. the code fragment) in a loop, later.
Consider, or rather: create a new script m-file , and add following

code for a simple loop:

for n=1:10

end

Save the file and then run the script. What did it do?
I bet you have absolutely no idea! It actually cycled around ten

times, counting from n=1 through n=10 , but you would not know
it as there was no code within the loop to do anything and tell you
anything about it.32

32 You get one clue – if you look in the
variables Workspace window, you’ll see
there is a variable n, with a value of 10 –
the last value it was assigned before the
loop ended.

There are 2 alternative (but very crude debugging strategies) you
could take in order to investigate the behaviour of the code33:

33 Plus, you could add a breakpoint and
view the value of n in the Workspace
window each cycle around the loop.

1. In the MATLAB Editor, add a breakpoint to the end line of the
loop. When you run the script, the program stops after the first
time around the loop (and as it reaches the end statement). You
can now e.g. interrogate the value of n by hovering your mouse
pointer over it. You can also Continue (button in the icon bar) the

elements of ... programming 79

program, and it will then go around the loop once more and then
stop again at end.
Typically, there will be one or more lines of code within the loop,
and you could create the breakpoint at the first line of code (within
the loop).
2. Simply add a line within the loop with the name of the (count-
ing) variable, e.g.

for n=1:10

n

end

and it will spit out the value of n each time around the loop.
Or, you could print the value of n ’properly’34, e.g. 34 Although you can get away with just

writing:

disp(n)
for n=1:10

disp(n)

end

You could ’tart this up’35 further by creating a string that provides 35 (make look nicer)

more explicit information back to you, which is when you really
need to use num2str , e.g.

for n=1:10

my_string = [’The value of n is: ’ num2str(n)]

disp(my_string)

end

or if you are happy with more going on in a single line:

for n=1:10

disp([’The value of n is: ’ num2str(n)])

end

(but they work the same – check it).

If you are not yet 100% with concatenation – the ’action of linking
things together in a series’ (dictionary definition), what is happening
in the line:

my_string = [’The value of n is: ’ num2str(n)]

is that you are taking the string ’The value of n is: ’ , and
the string equivalent of the numerical value of n (created via the use
of num2str) and ... joining them together, one (num2str(n)) after
the other (’The value of n is: ’).

Loops in action. So, consider the following (somewhat contrived)
problem – you want to be able to enter a series of numbers and re-
turn their sum (although equally one could perform and return all
sorts of statistics).36 The basic code is simple and you can try it out 36 Obviously, one way to do this would

be to enter the numbers into a file first,
use the load function, and calculate the
sum.

by first creating a new (script) m-file .

80 str=’do you like bananas?’;

Using the other (numerical input) form of input (see earlier), the
code for entering 2 numbers, one after the other, might look like this
(although in practice, your code is full of helpful comments, right?):

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

B = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B)]);

The first 4 lines you should be A-OK with, you have seen some-
thing very like this before. In the last line, again, 2 strings have been
concatenated by enclosing ’The sum of the numbers is: ’

and num2str(A+B) in a pair of brackets [] . The string represent-
ing the number sum is itself created by adding A and B, and then
converting the resulting number into a string using num2str (see
earlier). As always – if you are happier breaking down the last line
into its component parts, e.g.

answer = A+B;

answer_string = num2str(answer);

disp(answer_string);

then please do! There is no particular computational penalty in MAT-
LAB for creating as many variables as you like and breaking down
code into multiple lines.

So far so good. But what if you wanted 4 numbers summed ...

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

B = input(my_question);

my_question = ’Please enter a number: ’;

C = input(my_question);

my_question = ’Please enter a number: ’;

D = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B+C+D)]);

You can see whether this is going – firstly that you are duplicating
more and more lines of code as the number of numbers increases.
Secondly, and we’ll come to that in a moment – what if the program
does not know a priori how many numbers you want to sum? Or
do you need to write a program for every single possible number of
numbers that you might need to input and process? An impossible
and thankless task ...

You can see the code that is being repeated (here for input x):

my_question = ’Please enter a number: ’;

x = input(my_question);

elements of ... programming 81

If you bothered to read the margin box earlier, you’d known that
this is exactly what a loop can be used for. We therefore want some-
thing of the form:

for n = 1:MAX_N

my_question = ’Please enter a number: ’;

x = input(my_question);

end

(noting that in your own code, MAX_N, for instance, could be 4).
The easy part is the configuration of the loop – in the previous

example with 4 inputs, we would write:

for n = 1:4

and the loop with go around 4 times as the counter n counts from
1 to 4 (MAX_N) in increments of 1 (the default behavior of the colon
operator). Each time around the loop the block of (2 lines of) code is
executed and a number is inputted. But what is still missing? Try this
(in a new m-file):

for n = 1:4

my_question = ’Please enter a number: ’;

x = input(my_question);

end

and see if you can see what is going on, or rather, not going on. If
you think that it is not working as expected – try some debugging
(i.e. adding one (or more) disp statements within the loop code,
or add a breakpoint within the loop). (You should have deduced that
what is not going on, is that you are not learning what the sum of all
those numbers is.)

See if you can come up with a solution for how to determine the
sum of all the numbers you inputted. (Warning: the spoiler is in the
margin.)

It should be apparent if you tried it
out, that the value of x at the very end
of the program, is equal to the last
value you entered. In other words,
each time you go around the loop you
are over-writing the previous entered
value and end up with nothing to sum
at the end. There are two (or more)
possibilities to solve this:

1. You could keep a running sum.
This would also avoid having to
explicitly calculate a sum at the end,
but you would not have saved the
numbers as you went an no other
stats would be possible.
You would do this by adding the
inputted value to the existing value,
i.e.

x = x + input(prompt);

where x is the running total. What
this says is: take the current value
of x , add the value if the user input,
and place the total back into the
variable x .
The only problem here ... is that
MATLAB does not know what the
very first value of x is – i.e. the value
before the loop start and that you
then try and add input(prompt)
to. The solution is to initialise the
value of x before the loop starts, e.g.

x = 0;

2. Alternatively, you could add the
newly inputted number to the end
of an existing vector. In this way,
you end up recording all the values
that were inputted. e.g.

y = [y input(prompt)];

which says take the vector
y , and add a further value
(input(prompt)) to the end of
it. At the end of the program (after
the loop has terminated), you have
to sum the contents of the vector y .
Or, to break it down:

z = input(prompt);
y = [y z];

Try out both of the given alternatives (see margin) (assuming that
one of them was not also your solution). Note that you are not given
the complete code needed and some further debugging might be
needed (but they do both work!).

Two things to be aware of in doing this:

1. If you set the maximum number of items quite high and then
get bored and need to exit the program – press the key combina-
tion Ctrl-C and MATLAB will exit your program (but leave MAT-
LAB itself still running).

2. If you run the program a second time and use the vector ap-
proach (see margin), something very odd starts to happen to the
reported sum. This is because there already exists a vector with

82 str=’do you like bananas?’;

the same name left over from the first time you ran the script pro-
gram. You can solve this (first try it out – running the program
several times in a row to see what happens) either by initializing
the vector y , just like you did for x in the 1st solution, i.e.

y = [];

(before the loop starts, of course), or you can clear the workspace
using » clear all (clears *all* variables), or clear just the prob-
lem variable (y) that will end up growing and growing and grow-
ing ... (» clear y).
You could also add clear all to the very start of your script
m-file.

A different and simpler way of looking at creating a running sum,
or in the case below, incrementing the value of a variable within the
loop, is to consider creating an explicit counting variable, sperate
from the loop counter. Recall:

for n = 1:10

end

will simply loop around 10 times, as the loop counter n is repeatedly
incremented by 1 (the default increment of the colon operator), until
it reaches a value of 10.

Create a new m-file and enter the following code:

m = 0;

for n = 1:10

m = m+1;

end

What do you expect to happen to the value of m? Add some disp

statements and print out the values of n and m(from within the
loop), each time around the loop, or add one or more breakpoints in
the MATLAB code editor. Was this what you expected? Why?

As abstracted and odd as it might seem now, later, this will all be
important to understand. Please make sure you do! Note that you should not re-use the

same variable name n that you use for
the loop counter, as in something like:

n = 0;
for n = 1:10

n = n + 10;
end

Why? (Try it and see, even.)

2.4.2 Other loop configurations and usages

In the previous examples, the loop limits were fixed in the program
itself – you’d have to edit the script code and re-save the file in order
to be able to input and sum a different number of values. You could
create a more flexible program by making the m-file a function rather
than a script.37 37 There are other ways of adding

flexibility to the loop count that we’ll
see shortly.

The idea here is to create a function that takes a single input. This
input will be the maximum loop count. If the input variable was
called max_count , then the loop structure would now look like:

elements of ... programming 83

for n = 1:max_count

my_question = ’Please enter a number: ’;

x = input(my_question);

end

and the all-important function header line would be:

function [] = function_sum(max_count)

Referring to the previous lessons on functions (as well as help if
need be), create a function that when you call it, e.g. like:

» function_sum(5)

will request 5 inputs in turn, and at the end, display the sum.38 38 So in addition to the code fragment
given, you need to define (at the top)
and then end (at the bottom) a function,
you need to create a running sum, and
then after the loop finishes, display the
sum.

Also create a variant of this function, and have it return the sum,
rather than display it. i.e. this function will now take as input, the
number of numbers you wish to input, but will now return the sum
of those numbers as a single output.

Alternatively, you could write your program as a script and before
the loop starts, ask for the number of values to be entered, passing
this to the variable max_count , with the loop then looking exactly
like the above. In both cases you are substituting a fixed number (e.g.
4) for a variable that might contain any number.

Finally, in addition to a flexible loop count maximum limit, the value
of the increment in the count each time around the loop need not be
one and it also need not start from 1. For example:

for n = 10:10:100

...

end

is equivalent in terms of the number of iterations carried out to

for n = 1:1:10

...

end

and which is the same as the default behavior of the colon operator:

for n = 1:10

...

end

The value of the loop counter n simply differs by a factor of 10 at
every iteration between the top and bottom two versions.

84 str=’do you like bananas?’;

2.4.3 Fun(!) worked examples

(Only one example to date. And not necessarily even that fun.)

Loops, camera, action!39,40 (A more colorful example of loops in 39 Example codes provided
40 (at end of text)action.) What we are going to do is (load and) plot a sequence of

monthly data-sets and put them together to create a movie (animated
graphic) to illustrate the seasonality of temperature in global climate.
You will hopefully thereby better appreciate the value of constructs
such as loops in computer programming in saving you a whole bunch
of effort and needless duplication of code. (Equally, you might not
have wanted a movie as the end result, but simply a number of plots,
all identical except in the specific array of data they were plotted
from.)

First download all the monthly global surface temperature data-
files on the course webpage (there are 12 files to download)41. Then 41 In scripting, it is also possible to

automate downloading files from the
internet.

you are going to want to plot them all ... which would get desper-
ately tedious if you had to do this at the command line 12 times.
Think how much more of your life you would be wasting if the data
were weekly. Or monthly data for 1972 through 2003, some 372 sep-
arate data-files ... You would never have time to go get a coffee ever
again(?) So we are going to use a loop.

To make an animation, we need to make a series of frames, with
each one being a different monthly temperature plot (in sequence;
Jan through Dec). The files are rather conveniently named: temp1.tsv ,
temp2.tsv , ... temp12.tsv 42. We should start by loading this little 42 Don’t worry about the .tsv file

extension – the file format is plain old
text (ASCII) and could have instead
been .txt .

lot in. For example, at the command line, to load in the the first file
we could write:

» temp = load(’temp1.tsv’);

or equally:

» temp(:,:) = load(’temp1.tsv’);

Then for the 2nd file:

» temp = load(’temp2.tsv’);

and the third ...

» temp = load(’temp3.tsv’);

...
This is something that a loop could be used for while you go off for

a coffee. So this is what we are going to do – use a loop to load in all
of the files in turn.

Create a new script m-file . Call it ... anything you like43. However, 43 bob_the_builder.m counts as
’anything you like’, but that looks
pretty lame and it certainly won’t help
you remember what the script does if
you came back to it sometime in the
future.

elements of ... programming 85

as well as appropriately naming your script file, add a comment on
the first line of the file as a reminder to yourself of what it is going
to do. (If you get totally confused as to what should be going into
the program and where – refer to the ’answers’ for this section at the
back of the book.)

We first need to construct the loop framework. We’ll call the month
number counter variable, month . Create a for loop (with nothing in
it yet) with month (as the counting variable) going from 1 to 12 .44 44 Don’t forget to suitably comment

what it is that the loop does with a line
(or even 2, but don’t write a whole
essay) beginning with a %.

Refer to the course text (this document!), and/or the MATLAB doc-
umentation, and/or the entirety of the internet, if necessary. The
syntax (and examples) is described in full under » help for . Save
the script (m-file) and run it45. What happens? Can you tell? 45 Typing: the m-file filename without

the extension.One way of following what is going on as MATLAB executes the
commands within a script is to explicitly request that it tells you how
it is getting on. You can use the function disp to help you follow
what the program is doing (this is Old School debugging46). Within 46 You can also add a breakpoint within

the loop and thus can cycle through the
loops one-by-one, thereby being able to
check the status of the variables within
the loop and how they change from
iteration to iteration.

the loop (anywhere!), add the following line:

disp(month)

and then save and re-run the script. Now you can see how the loop
progresses. This sort of thing can be useful in helping to debug a
program – it allows you to follow a program’s progress, and if the
program (or MATLAB script) crashes, then at least you will know at
what loop count this happened at, even if you are not given any more
useful information by MATLAB. Only when you are happy that you
have constructed a loop that goes around and around 12 times with
the variable month counting up from 1 to 12; comment out (%) the
printing (disp) line47 (unless you have grown rather attached to it) 47 Note that by commenting out a line

rather than completely deleting it, if
you want to print out the loop count
in the future, all you have to do is to
un-comment the line, rather than type
in the command all over again. This can
be really useful if your debug command
is long, or particularly if you have a
whole series of lines that are required
to report the information you want to
know.

and move on.
We can construct filenames to load in by:

1. Forming a complete filename by concatenating sperate strings.
For example:

» filename = [’temp’ ’1’ ’.tsv’]

will create the filename out of 3 components parts – a common
elements of all the filenames (’temp’), the number of the month
(’1’), and the file extension (’.tsv’).

2. Converting a number value of a (count) variable to a string
(the num2str function), so instead of hard-coding in the string
representing a number (1 in this example), you convert from the
value of a counter, e.g. num2str(month) .

num2str
Converts a number to a string (s),

e.g.

s = num2str(N)

where N is any number type vari-
able.

num2str is useful in adding spe-
cific captions to plots (with caption
text based on the value of a nu-
merical variable) and in creating
automated strings (e.g. filenames)
within a loop.

This is where the role of the loop counter (stored in the variable
month) comes in. Each time around the loop, the value of variable
month is the number of the month. All you have to do is to convert

86 str=’do you like bananas?’;

this value to a string and thereby automatically generate the correct
month’s filename each time (as per above).

Now add the following within the loop in your script;

filename = [’temp’ num2str(month) ’.tsv’];

and after it (still within the loop), add some some debugging48: 48 Or you can make use of a breakpoint.

disp(filename)

just to confirm that appropriate filenames are being generated.
Save and run the script. Satisfy yourself that you know what it is

doing. Can you see that you are now automatically generating all the
12 filenames in sequence? And this only takes 3 lines of code total
(not including the debugging line), compared with 12 lines if you had
to write down all the 12 file names long-hand.

Now comment out (or delete) the disp(filename) line, and add a
new line to load in each dataset from the filename that is constructed
each time the loop goes around.49 e.g.50:

49 Remember that the load line goes
inside the loop. (Why? Try writing it
outside the loop (at the end) and see
what happens if you like.)

50 Alternatively, you could store all the
data slices as you load them in and
rather than specifying the 1st, then 2nd,
etc layer of the 3D array, here we are
specifying the layer with an index equal
to the contents (or value) of month ,
which, if you remember, counts up
from 1 to 12 in the loop.

temp(:,:,month) = ...
load(filename,’-ascii’);

If youn run this coding variant and take
a look at the Workspace window – note
that you have an array (temp) that has
size 94×192×12.

temp(:,:) = load(filename);

Note that rather than specifying the filename explicitly in the load
command, you are now passing the string contained in the variable
filename . (Hopefully on the previous line of code within the loop,
you have created the string value of filename ...)

We’ll now add some graphics.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.8: Extremely unappealing
blocky plot of Earth surface temper-
ature (who cares with month? – the
graphics are too poor to matter ...).

At the end of (but still within) the loop (i.e., before the loop has
completely finished), create a new figure window and then plot (using
pcolor) the monthly temperature data. On the subsequent lines,
add the essential labelling stuff (lines after that). All within the loop
still. These lines should look something like:

figure;

pcolor(temp(:,:));

(or could be simply written pcolor(temp);) and should produce
extremely exciting graphics as in Figure 2.851.

51 The 2D graphics will get *much*
better later – one thing at a time!

Save and run the script. Do you have 12 different temperature
plots on the computer screen?52 Note that if you keep running the

52 If not, stick you paw up in the air for
help ...

program, you’ll get 12 more figure windows each time. This is where
the close all command comes in useful, and you could add this
at the start (or end) of your script. Because if you re-run the script,
you wont then end up with 24 figure windows. And then 36 the time
after that, and ...

Actually, there is no need to create a new figure window each time –
comment out the command that creates a new figure window (figure).
Save and re-run and note the difference.

elements of ... programming 87

Finally ... look up MATLAB help on getframe . Then go back to
your global temperature loading/plotting script and add the follow-
ing line to your program53: 53 Where to put the line? Within the

loop and after you have plotted the
plot.M(month) = getframe;

This lines goes at the very end of the loop (before end), to give you:

for month=1:12

filename = [’temp’ num2str(month) ’.tsv’];

temp(:,:) = load(filename);

pcolor(temp(:,:));

M(month) = getframe;

end

Save and run. When MATLAB is all done, at the command line,
type:

» movie(M,5,2)

and hopefully ... an animation of the progression of monthly surface
air temperatures globally, should appear54. 54 Note that the active Figure window

may have disappeared behind some
other windows so go rescue it to see
what is happening.

If you want to play some more, just type help movie – there
are controls for not only the number of times you loop through the
complete animation, but also for the numbers of frames per second.
But we will revisit this later – the 2D plotting you have done so far is
very basic and there is no scale or sane x/y axes. Later we can also
add the continental outlines that will help orient you and improve
the quality of the graphical output.

Before you move – go look at your script – is it well commented?
Would you be able to tell exactly what it does it by the end of the
course? What about next year? Are the loop contents indented? It is
important that it is commented and laid out adequately.

Creating a portable animation format would be useful (i.e. that
you could play on a different computer or upload to the internet).
There is no longer a convenient MATLAB command to turn the
MATLAB format movie (M) into a format you can use elsewhere
(there used to be a command called movie2avi , but it has been ’re-
tired’ (curse you, Mathworks)). The new/replacement command is
VideoWriter, which differs mostly in that the animation is now
created within the program and the .avi format animation has its
frames added (within the loop) as the graphics are created.

To use the MATLAB VideoWriter function to create the anima-
tion, you will need the following code (that you should put into a
new m-file):

88 str=’do you like bananas?’;

% Prepare the new file.

vidObj = VideoWriter(’my_animation.avi’);

open(vidObj);

% Create an animation.

for month=1:12

filename = [’temp’ num2str(month) ’.tsv’];

temp = load(filename);

pcolor(temp);

% Write each frame to the file.

currFrame = getframe;

writeVideo(vidObj,currFrame);

end

% Close the file.

close(vidObj);

Note that if we wanted to save all the data in a 3D array, we could
also have written:

» temp(:,:,1) = load(’temp1.tsv’);

and then for the 2nd month:

» temp(:,:,2) = load(’temp2.tsv’);

What you have done here is to load the January 2D (lon-lat) tem-
perature distribution into the 1st 2D layer of the temp array, and
then we have gone and created a second 2D layer on top of the first
with the February climate data in it. Look at the Workspace win-
dow (or type size(temp)) – you now have a 3D (94×192×2) array.
Fancy! This is your first 3D array – there is nothing really conceptu-
ally different from the 2D arrays that you have already been using,
we simply have a 3rd index for the third dimension – if it helps, you
can think of a 3D array as being indexed by: row, column, layer.

You could go on and load in the March, April, etc data in a sim-
ilar fashion, but you should be able to see a pattern forming here –
each filename differs only in the number at the end of its name and
this number corresponds not only to the number of the month, but
will also correspond to the layer index of the 3D array that you will
create.

A loop for this might look like:

for month=1:12

filename = [’temp’ num2str(month) ’.tsv’];

temp(:,:,month) = load(filename);

pcolor(temp(:,:,month));

M(month) = getframe;

end

and at the end, you will have a 3D array – temp – containing all the
months data.

elements of ... programming 89

2.5 Loops and conditionals ... together(!)

No surprise that you might combine both loops and conditionals in the
same programming structure. In fact, this becomes very powerful
and is an extremely common device in programming. But this can all
also become confusing ... remember to indent your code.

Indenting code
Just do it (or let MATLAB do it). Even

for a single loop or conditional, it is way
easier to see what code is within the
loop and what outside it, when the code
inside starts several spaces in from the
margin.

For nested loops and conditionals, it is
even more important to keep (visual)
track on what is going on.

Note that the indention (or lack of)
does not affect the execution of the code
(unlike in e.g. Python).

2.5.1 for ... and conditionals

Firstly, one might (rather trivially) use a conditional to decide whether
to execute a loop 10 or 100 times, e.g.

my_string = input(’Loop only 10 times (y or n)’,’s’);

if strcmp(my_string,’y’)

for n = 1:10

SOME CODE

end

else

for n = 1:100

SOME CODE

end

end

Here, we have a conditional structure testing whether the string
entered in response to the questions is ’y’. If ’y’, then a loop of max-
imum count 10 executes, if not (’y’) (else), then a loop of maximum
count 100 executes.

This is a little messy and could be cleaned up and simplified
somewhat. For instance – by replacing the maximum loop count
as a variable, whose value is set by the (conditional) answer. e.g.

my_string = input(’Loop only 10 times (y or n)’,’s’);

if strcmp(my_string,’y’)

n_max = 10;

else

n_max = 100;

end

for n = 1:n_max

%

end

Enter in the second code (or some variant of it) into a new script
m-file, and explore how it works – try changing the alternative loop
limits, add a line within the loop to disp the value of n and hence
confirm that the correct number of iterations of the loop occurs.
Note that you will need to replace %with your own line (e.g. using
disp) or you could have nothing and leave the comment % line in.
Remember to add comment lines.

90 str=’do you like bananas?’;

Returning to the previous loop example concerning summing a series
of numbers entered – an alternative to (or as well as) a fixed loop, or
variable and (function) parameter passed controlled loop, we could
specify a near infinite loop, but provide a get out of jail free. For ex-
ample, within the loop, we could add a line that asks an additional
question: ’Another input (y/n)?’ We would test the answer and if no
(’n’), exit the loop (and report the sum as before). This would look
like:

% set up some strings for the 2 questions

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

% initialize running sum

running_sum = 0.0;

% START OF LOOP

for n = 1:1000000

% ask for a number

my_number = input(my_question1);

% update running sum

running_sum = running_sum + my_number;

% display running sum

disp([’sum so far = ’ num2str(running_sum)])

% ask whether to keep going

my_string = input(my_question2,’s’);

% exit loop if answer is no

if strcmp(my_string,’n’)

break

end

end

% END OF LOOP

where 1000000 in the code is simply chosen as a ’very large num-
ber’ and one rather larger than the maximum number of numbers
you could ever imagine entering55. 55 There us a better way of doing this,

with the while construct, that we’ll see
shortly.

break
Simply – break terminates the

execution of a for or while loop’.
And from help a further clarifica-
tion: ’Statements in the loop after the
break statement do not execute.’

Slightly more complicated (but not
much) in the case of nested loops
– in this case, break exits only the
loop in which it occurs.

The key new command here is break . The way the code works
(hopefully!) is that towards the end of the loop, the ’another input’
question is asked – if no further input is required, the loop exits via
the break command. Remember that now we have loops and condi-
tionals nested together, it helps even more to indent the code as per il-
lustrated in the given code fragment56. Also note that here – the two

56 MATLAB will do this for you if you
click on the Indent icon. It will also
indent the code as far as it reasonably
can, as you type.

different questions (demands) outputted to the screen – ’Another in-
put (y/n)?’ and ’Please enter a number’ – are pre-defined before the
loop starts. These same text could equally be placed directly within
the loop within the call to the input function.

Currently, the program only exits upon entering ’n’ to the ques-
tion. Instead, we could have it exiting for any answer other than ’y’:

elements of ... programming 91

...

for n = 1:1000000

...

if ∼strcmp(my_string, ’y’)

break

end

end

which compares my_answer and ’y’, if this is not true (that they are
the same), break is executed. (Note that many of the lines of code
from before have been omitted (...) for brevity.)

A practical example of testing the value of a variable and break -
ing out of a loop depending on the result of the test, would be when
saving a data file. You might test for a filename that already exists
and if so, automatically modify the new file name so as not to over-
write the existing file.57 The relevant function is exist , and in the 57 Note that while in the m-file Editor,

MATLAB asks you if you want to over-
write an existing file, when saving a
file directly from a program, no such
dialogue box or warning is given.

case of a test for a file, the function returns either 0 (the file does not
exist in the MATLAB search path, although that does not rule out it
existing somewhere else entirely), or 2 (the file exists).

Clearly(?), in the example of saving the movie file, you might
well want to test whether the filename that you have chosen already
exists (i.e. the value returned by exist is 2). If so (i.e. the file exists),
you need to modify the filename by means of a new concatenation,
perhaps appending something like ’_NEW’ to the end of the string58.

58 Recall that in using the movie2avi
command, you pass a filename – simply
modify the filename passed, in a similar
way to in which you modified the
filename for loading the temperature
data.

If not, and the filename has not already been used, you can proceed
as before – the equivalent of ’doing nothing’.

exist
Tests for whether a specified

variable, function, file, or directory
exists, and in generally, which is
these it is.

The general syntax and usage is:

exist(’A’)

to return what A is.
An extended syntax with a second

passed parameter:

exist(’A’,’file’)

returns value of 2 is returned is A if
a file, and for:

exist(’A’,’dir’)

returns a value of 7 is returned is A
if a directory.

Make a copy of the avi movie code you were given in the previous
Section (you can also find this in Chapter 7.2 under ’Code for creating
an avi format animation’). You are going to modify this so that at the
very start, it checks to see if the particular filename has already been
used.

In modifying the code, you could start by defining a default file-
name59 that you will use if there is no clash with any existing file,

59 At the very start of the program and
just before the % Prepare the new
file comment line.

e.g.

my_filename = ’my_animation.avi’;

Now, on the next line, test whether this filename already exists:

filename_check = exist(my_filename,’file’);

Finally, on the line after – using an if statement you are going to
test whether the value of filename_check is equal to 2. If so, you
are going to need to modify the filename string (my_filename).
If not, you can let the conditional just end and proceed to saving.
Modifying the filename is just as per for the example of loading
global temperature distributions, e.g.

92 str=’do you like bananas?’;

my_filename = [’NEW_’ my_filename];

where here, we take the string contained in my_filename , we ap-
pend a ’NEW_’ to the start60, and assign the new (longer) string back 60 Note that because the filename

already has its .avi extension attached,
you’ll have to modify the start of the
string.

into the variable my_filename . The complete code addition will
then look like:

my_filename = ’my_animation.avi’;

if (filename_check == 2)

my_filename = [’NEW_’ my_filename];

else

% DO NOTHING

end

See if you can modify the .avi video creating code. An example
code for the basic (non filename-checking) program is given at the
end of the text. Create a new script m-file with this code (or your
own), test whether it creates an animation successfully in the first
place, and then try and modify it as per above with the filename
check.

The only change to the existing code you need to make, is this line:

vidObj = VideoWriter(’my_animation.avi’);

because you no longer want to use the same default filename each
and every time you run the animation, but rather, pass the variable
containing the filename:61, i.e. 61 Remember, you can pass a string

directly, in which case it must be in
inverted commas, or you can pass the
variable name. Do not place a variable
name in inverted commas (or else the
variable name itself will be interpreted
as a string, when it is the contents of
the variable you want).

vidObj = VideoWriter(my_filename);

(remembering that you do not put the variable name in inverted
commas).

Make sure that the order of the required lines of new of code is:

1. Set default filename.
2. Test whether this filename already exists and assign to the
variable filename_check .
3. Test whether the value of filename_check is 2 and if so,
modify the filename.
4. (Edited vidObj = line.)

elements of ... programming 93

2.5.2 while ...

We can re-frame the earlier example programs using the while con-
struct rather than the for loop. But now ... you need to specify un-
der what conditions the loop continues as the basic syntax (see earlier
margin text on loops, or help) is:

while STATEMENT (IS TRUE)

CODE

end

Here – STATEMENT (IS TRUE) is the conditional. For instance
and rather trivially, create the following as a new script m-file and
run it62: 62 You ... are going to need a Ctrl-C on

this one ...
while true

disp(’sucker’)

end

What has happened is that true is always ... true. Hence the condi-
tion is always met and the while loop, loops forever. Conversely,
while false would never loop, not even once – try it:

while false

disp(’sucker’)

end

More interesting and useful is when the statement might change in
value as the loop progresses.

Think about the following code (and type up in a new script m-
file and run it):

n = 0;

while (n < 10)

disp(’sucker’)

end

This also will loop for ever as n is initialized to 0 and hence the
statement (n < 10) is always true. But if we increment the value of
n each time around the loop:

n = 0;

while (n < 10)

disp(’not a sucker’)

n = n + 1;

end

then the loop will execute exactly 10 times (just as per for n =

1:10) (try this).
You could also do the counting in reverse:

n = 10;

94 str=’do you like bananas?’;

while (n > 0)

disp(’not a sucker’)

n = n - 1;

end

Now, n counts down from 10 and when it reaches a value of 0, it is
no longer greater than zero and the statement (n > 0) is false (and
the loop terminates). Also thy this modification, where the value of
n counts down.

It is not always completely obvious whether even simple while
loops like this execute 9 or 10 (or 11) times particularly when often
you might come across while (n >= 0) that allows the loop to
continue when when n has reached z value of zero (but not below).
Spend a little while playing about with different while configura-
tions and loop criteria, adding disp lines or breakpoints to find out
how many times the loop executes in total.

Finally, note that the conditional statement in the while loop need
not test for an integer being larger or smaller than some threshold.
One could equally loop on the basis of a string equality/inequality.
For example, taking the previous example using break , the program
could be re-coded using a while loop:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

my_string = ’y’;

while strcmp(my_string,’y’)

my_number = input(my_question1);

my_string = input(my_question2,’s’);

end

and ends up a slightly shorter and more compact piece of code, omit-
ting the need for a break or a nested structure. Here, the 2 lines
of input code will keep being executed, as long as the value of
my_string is ’y’ . Note that in this example, we need to initial-
ize the value of my_string (to ’y’ – assuming that we want at least
one number). Try modifying (along the lines of the above) your
previous code which was based on a for loop, now using while .

Finally ... we could update the filename checking example
... using while. The problem with the previous code is that you
checked for the existence only a default filename (and appended
’_NEW’ if a file already existed).

One (partial) solution would have been to, rather than append
a pre-defined string (’_NEW’) to the filename, request that the user
provide a completely new filename.

A complete solution would be to address the situation when ask-
ing for an alternative filename ... if that file existed too. We could

elements of ... programming 95

keep checking for a filename clash and keep asking for a new file-
name, until a unique (unused) filename was provided by the user.
Who knows how many attempts this might take (to find an unused
filename), so while ... would be a better choice of loop than for

... . Because exist returns a 2 if the file already exists, a logical
condition for while , would be that a filename determining loop con-
tinues while exist is returning a value of 2. e.g.

my_question = ’Enter a filename: ’;

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename],’file’)

end

Within the loop, a (new) filename is requested and then this string is
checked against the directory contents. What is missing is the initial
value of filename_check . In a previous example, we simply set a
value at the start. If we did that here, the first line of this code would
look like:

filename_check = 2

In this case, we do not need a default filename as the user provides a
filename on the very first iteration of the loop.

Try it out – add the following code to the start of your basic avi
file format saving movie program (e.g. as per at the end of the text),
and use the value of the variable my_filename as the name for
saving the avi animation file and test it.

my_question = ’Enter a filename: ’;

filename_check == 2;

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename],’file’)

end

96 str=’do you like bananas?’;

2.6 Even more (and loopier) loops

[Further examples of increasingly extreme loopiness.]

[OPTIONAL] Looping through arrays. In plotting e.g. global
temperature distributions, it would be nice to add on the continental
outline on top. Currently, and particularly with the very basic 2D
plotting you have seen so far (pcolor), you are to some extent left
guessing where the land and where the ocean is. We are going to
work through using a loop to process some data that defines a series
of line segments that make up the outlines of the continents.63 63 Example codes provided

The first 2 files (that can be downloaded from the website), com-
prise a series of pairs of lon-lat values that delineate the outline of the
continents and all but the smallest of islands:

• continental_outline_lat.dat (labelled ’lat’)
• continental_outline_lon.dat (labelled ’lon’)

Download, and then load these into the MATLAB workspace (in
the ’usual way’). You should now have 2 vectors. Maybe view them
in the Variable Window to get a better idea of what you are dealing
with. Also keep an eye on the entries in the Workspace Window and
perhaps the Min and Max values to give you an idea of the range
(here: of longitude an latitude values).

Try plotting these lon/lat locations. Use the scatter plotting
function (which makes it all the easier as your data is in the form of
2 vectors already). You might need to reduce the size of the plotted
points (refer to the earlier exercises, or help) and additionally, you
might want to fill the points (up to you). Remember you can set the
axis limits, which presumably should be 0 to 360 or -180 to 180, on
the x-axis (longitude), and -90 to +90 on the y-axis (latitude). Font
sizes of labels can also be increased if necessary. You might end up
with something like Figure 2.9.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

Continental outline

la
tit

ud
e

Figure 2.9: Continental outline (of
sorts).

Your script m-file) for this might look like:

lon = load(’continental_outline_lon.dat’,’-ascii’);

lat = load(’continental_outline_lat.dat’,’-ascii’);

scatter(lon,lat);

axis([-180 +180 -090 +090]);

xlabel(’longitude’,’fontsize’,15);

ylabel(’latitude’,’fontsize’,15);

title(’Continental outline’,’fontsize’,18);

(but with lots of comment lines!).
By plotting dots (points), the coastal outline at higher latitudes

gets increasingly pixelated. So, we might instead plot as lines be-
tween the lon-lat pairs. For this, you could simply use plot .

elements of ... programming 97

Copy your m-file (make sure it was saved first!), rename it, and
then edit it to use plot instread of scatter . You should end up
with something like Figure 2.10..

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 2.10: Another continental outline
(of sorts).

Well ... interesting. If you think about it, as one continental outline
is completed, the next lon-lat pair will be for the next continent or
island. What plot does is to join up *all* the adjacent x-y (lon-lat)
pairs and hence points, which is why you get the straight lines criss-
crossing the map with the start of each successive continent and
island in the dataset joined to the end of the previous one.

The continental outline dataset is not actually that useless. There
are additional files that specify which block of lon-lat pairs belong to
a single shape (i.e. continent or island). Load in the 2 additional files:

• continental_outline_start.dat (labelled ’start’)
• continental_outline_end.dat (labelled ’end’)

i.e.:

» lstart = load(’continental_outline_start.dat’,’-ascii’);

» lend = load(’continental_outline_end.dat’,’-ascii’);

(Note that you cannot simply call the second variable end , because
MATLAB is already using it as a special word.)

These vectors hold information regarding the start and end row
number, of each of the individual shape segments. Again, view the
contents of these vectors to get an idea of what is going on. For
example, you’ll see that the first entry is that the first shape starts
on row 1 (lstart(1)), and ends on row 100 (lend(1)). The
2nd shape starts on row 101 (lstart(2)), and ends on row 200

(lend(2)). etc etc
The simplest way too start dealing with all this, is to just plot the

very first shape, defined by rows 1-100 of the lon and lat vectors. By
now, you hopefully will be able to see that to plot rows 1-100 of lon
and lat data, you are going to do:

» plot(lon(1:100),lat(1:100));

length
This function could almost not be

simpler – just pass the name of a
vector, and it returns its length (i.e.
the number of rows, or columns,
depending on the shape of the
vector).

Well ... this is probably about as unexciting as it gets – a small
piece of the Antarctic coastline. If you do a hold on and plot the
next block (rows 101-200), you’ll get the next chunk of coastline:

» plot(lon(101:200),lat(101:200));

You could keep going this – manually adding additional sections
of the global continental outline. This could get tedious ... and it
turns out that there are 283 different fragments to plot, all one after
another. (This number comes from asking MATLAB the length of
lstart or lend , e.g. length(lstart)) This is, of course, why we

98 str=’do you like bananas?’;

need to get clever with a loop and automatically go through all 283
fragments, plotting them on on top of another in the same figure.

How? First you need to write the plot command in a more gen-
eral form – you do not want to have to read the values out of the
lstart and lend vectors manually. Hopefully, it should be appar-
ent that you can re-write the plot statement for the first fragment,
as:

plot(lon(LINE_START:LINE_END),lat(LINE_START:LINE_END));

where for the first fragment, the values of LINE_START and LINE_END

are given by lstart(1) and lend(1) , respectively (renaming the
original vectors to shorten the variable name)64. Re-writing again, for 64 You cannot use the obvious variable

name end – why not?the first fragment, this looks like:

plot(lon(lstart(1):lend(1)),lat(lstart(1):lend(1)));

Try this and check you still get the single piece of the Antarctic
coastline.

You should hopefully be making the mental leap to looking at (1)

and thinking that it could be: (n) , where n is a loop counter, which
could go from 1 to 283 and hence loop through all the line fragments.
Yes? For instance, setting n=1 , and plot (with n replacing 1 in the
code fragment above) – you should again get that very first fragment.
Try setting n=283 and plot. Do you get the last fragment (what is it
of65)?

65 An island at about 20N and -150E if
you have done it correctly.

So ... create yourself a new m-file (and copy-paste whatever you
like from the previous script tha saves you time)in terms of loading in
the data. At the start – load in the lon-lat pairs as vectors (renaming
then to something more manageable if you wish) and then load in
the vectors containing the start and end information.

After that in the code – create a do ... end loop. Maybe before
you try and plot anything, print (disp) the loop count and run the
program (after saving), just to check first that the loop is functioning
correctly.

Also before the loop starts, create a Figure window. and set hold

on . You now have a basic shall of a program – loading in the data,
initializing a figure, and appropriate looping, but not yet actually
doing anything within the loop.

In the loop all you need is the plot command, but with the start
and end rows being a function of n (or whatever you call the loop
counter). Set axis dimensions and label nicely (after the loop ends).

Run it. Hopefully ... something like Figure 2.11 appears(?)

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 2.11: Another go at the continen-
tal outline!

An example code is given at the end of the text should you need
any guidance as to e.g. in what order or where certain lines should
go.

3

Further ... MATLAB and data visualization

This chapter is something of a potpourri of MATLAB data and vi-
sualization methodologies and techniques, generally building on the
basics covered in the previous chapters.

100 str=’do you like bananas?’;

3.1 Further data input

Previously, you imported ASCII data into MATLAB using the load

command1. You might not have realized it at the time, but the use of 1 Or maybe ’cheated’ and used the
MATLAB GUI ...load requires that your data is in a fairly precise format. MATLAB

says "ASCII files must contain a rectangular table of numbers, with an
equal number of elements in each row. The file delimiter (the character
between elements in each row) can be a blank, comma, semicolon, or tab
character. The file can contain MATLAB comments (lines that begin with a
percent sign, %)." Firstly, your data may not be in a simple format and
often may contain both numerical values and string values. Secondly,
your data may not even be in a text/ASCII format. For instance,
you data maybe be in an Excel spreadsheet, or for spatial scientific
data, an increasingly common format is called ’netCDF’ (Network
Common Data Form). In this section, we’ll go through the basics and
some examples of each.

Please regard this section as a simple overview on some of the
different MATLAB file loading/input options. At this stage, it is
more important that you are aware of different data formats and the
various ways of importing them into MATLAB, then per se having to
master all the details of using them. For many one-off data loading
problems, it can be easier to use the MATLAB GUI and the Import

Data wizard.

3.1.1 Formatted text (ASCII) input

The general procedure that you need to follow to input formatted
text data is as follows:

opening and closing files
MATLAB has a pair of commands

for opening and closing files for
read/write:

• fopen will open a file. It
needs to be passed the name (and
path if necessary) of the file (as
a string), and will return an ID
for the file (assign (save) this to a
variable – you’ll need it!).
• fclose ... will close the file.

It requires the ID of the file (i.e.
the variable name you assigned
the result of calling fopen to)
passed to it as a parameter.

textscan
According to (actually, para-

phrased from) MATLAB:

C =
textscan(ID,format)

" ... reads data from an open text file into
a cell array, C. The text file is indicated
by the file identifier, ID . Use fopen to
open the file and obtain the ID value.
When you finish reading from a file,
close the file by calling fclose(ID) ."

The ID part should be straight-
forward (if not – follow through the
Example).

The format bit is the complicated
bit ... There is some help in a fol-
lowing Box and via the Example.
Otherwise, there is a great deal of
details and examples in MATLAB
help – you could look at this as a
sort of menu of possibilities, and
given a particular file import prob-
lem, the best thing to do is simply
scan through help, looking for
something that matches (or is close
to) your particular data problem
(and/or ask Google).

1. First, you need to ’open’ the file – the command (function) for
this is called fopen (see Box). You need to assign the results of
this function to a variable for later use.
What is going on and why this all differs so much form using
load , where you only had to use a single command, is that you
first have to open a connection to the file ... before you even read
any of the contents in(!!!)2.

2 This is very common across all(?)
programming languages.

2. Secondly ... you can read the content in (finally!). The com-
plications here include specifying the format of the data you are
going to read in. You also need to tell MATLAB the ID of the file
that you have opened (so it knows which one to read from) – this
is the value returned by the function fopen . The function you are
going to use to actually read the data (having opened the file) is
called textscan .

3. Once the data has been read it – close the file using fclose

further ... matlab and data visualization 101

(see Box). You are going to have to pass the ID of the file again
when you call this function (so MATLAB knows which file to
close).

4. Lastly, you are going to have to deal with the special data struc-
ture that MATLAB has created for you ...

If you are interested (probably not) – the connection made to an
open file is called a file pipe. Typically, you have have multiple open
file pipes at the same time in programs, and this is why obtaining and
then specifying a unique ID for the pipe you wish to read or write
through, is critical.

As an initial Example to illustrate this alternative (and more flexi-
ble) means of importing of ASCII (text) data, we are going to return
to the paleo atmospheric CO2 proxy dataset file – paleo_CO2_data.txt.
Assuming that you have already (previously) downloaded it, open it
up in a text editor and view it – you should see 4 neatly (ish) aligned
columns of numeric values ... and ’nothing else’.

OK – so having seen the format of the data in the ASCII file, you
are going to work through the following steps (you can do all this at
the command line, or add the lines one-by-one to a script m-file if you
prefer)3: 3 You can start off working at the com-

mand line if you wish, but ultimately,
you are going to need to put everything
into an m-file.1. First ’open’ the file – you will be using the function fopen , and

passing it the filename4 (including the path to the file if necessary, 4 For convenience, you could assign the
filename (+ its path) to a (string) vari-
able and then simply pass the variable
name – remember, no ’ ’ needed for
a variable naming containing a string
(whereas ’ ’ is needed for the string
itself).

i.e. if the MATLAB working directory does not also contain the
file). So that you can easily refer to the file that you have opened
later, assign the output of fopen 5 to a variable, e.g.

5 The output is a simple integer index,
whose value is specific to the file that
you have opened.

» openfile_id = fopen(’paleo_CO2_data.txt’);

2. Now ... this is where it gets a trickier – the function you are go-
ing to use now is called textscan . Refer to help on textscan ,
but as a useful minimum, you need to pass 3 pieces of informa-
tion:

(a) The ID of the open file (you have assigned this to a handy
variable (openfile_id) already.)

(b) The format of the file (see margin note).(This is where it
gets much less fun, but hang in there!) You simply list, space-
separated, and between a single set of quotation marks, one
format specifier per element of data.
In this particular Example, there are 4 items of data (per row)
– each of them is either an integer or a floating point number6, 6 At least, none of them are clearly

strings, right?depending on how you want to look at it. Assuming that the

102 str=’do you like bananas?’;

data is a floating point number, the format for the input of each
number item, is %f.

The result of textscan is then assigned to a parameter, e.g.

my_data = textscan(openfile_id,’%f %f %f %f’);

Here, the ’%f %f %f %f’ bit specifies that the data format con-
sists of 4 floating point (real) numbers.

3. So far, so good! And you can now close the file:

» fclose(openfile_id);

According to MATLAB help:
"the format is a string of conversion

specifiers enclosed in single quotation
marks. The number of specifiers de-
termines the number of cells in the
cell array C." Take this to mean that
you need one format specifier, per
column of data. The specifier will
differ whether the data element is a
number or character (and MATLAB
will further enable you to create
specific numerical types).

The format specifiers are all listed
under help textscan . However,
your Dummies Guide to textscan
(and good for most common appli-
cations) is that the following options
exist:

%d - (signed)integer
%f - floating point number
%s - string
MATLAB will automatically repeat

the format for as many lines as there
are of data. Alternatively you can
specify precisely how many times
you would like the format repeated
(and hence data read in).

4. Actually, it does get darker before the light at end of the tunnel
... what textscan actually returns – the data that was read in, is
placed into an odd structure called a cell array. It is not worth our
while worrying about just what the heck this is, and if you view
it in the Variables window (i.e. double click on the cell array

name in the Workspace window), it does not display the simple
table of 4 columns of data that maybe you were expecting. For
now, we can transform this format into something that we are
more familiar with using the cell2mat function, e.g.

my_data_array = cell2mat(my_data);

And now ... it is done, i.e. there exists a simple array, of 4 columns,
the first being the age (Ma), the second being the CO2 concentration
value (units of ppm), and the 3rd and 4th; minimum ad maximum
error estimates in the proxy reconstructed value. :)

To help you – a complete code for doing all this is given at the end
of the book.

MATLAB claims that a cell array
is "A cell array is a data type with in-
dexed data containers called cells. Each
cell can contain any type of data. Cell
arrays commonly contain pieces of text,
combinations of text and numbers from
spreadsheets or text files, or numeric
arrays of different sizes." I am sort of
prepared to believe this.

Basically, in object-oriented speak,
a cell array is an object, or rather, an
array of objects. As MATLAB hints
– the cells can contain *anything*.
Your limitation previously is that
an array had to be all floating point
numbers, all integers, or all strings,
and if strings, all the strings had
to be the same size. For strings in
particular, it is obvious that a more
flexible format where a vector could
contain both ’banana’ and ’kiwi’
is needed (try creating a 2-element
vector with these 2 words and see
what happens). You clearly might
also want to link a number with a
string (e.g. number of bananas) in
the same array, rather than have to
create 2 sperate arrays.

As a further example, we are going to process a more compli-
cated version of the paleo atmospheric CO2 proxy dataset. This file
is called paleo_CO2_data.dat (rather than .txt) and is again available
from the course webpage. An initial problem here is even opening
up the file to view it – if you use standard Windows editors such as
Notepad it fails to format it properly when displaying its contents7.

7 If you use a Mac (or linux) however,
all text editors should display the
content jus fine.

The first lesson then in scientific computing then is to have access
to a more powerful/flexible editor than default/built-in programs
such as Notepad. One good (Windows) alternative is Notepad++.8

8 Right-mouse-button-click over the file,
then select Open with and then click on
Notepadd++.

If you can open the file with something like Notepad++ (or are
in any case using a Mac) – first note the format – there are a bunch
of header lines and moreover, some of the columns are not numbers
(but rather strings). Even if you were to manually edit out the head-
ers by adding comments (%)9, you are still left with the problem of

9 Recall that MATLAB ignore lines
starting with a %and this includes
loading in data lines using load .

mis-matched columns. You could edit the file in Excel to remove the
problematic columns as well ... but now this seems like a real waste

further ... matlab and data visualization 103

of time to be editing data formats with one software package just to
get it into a second! (Again, you could use the MATLAB GUI import
functionality ... but it will be a healthy life experience for you to do it
at the command line :o))

OK – so having gotten an idea of the format of the ASCII data file,
you are going to tackle this in the same 4 steps as before:

1. First ’open’ the file as you did previously (using fopen) and
assigned the ID returned by the fopen function to the variable:
file_id2 .

2. Call textscan . However, we now want to pass 3 pieces of
information (compared to 2 before):

(a) The ID of the open file.
(b) The format of the data.
(c) And now – a parameter, together with an (integer) value,
to specify how many rows of the file are to be assumed to be
header information and hence skipped.

(Again – the result of textscan is then assigned to a variable
which will represent a cell array.)
Lets do the easy bit first – to tell MATLAB to skip n lines of a
file. For this – add the parameter ’HeaderLines’ to the list
of parameters passed to textscan , and then simply tell it how
many lines to skip. In this example:

my_data = textscan(...

file_id2, ... ,’HeaderLines’,3);

will tell MATLAB to skip the first 3 lines of the file.
OK – now to dive back into the MATLAB syntax mire ... Let us
just load in just the first 2 columns of data, and assume that they
are both integers (and also skipping the first 3 lines of the file as
per above). We might guess that we could simply write:

my_data = textscan(...

file_id2,’%d %d’,’HeaderLines’,3);

Try it (including closing the file, and a call to cell2mat , as be-
fore). What has happened?
It seems that MATLAB translates your format (’%d,%d’) into:
’read in a pair of integers, and keep automatically repeating this,
until something else is encountered’. That something else, is se-
quence of characters at the end of the first data line (line #4, be-
cause we skipped the first 3), that makes MATLAB think that it
has finished (or rather, that it cannot reading in 2 pairs of integers
any longer). This leaves you with 2 pairs of integers – i.e. a 2×2
matrix (as you’ll see if you look at my_data_array).
Here is a solution – we could omit all the information following
the first 2 elements (something for Google to help with).10: 10 This turns out to be specifying

’%* [∧\n]’ , which in effects sort of
says:

’skip everything (all the fields) (%*)
up until the end of the line is found
([∧\n]).

104 str=’do you like bananas?’;

my_data = textscan(...

file_id2,’%d %d % * [∧\n]’,’Headerlines’,3)

The weird bit here translates to ... %* == ignore field ... until the
line end == [∧\n] , and then read repeat for the next line.

(You are not expected to know or remember this nor be tested
on it ... just park all this at the back of your mind and that there
are flexible ways of dealing with data input, including not neces-
sarily reading everything in!)

3. Now you can close the file:

fclose(file_id2);

4. ... and convert the results to something human-readable:

my_data_array = cell2mat(my_data);

This should do it – a simple array, of 2 columns, the first being the
age (Ma) and the second the CO2 concentration value (units of ppm).
:)

cell2mat
Having created this weird format

(cell array), now MATLAB has
to give you a way of converting the
data inside into something more
usable. The function is cell2mat ,
which for a cell array C:

A = cell2mat(C);

will return the corresponding
(’normal’) array A.

Now this is only true if all the
data in C is of the same tpye (e.g.
all floating point numbers). If the
data types are mixed or you only
wish for a sub-set of the data to be
extracted and converted, simply
index the required part of the cell
array (Examples on this later).

The complete code (minus all the lovely comments!) looks like:

file_id2 = fopen(’paleo_CO2_data.dat’);

my_data = textscan(...

file_id2,’%d %d % * [∧\n]’,’Headerlines’,3);

fclose(file_id2);

my_data_array = cell2mat(my_data);

(remembering that the ... just indicates a break in what is other-
wise a continuous single line).

Put this into a new m-file, comment it, so that you know what all
the bits are doing (and what the overall program itself does), and
try it out. NOTE: if you copy-paste from the textbook PDF ... be
careful not only to replace the PDF inverted comma character with
a ’normal’ (MATLAB-friendly one), but the ∧ symbol can also come
out incorrectly 11 ... 11 The symptom being that only the first

line of data is read in.(There must be some sort of important life lesson hidden here in
all this. Perhaps about only working with well-behaved data files, or
using the GUI import functionality?)

3.1.2 Importing ... Excel spreadsheets

If your data is contained in an Excel spreadsheet, which is a common
occurrence, and you want it in MATLAB, your options are:

1. Select some, or all, of the columns and rows in a specific work-
sheet, and either copy-paste this into a text file (but taking care
that the worksheet column widths are formatted such that they
are wider than the widest data element), or save in an ASCII for-
mat, with comma or tab delineations between columns. In either

further ... matlab and data visualization 105

case, then load in the data using load , or if consisting of mixed
numbers/text, go through the Hell that is textscan

2. Use MATLAB function xlsread .

So ... option #2 looks ... is looking the easiest ... :)

xlsread
There are various uses (i.e. alterna-

tive allowed syntax) for xlsread for
an Excel file with name filename .
The 2 relevant and more useful ones
look to be:

1. num =
xlsread(filename) which
will return the *numeric* data
in the Excel file filename in
the form of a matrix, num. Note
that non-numeric (e.g. string)
headers and/or columns, are
ignored. Also note that num is a
’normal’ numeric array and does
not require any conversion.
2. [num,txt,raw] = ...

xlsread(filename) will
additionally return text data in a
cell array txt , and *everything* in
a cell array raw .

You can also specify a particular
worksheet out of an Excel file to load
in:

num = ...
xlsread(filename,sheet)

(and there are further refinements
and options listed under help).

Returning to the paleo proxy CO2 data ... but this time, as an
Excel sheet. The data file you need is: paleo_CO2_data.xlsx

(You may as well go load this into Excel just to take a look at the
format and so subsequently, you’ll know if you have imported it
faithfully or not.)

From the help box on xlsread , it should be pretty apparent what
you do. And in fact, I am going to leave you to work it out – try and
import the age and CO2 data from paleo_CO2_data.xlsx.

Note that the simple usage of the xlsread function gives you an
array containing just the numeric data. If you were to type:

» [num,txt,raw]=xlsread(’paleo_CO2_data.xlsx’);

then you still get the numeric data returned in the array num, but you
also get 2 cell arrays12 – txt and raw . The cell array txt contains just

12 If you need to index a cell array, you
do so pretty well much like a normal
array, except it has an alternative
syntax. For a normal, numeric array A,
you might write:

» A(4,3)

to reference the value in the 4th row,
3rd column. For a cell array C, to index
the cell in the 4th row, 3rd column,
you’d also write:

» C(4,3)

but you’d get a cell returned, not the
value in the cell. If you want the value
in the cell located at (4,3) , you’d put
the index in curly brackets:

» C{4,3}

and you’d get a value of 3000 returned
in this example.

the text data, and raw , ’everything’. View these in the Variable window

(by double-clicking on the variable names in the MATLAB Workspace

window). NOTE that MATLAB takes some time to open and process
Excel format files and the command will not complete as quickly as
e.g. load .

If you happen to have an Excel file with data (of any sort) in it
(e.g. from another class), practice loading in its contents into MAT-
LAB. Note that if the Excel file contains cells with text in and you
want the text data, then you’ll need to use the more advanced format
of xlsread (see Box or help). Also try loading into only a single
sheet of an Excel file (assuming that the file has multiple sheets).

3.1.3 Importing ... netCDF format data

Much of spatial, and particularly model-generated, scientific output,
is in the form of netCDF files. This is a format designed as a com-
mon standard to facilitate sharing and transfer of spatial data, but in
a way that enables e.g. a ’complete’ description of dimensions and
various types of meta-data to be incorporated along with the data.
The format is platform independent and a variety of graphical view-
ers exist for viewing and interrogating the data. Most programming
languages support the reading and writing of netCDF format data.
MATLAB is no exception here.

106 str=’do you like bananas?’;

MATLAB actually has a quick and simple (concentrate on this first
one!), and ... a complicated long-winded formal way (simply note the
existence of this one!) of accessing data in a netCDF file:

ncread
In its simplest incarnation:

data = ...
ncread(filename,varname)

where filename is the name of
a netCDF file, and varname is the
name of the data variable in the
netCDF file.

e.g. if there was a variable called
rain in the file climate.nc ,

data = ...
ncread(’climate.nc’,’rain’)

would read the values in the netCDF
file variable rain and assign to the
variable data .

MATLAB provides a couple of
further tricks, allowing you to read
sections of the full netCDF variable
data array, or sample the data array
– see help.

1. Using ncread , which reads data directly from the file.

ncread is by far the simplest way, although it lacks in flexibility
and deviates from standard practices used across other program-
ming languages.

2. Via a series of function calls to the netCDF library.

In the formal and more long-winded approach, you open the
file and receive an ID for that file. The file can then be written
to or read (including just interrogating its properties rather than
necessarily extracting spatial data) using this ID. And of course,
closed (using the same ID). The netCDF standard is also little odd
in how reading/writing is implemented and everything has to
be done by determining the ID of a particular data variable or
property of the file. The general approach is as follows:

(a) Open the netCDF file by
ncid = netcdf.open(filename,’nowrite’);

where filename is the name of the netCDF file (which gener-
ally will end in .nc). ’nowrite’ simply tells MATLAB that
this file is being open as read-only (this is the ’safe’ option and
prevents accidental deletion of over-writing of data).

(b) This is the weird bit, as we cannot ask for the data we want
automatically :o) Instead, given that we know13 the name of the 13 There are ways of listing the variables

if not.variable we want to access, we ask for its ID ...
varid = netcdf.inqVarID(ncid ,NAME);

where NAME is the name of the variable (as a string), allowing
us to then request the data:

data = netcdf.getVar(ncid , varid);

that says – assign the data represented by the variable varid , in
the netCDF file with ID ncid , to the variable data .

So actually, not totally weird – you request the ID of the vari-
able, then use that to get access to the data itself. The names of
the MATLAB commands vaguely make sense in this respect –
inqVarID for inquiring about the ID of a variable, and getVar

for getting the variable (data) itself14. 14 It is beyond the scope of this course
to worry about why in the case of
netCDF, the function are all netcdf.
something. Just to say, it involves
objects and methods and is a common
notation in object orientated languages
(that nominally, MATLAB isn’t).

(c) Finally – close the file, by passing the ID variable into the
function netcdf.close , i.e.

netcdf.close(ncid);

Note that you need to pass the ID of the netCDF file for each and
every command (after netcdf.open) so that MATLAB knows

further ... matlab and data visualization 107

which netCDF object you are referring to (you are allowed to have
multiple netCDF files open simultaneously).

For a netCDF Example, we’ll take the output of a low resolution
climate model. To start off, download the ’model netCDF file – 2D’
netCDF file – fields_sedgem_2d.nc. The data here is relatively simple
– a 2D distribution of bottom-water and surface sediment proper-
ties, saved at a single point in time. In other words, there are only 2
(spatial) dimensions to the data15.

15 Adding time would make it 3 dimen-
sions (2 spatial + 1 of time). Adding
height or depth in the ocean would also
make it 3 (3 spatial). 3 spatial + time
would make for a 4-dimensional dataset
...

OK – we’ll start by opening the file. The ID of the variable we
want to extract and plot is called ’grid_topo’. To load/extract the 2D
field and assign it to a variable data :

» data2d = ncread(’fields_biogem_2d.nc’,’grid_topo’);

You should now have an array called data . It should be 36×36
in size. Plot it16. Can you deduce what it might be of? Is it in the

16 Your choice of 2D plotting function
that you have already come across, e.g.
pcolor or image , although not all
work as well on this particular dataset
(e.g. the auto scaling in image causes
issues).

correct orientation? (If not – correct it, by rotating the array, and/or
flipping the rows or column.)

(There are more appropriate ways of plotting this, which we will
encounter later.)17

17 Missing here are the x and y axis
values, which you should have correctly
deduced are longitude and latitude,
respectively, with latitude presumably
going from -90 to 90N, and longitude ...
well, maybe it is not completely obvious
exactly what the value of longitude is at
the original.

A great strength of netCDF its the
ability of this file format to also contain
the grid (axis) details that the data
is on. There are ways of finding out
the names of the axis variables (di-
mensions), but for now, I’ll give you
them:

• ’lat’ – is the latitude axis.
(Technically, the axis values are the
mid-points of the grid cells.)
• ’lon’ – is the longitude axis.

The axes are held in the netCDF file
as vectors and we can retrieve this (1D)
data in a similar way to the 2D data:

varid =
netcdf.inqVarID(ncid,’lat’);
lat =
netcdf.getVar(ncid,varid);
varid =
netcdf.inqVarID(ncid,’lon’);
lon =
netcdf.getVar(ncid,varid);

in which we obtain the ID of the axis
variable ’lat’ , then retrieve the axis
data and assign it to a vector lat (and
then likewise for longitude). Do this,
and confirm that you get plausible
vectors representing positions along a
longitude and latitude axis.

The final task would then be to take
the 2 axis vectors, and create a pair of
matrices – one containing longitude
values associated with the 2D data
points, and one containing latitude
values associated with the 2D data
points. For this, you would need to
use the function meshgrid . (We’ll
re-visit this example once you have seen
meshgrid in action.)

The variable names of other data-sets that you might load (in place
of passing ’grid_topo’) and experiment with in terms of plotting
function, color scale, and any other refinements that help visualise
the data, include:

• ocn_sal – deep ocean salinity (units of per mil).
• ocn_O2 – concentration of oxygen in bottom waters (units of
mol kg−1).
• sed_CaCO3 – weight % of calcium carbonate in surface sedi-
ments.

[OPTIONAL] In a related netCDF Example, we’ll extend the prob-
lem to 3D – 2 spatial dimensions (longitude and latitude) and one of
time. The file you will need to download to experience these won-
ders, is called fields_biogem_2d.nc

To load the variable ’atm_temp’:

» data3d = ncread(’fields_biogem_2d.nc’,’atm_temp’);

How many dimensions does this array have (e.g. use size , or
ensure that the Size column in the Workspace window is selected)?
What are the lengths along each dimension? Can you deduce which
of the dimensions, time might be?

108 str=’do you like bananas?’;

Plot a lon-lat slice. Note that you need to select all longitudes and
all latitudes in the array, but only one time index.

Finally – to test your understanding to date, create an anima-
tion of how the surface air temperature in the model evolves over
time.18 18 You have everything you need – the

vector of years, and from this you can
determine how many different time
points (and 2D data slices) there are,
and hence the number of iterations of a
loop.

further ... matlab and data visualization 109

3.2 Further (spatial / (x,y,z)) plotting

As you have seen earlier – the simplest possible way of taking a
matrix of data values and plotting them spatially, as a function of
(x,y) location, is the function image . In effect, this is treating your
data as if it were an image (or photograph) – the data values being
the ’color’ of each pixel and the location in the matrix defining where
in the image (row, column) the pixel is. The problem with this is
that information regrading what is on the x and y axes is lost, be this
distance, lat/lon, or some set of observed/experimental variables,
or whatever. Instead, the points are evenly spaced on both axes.
Moreover, the raw values are plotted and there is no possibility of
interpolation/contouring or smoothing. One could regard scatter
plotting as an improvement over this and a sort of x,y,z plotting,
in as much as a 3rd dimension (z data value) can be represented
through color and/or symbol shape and at time this can be quite
effective. However, again, no interpolation/contouring or smoothing
is possible with scatter .

3.2.1 Contour plotting

For plotting true (x,y,z)/’3D’ plots (i.e. data values in 2 spatial di-
mension), MATLAB provides a wide variety of more formal ways of
plotting data spatially, including even the possibility of adding a 4th
dimension representing the data value (x,y,z,zz) (see Box).

x,y,z PLOTTING
MATLAB calls plots of a (z) value

as a function of both x and y, ’3D’.
Strictly, one could look at some of
these functions as 2D, as scatter can
plot a 3rd data (z) value as different
colors/shapes/sizes as a function of
both x and y ... Anyway, the most
commonly used/useful and fortu-
nately simple, functions which create
a 2D (x, y) plot but with contours in
the value of (z), are:

1. contour – Plots a figure with
the data contoured, with a range
and increment between contours
that is fully specifiable, color-
coded or not, and labelled or not.
Options are also provided for
specifying how the contouring is
done (and the data interpolated).

2. contourf – Similar to contour ,
except in between the (now sim-
ple black, by default) contours, a
fill color is plotted and scaled to
the data value.

For a genuine 3D plot, with surface
height determined by the data in
the 3rd dimension of the array, col-
ors and/or contours in the data in
the 4th array dimension, suitable
functions include:
surf , surfc , mesh
(but are not considered further here).

For a feel of what you should be able to learn to achieve using
MATLAB – go to the following webpage. In this data repository
you can do things like re-plot with different longitude, latitude, and
temperature ranges. Overlay the coastlines, and other useful things
like that. You can also click through the different months of the year
to get a feel for how the surface temperatures on Earth change with
the seasons. (However, the graphic produced from this particular
website is not particularly great, and you will learn to do at least as
good as this!)

As an example, load in the ’global Earth surface topography’ data file
(etopo1deg.dat) from the course webpage. This is the height of the
(solid) surface of the Earth relative to mean sealevel in meters, with
the continents having a positive value and the ocean floor, negative.
The data is conveniently on a 1° (longitude and latitude) grid. You
could view the resulting elements of the 2D array in the Variable
window if you like ... but at 360×180 in size, there may not be much
of use you can glean by visually inspecting the matrix19.

19 More useful then are the summary
details in the Workspace window, such as
the apparent absence of NaNs and that
the Min and Max Earth surface heights
seem plausible.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.1: Very basic imaging (image)
of an array (2D) of data – here, global
bathymetry.

After loading the data file into the MATLAB workspace, try

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.MONTHLY/.temp/#nameddest=views

110 str=’do you like bananas?’;

throwing the array into the image function (which you saw previ-
ously) see what happens, e.g.

» image(etopo1deg);

(hopefully something like Figure 3.1, but perhaps with a different
default color scale).

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.2: Slightly improved very basic
imaging (imagesc) of bathymetry data.

If it had happened to come out displayed upsidedown20, then

20 It doesn’t in this particular case.

you’d need to first (before plotting using imagesc) flip the matrix
upsidedown using the command:

etopo1deg=flipud(etopo1deg);

(and then re-plot using image), and if the Earth instead appeared on
its side you will need to swap the rows and columns (x for y axis):

etopo1deg=etopo1deg’;

using the transpose function. It is not unusual for a first plotting
attempt of spatial data to be incorrectly orientated and a little trial-
and-error to get it straight is perfectly acceptable!

This is not exactly the prettiest of images. You can distinguish
ocean (blue) from land (mostly brown, but other color pixels in
places). Fortunately, MALTAB provides a variant of this plotting
function, imagesc (see Box and/or MATLAB help), that calculates
the color scale to exactly span the min/max values in the data. Try
this alternative plotting function (and something like Figure 3.2), e.g.

» imagesc(etopo1deg);

imagesc
For a data array (matrix) A,

imagesc(A)

displays the data array as if a
bitmap, but unlike image (see ear-
lier), "uses the full range of colors in the
colormap".

To set the limits of the color scale,
e.g. from (z) value of 0.0 to 10.0, you
can pass the limits as a vector:

imagesc(A,[0.0 10.0])

(and very similar to setting the x- or
y-axis scales).

The function imagesc also enables the range of data values the
color range corresponds to, to be set. Refer to help on this func-
tion and see if you can plot just the above-sealevel, i.e. land surface
heights, spanning zero (sealevel) to the maximum height.

HINT: You can use the function max to determine the maximum
value in a vector, and for the entire array:

etopo1deg_mxa=max(max(etopo1deg));

as we did for sum in the first chapter, or more elegantly:

etopo1deg_max=max(etopo1deg,[],’all’);

(refer to MATLAB help for the syntax and why the [] is needed),
and hence finallly to:

» imagesc(etopo1deg,[0.0 etopo1deg_max]);

colormap
MATLAB has a number of ’col-

ormaps’ built in – color scale that
determine the colors that correspond
to the data. The command to change
the colormap from the default is:

» colormap NAME

where NAMEis the name of the col-
ormap. You can find a list of possible
colormaps in help on colormap (in
a table towards the bottom). But a
brief summary is:

• parula – the current MAT-
LAB default – chosen to provide
a wide range of color and color
intensity.
• jet – the old MATLAB de-

fault, but one which uses red and
green in the same color, which
should be avoided (why?).
• hot , cool – relatively simple

color transitions but useful – hot
is something like you’ll see in
publication figures.
• pink – another simple and at

times useful transition and from
dark (almost black) to white.

To return to the default colormap:

» colormap default

Which sort of in a round-about sort of way also brings us to how
to set the color scale, which can be changed using the colormap

command (see Box).

further ... matlab and data visualization 111

At the command line, try out setting a different colormap, e.g.

» colormap ’pink’

and re-then re-plot the global topography data. Try out various dif-
ferent color maps/scales (» help GRAPH3D will give a list of MAT-
LAB colormaps). What color and (min,max) scales work well and
what do not? Which scales help pick out details of e.g. ocean floor
depth variation and which help pick out simple land-sea contrasts.
Think about what one might want to highlight about global topogra-
phy and what color scale might be best for this purpose?

Sticking with global Earth surface topography, how else can we
display the spatial data? For instance we might want to interpolate
it, contour it, or simple get the longitude and latitude exes correct.
Note that only by luck, because this particular dataset is 1 degree
by 1 degree, the default axis scale in MATLAB when using image is
approximately correct, although note that ’latitude’ has been ordered
in reverse and it goes from 1 to 180 rather than -90 to 90 ... We’ll
explicitly address this shortly.

To start with, you can simply use the contour function (see Box),
passing only the matrix (of global topography values). Try this, e.g.

» contour(etopo1deg);

Now you might want to think about flipping the matrix up-down,
and/or left-right, as your plot should have come out looking like
Figure 3.3 (depending on your chosen colormap) and may need ad-
justing.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.3: Example result of basic
usage of the contour function.

Once you have fixed the orientation of the topography map, you
might play about with the color scale (colormap) as before. You
might also try the companion to contour , called contourf which
gives you something like Figure 3.4, e.g.

» contourf(etopo1deg);

Figure 3.4: Example usage of
contourf , with the hot colormap (giv-
ing dark/brown colors as deep ocean,
and light/white as high altitude).

OK, so a next refinement in plotting esp. maps and contour plots,
is firstly, to specify the range of the color scale, as we may not want
the min-to-max range chosen by default by MATLAB, and then, to
control the number of contours (e.g. in the topography example, they
are pretty far apart and it is difficult to make out much detail). Both
of these factors can be addressed simultaneously, by giving MAT-
LAB a vector containing the value at which you want the contours
drawn21.

21 By default: MATLAB determines the
minimum and maximum data values,
and draws 10 equally spaced contours
between these limits.

Taking the global topography data – lets say you were interested
only in low lying and shallow bathymetry, and wanted 20 con-
tours intervals. Assuming a range in topographic height (relative

112 str=’do you like bananas?’;

to sealevel) of -1000 m to +1000 m, you should be able to deduce how
to create the vector(?)22 Do this and check e.g. by opening up the 22 If not, it is:

» v = [-1000:100:1000];vector in the Variables window. You should see the numbers from -1000
to 1000 in intervals of 100.23 23 Why, for instance, can you not simply

write:

» v = [-1000:1000];

??? (Or rather: why might this not be a
good idea ... ?)

Having created a specific vector of contours to plot, try it out, by:

» contour(etopo1deg,v);

(see Box for syntax).
OK – so this is a little weird and maybe not so useful, but you get

the point hopefully. Try (still at the command line) plotting some or
all of the following:

1. Contours of topography from sealevel, to 10,000 m, in incre-
ments of 100 m.

2. Just (on its own!) the sealevel (coastline) contour ... trickier –
create a vector with a value at zero, and a value either side – one
very high and one very low. Use contour rather than contourf ,
although the latter produces a lovely land-sea mask!

3. Convert the data matrix of value in units of m, to ft, and plot
the ocean floor (values equal to or below sealevel) in intervals
of 1000 feet (e.g. v=[-20000:1000:0]). (HINT: you’ll need to
re-scale the data array using the conversion: 1m = 3.28084 f t)

4. Finally – try some different color scales for the above. Think
about which color scales best help illustrate the data, and whether
contour or contourf is clearer. Also: how many contour inter-
vals is ’best’? You key is to make features clear, within the plot
becoming cluttered or overly detailed.

contour There are various uses of
contour. The simplest is:

contour(Z)

where Z is a matrix. This ends up
similar to image except with the data
contoured rather than plotted as
pixels (the ’simularity’ here is that
the x and y axis values simple are
the number of the rows and columns
of the data).

You can specify the values at which
the contours are drawn, by passing a
vector (v) of these values, e.g.

contour(X,v)

More involved and practical, is:

contour(X,Y,Z)

where X, Y, and Z, are all matrices
of the *same* size (there is impor-
tant). X and Y contain the x and y
coordinate locations of y data values
(contained in matrix Z). In the exam-
ple of a map – X and Y contain the
longitude and latitude values of the
data values in Z.

Similarly, you can add a vector v
containing the contours to be drawn,
by:

contour(X,Y,Z,v)

The final refinement in contour plotting we’ll look at here is
adding labels to the contours. The command to do this is clabel

(for ’contour label’) (see Box). Now, before anything, there is a
slightly complication. clabel needs to know details of the con-
tours and graphics object with which to do anything with. For the
purposes of this course, you don’t have to worry about the details of
this ... but simply need to note and remember the following:

clabel

» clabel(C,h)

labels every contour plotted from

[C,h] = contour(...
);

(or from contourf).
By prescribing and passing a vec-

tor v of contour intervals, you can
label fewer/specific intervals rather
than all of them (the default), e.g.

» clabel(C,h,v)

1. When you call contour (or contourf), 2 parameters are
returned, which so far you have not cared about or even noticed.
We now need them. So when you call either potting function,
using the syntax:

[C,h] = contour(...)

which saves a matrix of data to variable C, and a ID (technically:
graphics object ’handle’) to variable h.
You can test what has been returned by typing:

further ... matlab and data visualization 113

» [C,h] = contour(etopo1deg,v);

and looking to see what new variables, if any, have appeared in
MATLAB Workspace.

2. When you call clabel , pass these parameters back in, e.g.

clabel(C,h)

(in its most basic usage). So in the example above:

» clabel(C,h);

0

0

0
0

0

0

0

0

0
0

00

0

0

0

0

0

0

0

0

0

0

0

00
0

0

0

0

0
0

0

0

0

0

0

0
0

00

0

0

0

0 0
0

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.5: Example usage of contour ,
contouring only the zero height isoline,
and providing a label.

If you do this, in an earlier example of plotting just the zero height
contour, and now using the most basic default usage of clabel (as
above), you get, for good or for bad, Figure 3.5.

In the default usage of clabel , you’ll get a label added on ev-
ery contour that you plot. This ... can get kinda messy if you have
lots and lots of contours plotted. You may well not need every sin-
gle contour labelled, particularly if you also provide a color scale
(see below). So you can also pass in a vector to tell MATLAB which
contours to label. For example, if you have a contour interval vector:

v = [-1000:100:1000];

(which creates 100 m spaced contours between -1000 and +1000 m)
maybe you only want labels on contours every 500m, so you’d create
a different vector:

w = [-1000:500:1000];

to specify the labelling intervals. The complete set of commands for
this becomes:

» v = [-1000:100:1000];

» w = [-1000:500:1000];

» [C,h] = contour(etopo1deg,v);

» clabel(C,h,w);

where [C,h] = contour(etopo1deg,v); specifies to contour
from -1000 to 1000 in steps of 100, but clabel(C,h,w); says to
label only every 500 m (from -1000 to 1000).

Finally – missing from our color-coded plots so far, is a color scale
to relate values to colors (although labelling the contours works as an
OK substitute). The MATLAB command is as simple as typing:

» colorbar

(and see Box for further usage). Try adding a colorbar, and in different
places in the plot. Refer to the Box to try and add a caption to it ...

colorbar
This almost could not be simpler:

» colorbar

plots the color scale! By default, is
places it to the RH sice of the plot. If
you wish for it to appear anywhere
else, use the modified syntax:

» colorbar(PLACEMENT)

where PLACEMENT is
one of: ’northoutside’ ,
’southoutside’ ,
’eastoutside’ , ’westoutside’ .
Note that these are strings and
so need to be in quotation marks.
(More options are summarized in a
table in help.)

Finally, you can also add a label to
the colorbar, but only if you get hold
of its ID (’graphics handle’) when
you call colorbar , e.g.

» h = colorbar

will save the graphics handle in
variable h, which you can then muck
about with via:

c.Label.String = ’The
units of my lovely
colorbar’;

(Don’t fight this – use this syn-
tax to set a label for the colorbar –
don’t worry about what it means.
MATLAB keeps rather annoy-
ingly changing the way it does this
anyway :()

114 str=’do you like bananas?’;

3.2.2 Meshgrid

We’ll now address the issue with missing/incorrect lon/lat axis la-
bels on the plots.

Each data point in the etopo1deg matrix should have one lon-
gitude value (x-axis) and one latitude (y-axis) value associated with
it. What we need, is a pair of matrices, of exactly the same size as
the etopo1deg data matrix – one holding longitude values and one
latitude values.

There are various ways of creating the required matrices ’by hand’
(or involving writing a program including a loop). All of them are
tedious. There is a MATLAB function to help. But it is not entirely
intuitive24 ... meshgrid . 24 DON’T PANIC!

meshgrid
The unholy syntax is:

[X,Y] =
meshgrid(xv,yv)

Pause, and take a deep breath. On
the left – the results of meshgrid
are being returned to 2 matrixes, X
and Y. These are going to be our ma-
trixes of the longitude and latitude
values (in the particular example in
the text). So far so good(?)

On the right, passed into the func-
tion meshgrid , are two vectors – xv
and yv . Pause again.

What MATLAB is going to do,
is to take the (row) vector xv , and
it is going to replicate it down so
that there are as many rows as in
the vector yv . This becomes the
returned output matrix X. MATLAB
then takes the column vector yv , and
replicates it across so that there are
as many columns as in the vector xv .
This becomes the returned output
matrix Y.

Spend a few minutes reading about it in help . In particular, look
at the examples given to help you translate the MATLAB-speak
gobbledegook of the function description. You should be able to
glean from all this that this function allows us to create two a × b
arrays; one with the columns all having the same values, and one
with the rows all having the same values (exactly what we need
for defining the (lon,lat) of all the global data points). If not, and
probably not – see Box. And then lets do a simple example (adapted
from help) (at the Command line):

» [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Y =

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

Here, we are taking 2 vectors – [1:3] and [10:14] , and asking
MATLAB (very nicely) to create 2 matrixes, one in which [1:3] is
replicated down, until it has the same number of rows as the length
of [10:14] , and one in which [10:14] is replicated across until it
has the same number of columns as the length of [1:3] .

In our example 2D (topography) dataset – start by noting that the
topography data is on a regular 1 degree grid starting at 0° longi-
tude. Latitude starts (at the bottom) at -90° and goes up to +90° . We
need a matrix containing all the longitude values from 0° to 359° and
latitude from -90° to 89° .25 These matrices need to be the same size 25 There is a slight complication with

this, which we’ll get to shortly, but note
that the data array is 360 elements (x-
direction) by 180 elements (y-direction).

further ... matlab and data visualization 115

as the data matrix.
Maybe just go ahead and do it right now ... and then pause and

understand what has happened after. Create the longitude and lati-
tude grids by:

» [lon lat] = meshgrid([0:359],[-90:89]);

View (in the Variables window) the lon matrix first. Scan through
it. Hopefully ... you’ll note that it is 360 columns across, and in each
column has the same value – the longitude. The matrix is 180 rows
’high’, so that there is a longitude value for each latitude. Similarly,
view lat . This also should make a little sense if you pause and think
about it, with the one exception that the South Pole latitude is at the
’top’ of the matrix – don’t worry about this for now ...

The only way to fully make sense of things now, is to use it. Re-
member that use of contour (and contourf) can take matrices of
x and y (here: longitude and latitude) values that correspond to the
data entries in the data matrix (etopo1deg).

Re-load the topography data in case you have flipped it about in
all sorts of odd ways, and then do:

» [lon lat] = meshgrid([0:359],[-90:89]);

» contour(lon,lat,etopo1deg);

Almost! Note that the x and y axis labelling is ’correct’ and partic-
ularly the y-axis, where latitude goes from -90 to 90 (although by
default MATLAB labels in intervals of 20 starting at -80 it seems).
But it also turns out that we do need to flip the data up-side-down.
We can actually do this in the same line as we plot:

» contour(lon,lat,flipud(etopo1deg));

or if you prefer 2 explicit steps:

» etopo1deg_corrected = flipud(etopo1deg);

» contour(lon,lat,etopo1deg_corrected);

Phew! (Figure Figure 3.6.)
0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

Figure 3.6: Usage of contour but with
lon/lat values created by meshgrid
function and passed in (and with the
hot colormap (giving dark/brown
colors as deep ocean, and light/white
as high altitude).

The final complication is that the data points in the gridded
dataset (matrix etopo1deg), technically correspond to the mid-
points of a 1 degree grid, not the corners. So if we were going to try
and be formally correct26, our vectors that we’d pass into meshgrid ,

26 Don’t worry about this for now –
grids will be covered more in subse-
quence chapters surrounding numerical
(environmental) models.

would be:

» x = [0.5:359.5];

» y = [-89.5:89.5];

and hence:

» [lon lat] = meshgrid(x,y);

» contour(lon,lat,flipud(etopo1deg));

116 str=’do you like bananas?’;

[OPTIONAL] Another Example on this. Previously, you down-
loaded and plotted monthly global distributions of surface air tem-
perature. You plotted these simply using pcolor (or image) and the
results were ... variable. Certainly not publication-quality graphics
and missing appropriate longitude and latitude axes for the plots.

Make a copy of your original script (m-file) in which you created
the animation, and give it a new name. Edit your program, and in
place of pcolor , use contour or contourf (your choice!). To begin
with, pass in just the data matrix (of monthly temperature) when
calling the contour (or contourf) function and don’t yet worry
about the lon/lat values. Get this working (i.e. debug it if not). You
should end up with a contoured animation (rather than a bit-map
animation).

The problem with the axis labelling should be much more appar-
ent (than compared to the topography data, which was on a handy
1 degree grid already). So you need to make a matrix of longitude
values, and one of latitude. using meshgrid . The grid is a little awk-
ward:

1. The longitude grid runs from 0°E (column #1) with an incre-
ment of 1.875°; i.e., 0.000°E, 1.875°E, 3.750°E, ... up to 358.125°E
(column #192).
2. Latitude runs from 88.54196°S (-88.54196°N) at row #1, to
88.54196°N (row #94) with an increment of about 1.904.

so I’ll give you the answer up-front:

lonv = [(1.875/2):1.875:360-(1.875/2)];

latv = [-90+(1.904/2):1.904:90-(1.904/2)];

[lon lat] = meshgrid(lonv,latv);

Place this code somewhere before the loop starts in your program.
Now use the longitude and latitude values matrices, in conjunc-

tion with contour (f), to plot the global temperature distributions
’properly’, e.g.

contour(lonv,latv,temp);

or if you prefer:

contour(lonv(:,:),latv(:,:),temp(:,:));

and it helps you remember which variables are arrays.
Try plotting just one plot first (e.g. by adding a breakpoint at the

end of the loop, i.e. the line with end), before looping through all 12
months.

At this point (before creating an animation), you might also ex-
plore some of the plotting refinements we saw earlier. For example,

further ... matlab and data visualization 117

as per Figure 3.7. Firstly – get the units of the temperature data array
into units of °C (or °F if you are into that sort of thing) rather than
°K. Either: assign the temp array data to a new array and make the
appropriate conversion from °K (all within the loop), or you can do
this subtraction on the line that you actually plot the data (i.e., within
the contour /contourf function), for example:

contourf(lon(:,:),lat(:,:),temp(:,:)-273.15);

would convert to °C as it plotted the data. Longitude

La
tit

ud
e

Climatological July surface air temperature

0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50

Figure 3.7: Example contour
plot including meshgrid -
generated lon/lat values. Result of
contourf(lon,lat,temp7,30) ,
where the data file was temp7.tsv ,
with some embellishments.

You can also (assuming you converted to units of °C) set the plot-
ting temperature limits and contouring consistent between months
and with greater color interval resolution by adding the following
line (before the loop starts):

v=[-40:2:40];

and then to the contour(...) (or contourf(...)) function, add
to the end of the list of passed parameters – v , e.g.

contourf(lon(:,:),lat(:,:),temp(:,:),v);

This particular choice for the vector v tells MATLAB to do the
contouring from -40 to 40 (°C), and at a contour interval of 2 (°C)..
Play around with the min and max limits of the range, and also with
the contour interval to see what gives the clearest and least cluttered
plot. For instance, maybe you don’t want the low temperatures to go
’off’ the scale (the white color in the filled contour plot).

Lastly – for any (or all) of the Examples above, you could add the
continental outline to the plot. Remember, to use hold on in order
to overlay the continental outline on top of the contour map without
replacing it in the Figure window.

It should be obvious that plotting the continental outline might
be something you want to us more than once. Sections of code that
might get used multiple times are commonly placed in a file (or spe-
cial section of the file) of their own and called from the main program
that needs it. For example, you could place the entire continental
outline plotting code, including loading in the data, in an m-file and
make it a function – in this case, taking no parameters as input, and
return no output.27 In the example of the looped animation, in the

27 Make sure that you do not open
a figure window with the figure
command with the function, or you will
not get a continental output overlay on
your plot, but rather a sperate Figure
window with just the continental outline
on.

sequence of code (within the loop), you will need to call your conti-
nental outline plotting function just after you have plotted the con-
tour (or bitmap) plotting function.

The MATLAB Mapping toolbox
You can do some nice spatial

plotting with this data using the
MATLAB Mapping Toolbox. This
should be available as part of the
MATLAB installation in the Lab
(and also if you have downloaded
and installed an academic version on
a personal laptop). Refer to the on-
line documentation for the Mapping
Toolbox to get you started. The key
function appears to be geoshow . Try
plotting the region encompassing the
’quake data, with a coastal outline
(of land masses), and the ’quake
data overlain. Explore different map
projections. Remember to always
ensure appropriate labelling of plots.

118 str=’do you like bananas?’;

3.3 Further data processing

This section contains a selection of further simple techniques for
doing useful stuff with data, as well as for better graphing.

further ... matlab and data visualization 119

3.3.1 find !

So – a single MATLAB function gets its own sub-section, all to itself.
Either it’s really powerful and useful, or I am running out of ideas for
the textbook28. 28 Answer: it is really powerful and

useful.

find
MATLAB defines find, with a basic

syntax of:

k = find(X)

as ’return[ing] a vector containing the
linear indices of each nonzero element in
array X’.

That means ... nothing to me. This
is going to have to be a job for some
Examples ... (in order to see what
find is all about).

Actually, find returns the indices
of the non-zero elements in the
array and if the array is a vector,
what is does is simple. For a ma-
trix, MATLAB counts the elements
sequentially, starting at the 1st row
and 1st column, and working down
the first column, rather than provide
the (row,column) for indexing format
you are used to. Hence where the
’linear indices’ bit comes in.

Furthermore, ’non-zero’ indices
is really just code-word for ’true’.
So you are asking where the true
values occur in X. If X is the answer
to a logical or relational operation,
then find tells you the indices of the
elements that are true.

For example, 3 > [5 3 1]
equates to [0 0 1] , i.e. only the
first element in the vector [5 3 1]
is less than 3. Hence:

find(3 > [5 3 1])

first evaluates the relational opera-
tion and generates a vector of true
and false values, and then find tells
you the index (or indices) where the
true values occur (here, ans = 3).

min
max

Return the minimum and max-
imum, respectively, values in an
array. e.g.

min([4 8 3 1])

will return a value of 1.

find ... finds where-ever in an array, a specific condition is met. If
the specific condition occurs once, a single array location is returned.
The specific condition could occur multiple times, in which case
find will report back multiple positions in the array.

What do I mean by a ’specific condition’? Basically – exactly as per
in the if ... construction – a conditional statement being evaluated
to true.

OK – some Examples.
Say that you have a vector of numbers, e.g.:

A = [3 7 5 1 9 7 4 2];

and you want to find the maximum value in the vector – easy29.

29 I hope so ... check back earlier (or
slightly later) in the course on max.

But ... perhaps you want to find *where* in the vector the maxi-
mum value occurs. Why might you want to do this? Rarely do you
have a single vector of data on its own – generally it is always linked
to at least one other vector (often time or length in scientific exam-
ples). Trivially, our second vector might be:

B = [0:7];

and represent, for instance, time. The question then becomes: at what
time did the maximum value occur? Obviously, this is easy by eye
with just 8 numbers, but if you had 1000s ...

We can start by determining the maximum value (in the array, A).

c = max(A);

Now, we use find to evaluate where (what index) in array A the
element with a value of max(A) (equal to c) occurs. The following
should accomplish this:

find(A(:)==c);

Here, what we are saying is: take all of the elements in A and find
where an element occurs that is equal to c (the maximum value,
which we already determined). Try it, and MATLAB should return 5

– the 5th element in the vector.
Finally, if we assign the result of find to d, remembering that

find return an array index (or indices), we can then use d to de-
termine the time at which the value of 9 occurred, i.e. B(d) which
evaluates to 4 (whatever units of time):

d = find(A(:)==c);

B(d)

120 str=’do you like bananas?’;

In this example, find returned just a single element, but if we
instead had:

A = [3 9 5 1 9 7 4 2];

The maximum value is still the same (9) but now you get ...

» find(A(:)==c)

ans =

2

5

What has happened is that find has determined that there are 2
elements in vector A that satisfy the condition of being equal to c (9)
and that these lie at positions (index) 2 and 5. The resulting vector, if
you assigned it to the variable d again, can be used just as before to
access the corresponding times in vector B;

» d = find(A(:)==c);

» B(d)

ans =

1 4

i.e. that the times at which the values of 9 occur are 1 and 4 (what-
ever units).

Any of the relational operators (that evaluate to true or false) can be
used. In fact – looking at it this way leads us to maybe understand
the MATLAB help text, because true and false are equivalent to 1 and
0, and find is defined as a function that returns the indices of the
non-zero elements in a vector. By writing A(:)==c we are in effect
creating a vector of 1s and 0s depending on whether the equality is
true or not for each element. You can pick apart what is going on and
see that this is the case, by typing:

» A(:)==c

ans =

0

1

0

0

1

0

0

0

(the statement being true at positions (index) 2 and 5, which is ex-
actly what find told you).

As another example, we could ask find to tell us which elements
of A have a value greater than 5:

» find(A(:)>5)

further ... matlab and data visualization 121

ans =

2

5

6

(Inspect the contents of vector A and satisfy yourself that this is the
case.)

We can also use find to filter data. Perhaps you do not want
values over 5 to remain in the dataset. Perhaps this is above the max-
imum reliable range of the instrument that generated them or what-
ever reason. Having obtained a vector of locations of these values,
e.g.

d = find(A(:)>5);

we can plug this vector back into A and assign arrays of zero size to
these locations – effectively, deleting the locations in the array, i.e.

A(d) = [];

Note that the size30 of A has now shrunk to 5 – all the other elements 30 Use the command length or view in
the Workspace Window.remain, and in order, but the elements with a value greater than 5

have gone. You could apply an identical deletion (filtering) to the
time array (B(d) = []).

Play about with some other relational operators and criteria, and
make up some vectors of your own until you are comfortable with
using find .

For an Example of data-filtering – dig out the paleo-proxy
(paleo_CO2_data.txt) atmospheric CO2 data you downloaded
earlier. One further way of plotting with scatter is to scale the
point size by a data value. We could do with by:

» SCATTER(data(:,1),data(:,2),data(:,2))

... except ... it turns out that there are atmospheric CO2 estimates of
zero or less and scatter will refuse to scale the point size by such
values ...

NaN
... is Not-a-Number and is a

representation for something that
cannot be represented as a number,
although if you try and divide some-
thing by zero MATLAB reports Inf
rather than a NaN.

NaNcan also be used as a function
to generate arrays of NaNs. The most
common/usage in this context is:

N = NaN(sz1,...,szN)

which will (according to help) "gen-
erate a a sz1-by-...-by-szN array of
NaN values where sz1,...,szN indi-
cates the size of each dimension. For
example, NaN(3,4) returns a 3-by-4
array of NaN values."

This leads us to a new use for find and some basic data filtering.
We’ll start by tackling the zeros.

The simplest thing you could do to ensure that no zero value ap-
pear anywhere, would be to add a very small number to all the val-
ues. This would defeat the ’no zero’ parameter restriction, but would
not help if there were negative values and you have now slightly
modified and distorted the data which is not very scientific. Substi-
tuting a NaNfor problem values is a useful trick, as MATLAB will
simply ignore and not attempt to plot such values.

So first, lets replace any zero in the CO2 column of the data with a
NaN. The compact version of the command you need is:

122 str=’do you like bananas?’;

data(find(data(:,2)==0),2)=NaN;

But as ever – perhaps break this down into separate steps and use
additional arrays to store the results of intermediate steps, if it makes
it easier to understand, e.g.

» list_of_zero_locations = find(data(:,2)==0);

» data(list_of_zero_locations,2) = NaN;

What this is saying is: first find all the locations (row indices) in the
2nd column of data for which the value is equivalent (==) to zero.
Then, replace the CO2 value in all these rows of the 2nd column
(which is originally zero) with a NaN(technically speaking: assign a
value of NaNto these locations).

You have now filtered out zeros, and replaced the offending values
with a NaNand when MATLAB encounters NaNs in plotting – it
ignores them and omits that row of data from the plot.

Alternatively, we could have simply deleted the entire row con-
taining each offending zero.31 Breaking it down, this is similar to 31 First: Re-load the paleo-proxy atmo-

spheric CO2 data so that you can have
another go at filtering it.

before in that you start by identifying the row numbers of were ze-
ros appear in the 2nd column, but now we set the entire row to be
’empty’, represented by [] :

» list_of_zero_locations = find(data(:,2)==0);

» data(list_of_zero_locations,:) = [];

If you check the Workspace window32, you should notice that the size 32 Or:
» size(data)of the array data has been reduced (by 4 rows, which was the number

of times a zero appeared in the 2nd column).
We are almost there with this example except it turns out that

there is a CO2 proxy data value less than zero(!!!) We can filter this
out, just as for zeros. I’ll leave this as an exercise for you – remember
the operator ’less than’ (<).33 33 Actually, you could have done the

filtering of both zeros, and values less
than zero, all in one, using: ≤

The plot should end up looking like Figure 3.8. As another lesson-
ette, given that the circles are insanely large ... you might try plotting
this with proportionally smaller circles, which you could achieve by
e.g.

» SCATTER(data(:,1),data(:,2),0.5 * data(:,2))

which simply make the 2nd column values passed to scatter to set
the marker size, to half their original value.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 3.8: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Having inserted NaNs into an array, or having ended up with NaNs in
an array for other reasons, you can also search for (find) the NaNs.
The first thing to note in looking for NaNs, is you cannot test for a
NaNwith a simple equality operator:

further ... matlab and data visualization 123

» a=NaN;

» a==NaN

ans =

0

which ... is odd. Having assigned a NaNto variable a (first line),
MATLAB is apparently telling you that the value of a is not equiv-
alent to NaN. Really unhelpful. In fairness, a does not have a value
and is Not A Number and hence MATLAB cannot determine whether
or not it is equal to another Not A Number. Better would have been
for MATLAB to give you an error ... still, it is what it is.

To try and make amends, MATLAB provides a function to deter-
mine whether or not something is Not A Number – isnana . This
returns true (1) if the passed variable is Not A Number, and false (0)
if not, e.g.

isnan
’isnan(A) returns an array the same

size as A containing logical 1 (true)
where the elements of A are NaNs and
logical 0 (false) where they are not.’

Meaning that you can pass any
dimension of array (e.g. vector or
matrix or 3D), not just a scalar (a
single value or 1 × 1 matrix).

» isnan(a)

ans =

1

(because we set a to NaNearlier), whereas:

» isnan(99)

ans =

0

because 99 is a number (integer) and not a Not A Number.

3.3.2 Other data filtering

In the example of the observational Riverside temperature data (the
data file: temperature_riverside.txt), if would be nice to also
be able to use find ... which can determine all the locations at which
a NaNoccurs34, by e.g.: 34 Using isnan .

» find(isnan(temperature_riverside))

... but it is not obvious what to ’do’ with the resulting list of linear
indices for each cell containing a missing value (NaN). For instance,
you cannot remove a single cell from a a × b array because an array
must contain the same number of elements in each row and the same
number of elements in each column.

What you need, is a way of automatically removing each and ev-
ery row in which one (or more) NaNs appear. There are two obvious
approaches:

1. use a loop

We could go through the array, row by row, and for every row in
which a NaNoccurs, remove that row. The code (in a new script file)

124 str=’do you like bananas?’;

could look something like the following and which works ... but
maybe is a little complicated and/or contorted:

%%% script to load data, remove NaN-containing rows

% load dataset

data=load(’temperature_riverside.txt’);

% determine number of rows of data

n_max = length(data);

% initialize row count to the first row

n = 1;

% loop through all rows

while (n <= n_max),

% find all (any) NaNs in current row

found_nans = find(isnan(data(n,:)));

% did you find any NaNs?

% the vector found_nans is not empty if you did!

if (∼isempty(found_nans));

% then remove entire row

data(n,:) = [];

% remember to update total number of rows!!!

% (there is one less now)

n_max = n_max - 1;

% NOTE: don’t update row count

else

% move on to next row

n = n+1;

end

end

2. cheat!

(not really)
There is a relatively new MATLAB function that achieves just this:
rmmissing (see Box). Much simpler code that does exactly the same
job as above, would then look like:

%%% script to load data, remove NaN-containing rows

% load dataset

data=load(’temperature_riverside.txt’);

% remove problem rows!!!

data = rmmissing(data);

rmmissing – ’Remove rows or
columns with missing entries’.

In the simplest usage:

B = rmmissing(A);

Removes rows containing miss-
ing data elements from array A,
assigning the results to array B.

MATLAB defines missing data as:

• NaN- for number arrays
• <missing> - for string arrays
• blank character [’ ’] - for

character arrays
• empty character ” - for cell arrays

(see help for further information and
examples)

Now, for any row of data in which a NaNoccurs, MATLAB auto-
matically removes the entire row from the array.

If you prefer to break things up – we need not assign the row-
removed array back into the same variable and could create a distinct
new one, e.g.

% remove problem rows (and assign to a new variable)

data_new = rmmissing(data);

further ... matlab and data visualization 125

3.3.3 Some miscellaneous and useful data manipulations techniques

Sometimes you will find you need data as a vector, but you only have
it in the form of an array. MATLAB provides the function reshape 35 35 See help and Box

for the express purpose of re-configuring the shape of an array, such
as turning a matrix into a vector, or vice versa.

For instance, given a 3x3 matrix D:

1 2 3
4 5 6
7 8 9

how do we turn this into a 9x1 column vector, i.e.

1
4
7
2
5
8
3
6
9

reshape
Use reshape to transform data in

an array of one shape (i.e. configu-
rations of rows and columns), into
another. MATLAB help is OK on
this and for the main usage of the
function, says:

’B = reshape(A,sz) reshapes A using
the size vector, sz, to define size(B). For
example, reshape(A,[2,3]) reshapes A
into a 2-by-3 matrix.’

In this usage you need to spec-
ify the rows and columns of the
resulting array.

NOTE that the array you turn it
into to, can have a single row, or
a single column (and hence be a
vector), but you need to specify this
with a 1.

Also note that the total number
of elements in the array must be
conserved, so if you turn an n × m
array into a p × p array, then it must
be true that:

n × m = o × p There is also a
convenient second usage, that will
attempt to automatically determine
the row or columns needed to make
n × m = o × p true, given either o or
p. For example:

B = reshape(A,2,[])

in the previous example will auto-
matically determine that 3 columns
are needed. Conversely,

B = reshape(A,[],3)

will determine that 2 rows are re-
quired to meet the n × m = o × p
criteria.

This usage is particularly conve-
nient for making vectors, e.g.:

B = reshape(A,[],1)

You can use reshape in 2 different ways:

1. Firstly, you can explicitly specify the new array shape you
want.36 e.g.

36 Obviously, the total number of ele-
ments in the array must be conserved.

Dvector = reshape(D,[9,1]);

2. Alternatively, if you know you want a single column vector
and cannot be bothered to work out how many rows you need,
MATLAB will kindly pick up the slack via a slightly different
usage of reshape :

Dvector = reshape(D,[],1);

Here you are specifying one column, but ’whatever’ ([]) rows.

(Having created a vector containing all the numbers, you can now
find the standard deviation: std(Dvector) .)

Obviously, if you want a row, rather than a column vector – ei-
ther transpose the column vector to row vector shape, or specify the
format of a row vector in the first place when using reshape :

Dvector = reshape(D,[1,9]);

126 str=’do you like bananas?’;

3.3.4 Data interpolation

Interpolation? What is it and why would you do it? We’ll answer this
via an example.

First download the ice-core dataset of atmospheric CO2 over the
past 800,000 years, recovered from the Dome C site on Antarctica –
filename: icecore_co2.txt on the course webpage. Load it in and assign
the the variable co2 . Start by plotting it (your choice of MATLAB
plotting function) to see what you are dealing with.37 37 First column / x-axis values are age,

in years, and 2nd column / y-axis
values are CO2 concentration, in units
of ppm.

So what if we wanted to know the average (mean) value of at-
mospheric CO2 over the last full glacial cycle, i.e. between now (age
zero) and the end of the previous interglacial period, about 115,000
years ago.

So firstly, you might use your most excellent MATLAB skills to
extract all the data corresponding to this specific interval – i.e. all the
ages (and corresponding CO2 values, between zero and 115,000 years,
or rather, less than or equal to 115,000 years. You should know this
requires the find function, and that the range of indices if given by
(assuming the data array you loaded in is called co2):

» a=find(co2(:,1)<=115000)

which simply says: take all the elements in the 1st column of the
array co2 (co2(:,1)), and find the indices of all the elements with a
value equal or less than 115,000. To select just the first 115000 years of
data in co2 is then just a matter of:

» co22=co2(a,:)

and check that this does indeed give you the correct portion of data
and has assigned it to the array co22 . (Maybe plot to confirm.)

It is worth pausing at this point – this is a common, and pow-
erful, usage of find , and of indexing, and you should be sure you
understand it before moving on. What this line is saying is: take both
columns of the array co2 – select all the elements (rows) defined by
the vector a, and assign the result to co22 .

OK, so we are progressing well towards answering the question –
the mean CO2 value over the last glacial cycle (last 115,000 years). In
fact – try answering that now (using mean). You should end up with
a value of 245ppm.38 The question is – do you ’believe’ it? Look at 38 Note that MATLAB will report the

value in a scientific notation with a
power (here 102).

the plot – do you think that value is representative of the average?
To make the problem more obvious – repeat the above exercise,

but now consider only the past 40,000 years. From the plot, high,
interglacial CO2 values characterise only the last 10,000 years or so,
with a transition over 5,000 years or so before that. From 15,000 years
and back to 40,000, CO2 is clearly bumping along its lowest values.
What would you guess the mean CO2 value is? Now try it. I get

further ... matlab and data visualization 127

249ppm CO2. Does that look correct to you, across the past 40,000
years?

If you were previously using plot to plot the data, now try
scatter . It should be much more obvious what is going on now
– you have very uneven data sampling in time – the bulk of the data
is from the last 10,000 years or so, and there are very few data points
older than about 22,000 years. When MATLAB calculates a mean, it
is of the data points, and an uneven data sampling will give a biased,
unrepresentative value.

We need to interpolate the data – place it on an evenly sampled-in-
time basis. The MATLAB function to interpolate vector (1D) data is
interp1 (see help /Box). interp1

yi = interp1(x,y,xi)

will interpolate the y-axis values
located at x-axis points given by
the vector x , onto the x-axis points
given by vector xi . The resulting
interpolated y-values are assigned
back to yi .

By default the interpolation meth-
ods used is linear. For a different
interpolation method, use the varient
of the function:

yi =
interp1(x,y,xi,method)

where method is one of:
’nearest’ , ’linear’ , ’spline’ ,
’cubic’ ... (for a fuller list, see
help).

To extrapolate outside of the
domain spanned by the (original)
x-axis vector x , specify:

yi =
interp1(x,y,xi,method,’extrap’)

The first thing we need, to use interp1 , is a vector of points in
time, that we are going to interpolate our data on to. As a rule, the
vector should ideally not extend in value beyond the minimum and
maximum values of the original axis, but we’ll ignore this for now.
We might pick ... 1,000 years as a simple sampling interval, and so to
create this new axis vector, we would write:

» xi=[0:1000:40000];

assuming we stick with the 0-40,000 year interval. The interp1

function requires that you pass this vector, along with the original
time (x-axis) vector, and the original data (y-axis) vector, and will
give you a new data vector, with values corresponding to the time
points defined by xi . Like this:

» yi=interp1(co22(:,1),co22(:,2),xi);

If you prefer to break things down39 so that the process is a little

39 And then you might also make the
variable names REALLY explicit, and
have xold , yold , xnew, ynew or
something.

clearer, maybe first extract from the original data array, an x-axis
(time) vector:

xold=co22(:,1);

and then extract a y-axis (data) vector:

yold=co22(:,2);

and then do the interpolation:

yi=interp1(xold,yold,xi);

Either way, now scatter-plotting the interpolated data:

» scatter(xi,yi);

should result in an obviously evenly-spaced data plot.

128 str=’do you like bananas?’;

[OPTIONAL] We could now use the function mean, except ... if you
were paying attention, we extrapolated outside of the range of the
extracted data into the array yi . But you know how to handle this
situation, i.e. find -ing and removing the offending NaNrows, or use
nanmean if you have access to the required MATLAB toolbox.

Or, you could re-do the interpolation, but interpolate from the full,
original data array, which you know extends way past 40,000 years.
And ... specify the very first time point as 1,000 years rather than
zero. e.g.

x1=[1000:1000:40000];

y1=interp1(co2(:,1),co2(:,2),x1);

Well ... it doesn’t work, which is sort of pretty ’real world’ problem-
esk. The issue is that there is a duplicate year – i.e. 2 CO2 values with
the same year.40 How to find them? Well, you saw earlier the func- 40 The MATLAB interpolation function

requires a strictly monotonically in-
creasing (with no duplicates) old and
new x-axis vector.

tion mode, which return the most popular value in an array. If we
do:

» mode(co2(:,1))

ans =

409383

Ha ha, so the year 409,383 is duplicated.41 How to find this ... 41 The absence of duplicated year
values, or rather, there only being one
of each individual number, would
result in MATLAB returning the very
first value in the vector. The only
confusion here would be if the very first
value was itself duplicated ...

» find(co2(:,1)==409383);

or if you prefer (and neater):

» » rows=find(co2(:,1)==mode(co2(:,1)))

ans =

531

532

giving us the row numbers. We could be cleaver, and create a single
entry for this year, with the CO2 value formed of the mean of the
duplicate entries:

» co2mean=mean(co2(rows,2));

... replacing the first CO2 value ...

» co2(rows(1),2)=co2mean;

... and then delete the second.

» co2(rows(2),:)=[];

Phew! Now try the interpolation again. Plot (scatter and/or
plot). Find the mean CO2 value over 0-40,000 (technically, now
we have restricted the data to 1,000-40,000). Does this seem more
reasonable? Repeat for 0-115,000 years (or 1,000-115,000 years). Also

further ... matlab and data visualization 129

try out carrying out an interpolation with closer spacing, say 500 or
100 years.

Finally, if you read the (Box or help) details about the function
interp1 , the more recent MATLAB version releases enable you
to extrapolate outside of the data domain. So instead of having to
restrict the xi vector to starting at year 1,000, you can start at year
zero:

» x1=[0:1000:40000];

» y1=interp1(co2(:,1),co2(:,2),x,’linear’,’extrap’);

130 str=’do you like bananas?’;

3.3.5 Data (row) deletion

For some practice in some ’real world’ data filtering and a little fur-
ther data manipulation and graphing: download the historical tem-
perature dataset for Riverside42: 42 NOAA

temperature_riverside.txt

If you view the data file in a text editor or import into Excel, you
can read the header information and find out what the different
columns of data are (I am not telling you!). Note that the (1st) line of
the file containing the column header labels starts with a % symbol
(I added this to tell MATLAB to ignore this line and not attempt to
read in the ’data’ on it). (I also ensured that any missing data was
indicated with a ’NaN’ to make the load go more smoothly.)

Load in this file (and you might assign the read-in data to a differ-
ent and shorter variable name):

» tdata = load(’temperature_riverside.txt’);

and maybe take a look at what you have by opening tdata in the
variable window.

comment symbol
%– is a special symbol that when

MATLAB sees it, it ignore the entire
line. This is known as a comment
symbol (of identifier) and allows
you to have lines of comments in
amongst the lines of code.

Equivalently, when MATLAB
loads in a ASCII data file, any line
in which the % symbol appears,
MATLAB ignores and does not load
in. Hence, column header descrip-
tions (or any other file description
information) can be included in the
file as long as the line starts with a
%.

Now, create a plot (with appropriate labels) of this data. You want
the annual mean temperature – the last (14th) column, plotted vs.
year (the first column), so:

» plot(tdata(:,1),tdata(:,14));

or, remembering that end is shorthand for the last element or index
number, you could also write:

» plot(tdata(:,1),tdata(:,end));

It would be ’nice’ ... to make some direct comparison between the
observed global temperature increase (you plotted earlier) and that
occurring in Riverside, e.g. to help answer questions such as ’Are
temperatures increasing faster in Riverside than the global mean?’,
and hence ’Will global warming impacts likely be worse or less se-
vere in the Riverside area as compared globally?’. To do this, we
need both data sets – global and for the Riverside area – to be on a
comparable scale.

You could certainly simply plot both global mean and Riverside
annual mean temperatures alongside each other, using the same
units, e.g. °F as you have previously converted the global mean tem-
peratures to °F, which is the same units as the Riverside temperature
data. You could have 2 sperate plots and visually compare them, but
this is not very cleaver nor necessarily useful in making any sort of
quantitative comparison. For instance – contrast the global data (re-
scaled to absolute degrees F) in Figure 1.10, with the Riverside data,
in Figure 3.9.43 43 There are also sone odd-looking

artifacts (’spikes’) in the raw data that
we will want to deal with in some way.

further ... matlab and data visualization 131

There are two main problems 44 in making a useful comparison –

44 Plus artifacts in the raw data.firstly, the two data sets are on different y-axis scales (but luckily on
the same x-axis, year scale), with the global data temperature scale
going from 56 to 59°F, and the local, Riverside temperature data scale
going from 50 to 85°F.

The limits can be specified and made common between the 2 plots
using the axis command that you saw earlier. You could, for in-
stance, not worry about truncating the spurious spikes in the River-
side temperature data and set the y-axis limits for both plots to e.g.
55 to 70°F. (You are still left with comparing across 2 different plots,
which we will fix in a subsequent section by means of the command
hold on .) However, there is still an ’inconvenient’ offset between the
global mean temperature and that at Riverside. 1880 1900 1920 1940 1960 1980 2000 2020

50

55

60

65

70

75

80

85

Year

T
em

pe
ra

tu
re

 (
de

gr
ee

s
F

)

Observed annual mean temperature in Riverside

Figure 3.9: Observed annual mean
surface temperature in Riverside.

Recall that the original global temperature data was given as an
anomaly compared to the average over some baseline (or reference)
period – in this case, year 1910 to 2000. If we treated both data sets
the same, and transformed the Riverside temperature data into a
comparable anomaly, a more direct comparison could be made.

To create an anomaly of the Riverside temperature data, relative
to the mean of the data for years 1910 to 2000, requires that we know
what the mean of the data is over the years 1910 to 2000. Using the
MATLAB function mean, you should be able to work out that you
need:

» tdata_mean = mean(tdata(:,end));

and then all you need to is is to subtract that from the annual data,
e.g.

» mean(tdata(:,end)) = mean(tdata(:,end))-tdata_mean;

(which is talking the last column of the array, subtracting tdata_mean

from all the values, and writing that vector back to the last column.
EXCEPT, the answer is apparently ...

» tdata_mean = mean(tdata(:,end))

tdata_mean =

NaN

NaN??? Oh no ...

Actually, more recent versions of MATLAB allow you to ignore
NaNs in basic stats functions such as mean. For example, referring to
MATLAB help and re-trying the example above:

» tdata_mean = mean(tdata(:,end),’omitnan’);

tells MATLAB to calculate the mean while ignoring any NaNs in the
vector.

132 str=’do you like bananas?’;

It was mentioned earlier that there were potential ’artifacts’ in the
Riverside mean annual temperature data. If you view the loaded in
data array in the Variable viewing window (double-click on the tempera-

ture_riverside variable name in the Workspace window), you can see for
a number of years and months, rather than numbers, ’NaN’s in the
cells. NaNstands for ’Not a Number’ and indicates that there is no
(valid) numerical value for that array position (cell). The impact of
there being a number of months of data missing, is that the annual
mean is no longer a true annual mean but rather simply the mean of
whatever monthly data exists for any particular year. For example,
year 2008 has no data other than during the summer and the annual
mean is hence simply equal to the July temperatures!

1880 1900 1920 1940 1960 1980 2000 2020
-5

-4

-3

-2

-1

0

1

2

3

4

5

Year

T
em

pe
ra

tu
re

 a
no

m
al

y
(d

eg
re

es
 F

)

Observed global mean temperature anomaly

Figure 3.10: Observed global annual
mean surface temperature anomaly,
relative to the mean of 1910 through
2000.

1880 1900 1920 1940 1960 1980 2000 2020
-5

-4

-3

-2

-1

0

1

2

3

4

5

Year

T
em

pe
ra

tu
re

 a
no

m
al

y
(d

eg
re

es
 F

)

Observed temperature anomaly at Riverside

Figure 3.11: Observed annual mean
surface temperature anomaly, relative
to the mean of 1910 through 2000, at
Riverside.

1880 1900 1920 1940 1960 1980 2000 2020
-4

-3

-2

-1

0

1

2

3

4

5

Year

T
em

pe
ra

tu
re

 a
no

m
al

y
(d

eg
re

es
 F

)

Observed temperature anomaly at Riverside

Figure 3.12: Observed annual mean
surface temperature anomaly, relative
to the mean of 1910 through 2000, at
Riverside, filtered to remove years with
missing monthly data.

One could address this by removing the years with (substantially)
incomplete monthly data from the data file45 and prior to loading

45 i.e. simply deleting the line in the file.

into MATLAB. Or would could process the data once in MATLAB.
This can be done by assigning to particular row (vector) of data, an
empty vector ([]).

Taking first a simple example of a column vector:

A =

1
2
3

from which we wish to remove the 2nd row. In MATLAB we would
create the vector by:

» A = [1; 2; 3];

and then remove the 2nd row by setting it to an empty element:

» A(2) = [];

Similarly, to remove the 2nd row of:

B =

1 4
2 5
3 6

we could type:

» B = [1, 4; 2, 5; 3, 6];

» B(2,:) = [];

(instead removing e.g. the 1st column would be B(:,1) = [])
So back to the temperature data – to remove the row containing

the year 2008 data for example46, which is row 11, we would write: 46 You can also delete rows (and
columns) if you open up the MAT-
LAB Array window (double-click on
the variable name in the Workspace
window). And ... edit/replace values ...

» temperature_riverside(11,:)=[];

Play this ’game’ – deleting as many row as you think result in bi-
ased means (because of missing monthly data)47, with the Riverside 47 (being aware that as you delete rows,

the numbering of the subsequent rows
changes as the array size shrinks ...)

further ... matlab and data visualization 133

temperature data, and re-plot the results. For example, the result
of removing ALL the rows with missing monthly data48, results in 48 (There are simple and quick ways of

doing this in MATLAB that we will see
later.)

Figure 3.12.

Finally, go back to the original global mean anomaly values (re-load
the data set if necessary) and convert from the anomaly in °C to
°F (i.e. simply multiply by 1.8 – no offset (32°F) is required in this
particular case). If you additionally, chose and set a sensible common
y-axis scale for both plots, you might end up with a pair of graphs
looking like Figures 3.10 and 3.11. 49 49 There are all sorts of likely reasons for

the differences. Firstly, the global mean
surface temperature rise includes both
ocean surface and land surface. Because
of the higher heat capacity of the ocean,
the ocean surface warms slower than
the land, and the ocean accounts for
ca. 70% of the total global surface
area. So it is somewhat inevitable that
the warming trend will be stronger
in Riverside. It may also be that the
Riverside data is influenced by the
’urban heat island’ effect, in which
long0-term measured trends can be
affected by increasing urbanization
of the area surrounding the weather
station. It may also be that the latitude
and specific location of Riverside, sees
much more warming that the global
mean.

134 str=’do you like bananas?’;

3.4 Even nicer graphing and graphics

There are a bunch of simple MATLAB drawing and text placement
commands that can help improve the look and feel of scientific plots,
or even replace the provided plotting functions (i.e. you can create
your own bespoke plotting functions). There are also a variety of
options for altering the axes, axes tick-marks, axes tick-mark labels,
etc that can be useful.

further ... matlab and data visualization 135

3.4.1 Drawing lines (and using handles)

line
To draw a simple (single) line on a

graphic:

» line ...
([x1 x2],[y1 y2])

where x1 and x2 are the x-
coordinates of the start and end
position of the line, and y1 and y2
are the corresponding y-coordinate
values.

You can also specify line colors and
styles in a similar way to when using
plot , e.g.

» line ...
([x1 x2],[y1 y2], ...
’Color’,’red’, ...
’LineStyle’,’-’)

plots a red dashed line.

We’ll start with some simple line drawing.
At the command line – open a new figure window (» figure;).

Then before anything else, do a » hold on; .
When MATLAB draws lines and shapes and places text, it needs

to know the coordinates of where to place things. It is not possible (I
think) to draw directly in the figure window – MATLAB needs what is
known as a frame to put things in, and the easiest way to do this is to
create a set of axes. Having opened a new figure window (even through
you have not plotted any data!), set the x- and y-axis range50:

50 Here taking the example range of
0-100 on both axes.

» axis([0 100 0 100]);

The resulting figure is really not very exciting (Figure 3.13).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 3.13: Figure window with axes.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 3.14: Figure window with single
line segment (via plot).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 3.15: Figure window with a
second line segment (via line).

There are 2 ways to draw a line (examples assuming the previous
Figure window remains open with hold on ...):

1. plot

Are you recall, plot will plot a sequence of (x,y) points, and by
default, join the points up with a line. If we wanted a diagonal
line, from the origin to the mid-point of the plot area, we could
invent a pair of vectors to define the two points we need – at (0,0)
and (50,50):

X1 = [0 50];

Y1 = [0 50];

and then plot the resulting points as a plot plot:

plot(X1,Y1);

You should now see something like Figure 3.14. (If you find that
the plot area has been re-sized such that the x- and y-axes now
both go from 0-50, then you have forgotten to do a hold on .)

2. line

MATLAB provides a specific command for drawing lines ... line .
In its simplest usage, it is a little like plot , except taking only a
single pair of x- and y-coordinate values.
To use line to draw a 2nd line segment, starting at (50,50) and
terminating at (100,0), we create another pair of vectors to define
these points:

X2 = [50 100];

Y2 = [50 0];

and then draw it:

line(X2,Y2);

as shown in Figure 3.15.

136 str=’do you like bananas?’;

Obviously, both line segments could equally well be drawn using
plot or line .

If you are just drawing, rather than annotating a plot with axes, then
you might want to turn off, or hide, the axes tick marks and tick
labels. To do this, we first need to find the special MATLAB ID of the
axes, which helpfully, because you only have one set of axes and have
just been using them, is the ’current axis’. To do this, we use the gca

function, which returns the handle (ID) of the axes:

» h = gca;

Having got the axis handle51, we can now ’set’ the properties of the

51 It is worth omitting the ; in order to
see the properties associated with the
axes, and in fact, it is worth clicking on
Show all properties to see a list
of everything that can be edited and
adjusted.

ALL these can be changed if you ever
want!!!

axes, using set :

» set(h,’XTick’,[],’XTickLabel’,”);

What this does is to tell MATLAB: take the graphics object with
the ID contained in variable h (which we just retried via the gca

function), and set (which is why we use the command set ...) the
following properties:

• ’XTick’,[] – set the number and position of tick marks on
the x-axis, to the contents of the empty vector [] .
• ’XTickLabel’,” – set the labels applied to the tick-marks, to
” (i.e. no text).

Actually, in this example, the 2nd graphics parameter set (the labels)
is sort of redundant, as there are no tick-marks in the first place ...

To see how different combinations of settings pan out, try:

» set(h,’XTick’,[0 50 100],’XTickLabel’,”);

(3 small inwards ticks, no labels)

» set(h,’XTick’,[0 50 100],’XTickLabel’,’cat’);

:o)
and/or:

» set(h,’XTick’,[0 50 100],’XTickLabel’,{’cat’,

’dog’, ’rabbit’});

where {’cat’, ’dog’, ’rabbit’} is actually a 3 string cell array
(the curly brackets are important to the syntax).

All this insanity should be looking like Figure 3.16 (if we also
remove the y-axis ticks and labels52).

52 It is sufficient just to type:

» set(h,’YTick’,[]);

cat dog rabbit

Figure 3.16: (no comment).

further ... matlab and data visualization 137

An alternative way to create a figure to draw on, without having to
remove the axes ticks and labels etc etc, is to create the axes as ’invisi-
ble’ in the first place. To try this – first create a new figure window.53 53 If you find yourself drowning in figure

windows, remember that close closes
the current window, and close all
closes all of them.

» h = axes(’Position’,[0 0 1 1],’Visible’,’off’);

Here, ’Position’,[0 0 1 1] specifies that the axes area should
fill the window, and ’Visible’,’off’ says to make the axes invis-
ible. (We keep a copy of the handle variable, h, just in case we need it
later.) And to set the axes to the same 0-100 limits as before:

» axis([0 100 0 100]);

Then hold on to start drawing things!54 54 For some reason ... you need to do
hold on only after creating axes frame
...

Try drawing some lines in this window (remembering the 0-100
axes limits when making up (x,y) co-ordinates).

The command set can be used in the context of any (I think?) graph-
ics object, i.e. any individual component part of a final plot such as
the axis line itself, the axis ticks, plotted lines and points, etc. For
example, in creating the line segment previously:

» h = line(X2,Y2);

you could store a copy of the handle of that line segment – here it is
being assigned to the variable h. With this, you can now change the
properties of the line (after you have drawn it). such as by:

• » set(h,’LineWidth’,2.0);

will change the line width to 2.0 (points).
• » set(h,’Color’,[1 0 0]);

will turn the line red, using the RGB (red-green-blue) notation:
[1 0 0] 55. 55 Alternatively:

set(h,’Color’,’r’);• » set(h,’LineStyle’,’:’);

will make the line dotted.

Note that here, you are setting line properties after you have cre-
ated the graphics, whereas earlier in eg. using plot to graph data,
you specified the properties at the same time as you draw the lines.
Both ways are valid, but being able to change properties later and
after plotting, gives you greater flexibility. Note that after plotting
a graphic, you can also edit and adjust its properties in the Figure

window itself (via its GUI)

Using a handle also now enables you to complete an earlier plot. For
the proxy CO2 data where you color-coded the points and added a
colorbar , there was not actually any indication of what the color

138 str=’do you like bananas?’;

scale actually means in terms of values (and of what). MATLAB will
add a colorbar to a plot with the command ... colorbar . Although
the color scale gets automatically plotted with labels for the values,
looking at the plot, we still don’t know what the values are of (e.g.
units). We can label the colorbar, but MATLAB needs to know what
we are labelling. Each graphic object is assigned a unique ID when
you create them and which normally you know nothing about. We
can create a variable to store the ID, and then pass this ID to MAT-
LAB to tell it to create a title for the colorbar. To cut a long story
short, you would add to your script file:

colorbar_id=colorbar;

title(colorbar_id,’Relative error (%)’;

The revised plot should then end up looking something like Figure
3.17 in which you can see the high relative uncertainty (bight colors)
prevail at low CO2 values and ’deeper time’ (ca. 200-300 Ma). The
colorbar title (label) is maybe not ideal, nicer would be one aligned
vertically rather than horizontally. We’ll worry about that sort of
refinement another time.

0 100 200 300 400 500

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

50

100

150

200

250

300

350

400

450

500
Relative error (%)

Figure 3.17: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

An obvious use for drawing lines on plots, is to annotate them. e.g.
placing a text label (we’ll see shortly), with a line pointing from the
text to a specific feature. You can do with with a simple line and
hence the line command.

It would be more handy and in fact common, to include an arrow
head to make clear that the line is pointing to something. This can
in theory be done by drawing 2 more, shorter lines, but is no fun
at all56. MATLAB hence provides the function quiver . quiver 56 True fact – I have tried it :(

is commonly used for plotting fields of arrows, but can equally be
used to create a single arrow – much like earlier you used plot to
draw just a single pair of joined up points and hence a line. However,
rather than take a pair of (x,y) points – one for the start and one for
the end, of the line, quiver takes an (x,y) location for the start of the
arrow, and then the length in the x and y directions.

Consistent with the previous example, we were starting the line
segment at (0,0), and then extending the line to (50,50). The length
vector in this case is also [50 50]. So, given the specific syntax and
input parameter format required by MATLAB for this function57,58: 57 Here – the last, 5th parameter (0),

tells MATLAB not to auto-scale the
arrow.
58 If your arrow head is hard to make
out – try creating a new figure window.
You can also use cls to clear all the
graphics in the window (i.e. and not
have to re-generate the figure window.

» quiver(0,0,50,50,0);

To make the syntax clearer and that we are passing 4 vectors (of
x and y origin locations, and x- and y-axis lengths), we could also
write:

» quiver([0],[0],[50],[50],0);

further ... matlab and data visualization 139

3.4.2 Colors

You are already familiar with setting colors for lines, with the nota-
tion: ’r’ , or ’b’ (for red, blue, respectively). This is nice and simple
and so totally fabulous ... except there are a limited number of colors
available in this notation (see Box).

MATLAB quick colors:

• y – yellow
• m– magenta
• c – cyan
• r – red
• g – green
• b – blue
• w – white
• k – black

Hence there is an alternative that enables a more exact specifica-
tion of color. In this particular scheme – red-green-blue, abbreviated
to RGB, you set the intensity of red, green, and blue, on a scale of 0 to
1. And supply this in a vector format to MATLAB. For example:

Figure 3.18: RGB scale. By
SharkD - Own work, GFDL,
https://commons.wikimedia.org/
w/index.php?curid=3375025

• [0 0 0] – zero intensity of all of R, G, B => black.
• [1 1 1] – 100% intensity of all of R, G, B => white.
• [1 0 0] – 100% intensity R, none for G and B => red.
• [0.5 0.5 0.5] – 50% intensity of all of R, G, B => grey.
• [0.5 1.0 0.5] – light green.

Play around with some RGB value combinations, plotting shapes,
or filled circles, e.g.

» scatter(50,50,1000,[0.25 0.75 0.25],’filled’);

A rendition of the RGB color scale is shown for reference in Figure
3.18.

3.4.3 Shapes

patch
To plot one (or more) filled polyg-

onal regions, pass 2 vectors of the
x and y as the coordinates for each
vertex, e.g.

» patch(X,Y,C)

where X and Y are the x- and
y-coordinates of the vertices. C
determines the polygon’s color.

For example, a red square would
be:

x = [0 1 1 0];
y = [0 0 1 1];
patch(x,y,’red’)

For 2D shapes – you can draw polygons using the function patch .
This takes as parameter input, a vector of x-coordinate positions, then
a vector of y-coordinate positions, and as a 3rd parameter, the color
for the object.

So in our previous example, with the x- and y-axes going from
0-100, say we want to draw a square in the middle, 20 units on each
side. We could create our vector of x-axis coordinates as such:

» X1 = [40 40 60 60];

and for the y-axis ... (some care is needed and often it might be help-
ful to sketch out the coordinate pairs and positions on a piece of
paper):

» Y1 = [40 60 60 40];

To draw, simply pass the 2 coordinate vectors to patch , along with
any line style specification:

» patch(X1,Y1,’r’);

as shown in Figure 3.19.

140 str=’do you like bananas?’;

Note that in this (X1,Y1) point notation, we are telling MATLAB
to plot a shape with vertices at:

(40, 40), (40, 60), (60, 60), (60, 40)

Also note that the order of the (x,y) pairs, matters, as MATLAB
draws the line segments between the vertices in the order that they
are given to MATLAB (as per for plot). For the same (x,y) pairs, try
creating X1 and Y1 vectors with the pairs in a different order and see
what happens.

Figure 3.19: Square.

Slightly changing the values of the (x,y) pairs can also give you a
diamond (-ish):

» X2 = [40 50 60 50];

» Y2 = [50 60 50 40];

» patch(X2,Y2,’c’);

as shown in Figure 3.20.

Figure 3.20: Alt square.
patch is in fact much more flexible than I have shown so far, and

in fact, will draw any polygon. Consider this sort of slightly random
series of x and y coordinates:

» X3 = [20 40 60 80 60 40];

» Y3 = [50 60 50 60 40 30];

» patch(X3,Y3,’g’);

gives Figure 3.21.

Figure 3.21: Random polygon.

Try designing/playing about with different shapes. Perhaps sketch
them out on paper first and list down the coordinates before telling
MATLAB.

If you have the MATLAB Image Processing Toolbox installed, then you
can use the command viscircles to draw circles.

If not – a crude but sometimes effective alternative, is to scatter

plot a single point ((x,y) location), and set a large size value for the
circle. For example:

» scatter(50,50,1000);

or filled:

» scatter(50,50,1000,’filled’);

further ... matlab and data visualization 141

3.4.4 Placing and making text ’nice’

There is not much to placing text and specifying its properties. The
MATLAB command for writing a string to a figure window, is text .
That’s it! (see Boxes)

text

text(X,Y,STRING);

will write the string contained in
the variable STRING (or you can
pass the text as a string directly), at
location (X,Y).

Note that by default, MATLAB
alights the left-hand edge of the text
with the X coordinate position, and
the mid-point of the string vertically,
with the Y coordinate. i.e. the string
is left-aligned and centered vertically.

A variety of additional properties
can be set at the time, e.g.

text ...
(X,Y,STRING,’FontSize’,12);

specifies a 12 pt font size. Other
common parameter options include:

• ’FontName’
• ’Color’
• ’Rotation’
• ’HorizontalAlignment’
• ’VerticalAlignment’

See MATLAB help for more details.

For instance, you could write:

» text(25,25,’bananas’);

and the text bananas will appear at location (25, 25) on your plot.
Additional parameters can be added to change font, size, etc (see

Box), e.g.:

» text(25,25,’bananas’,’FontSize’,24,’Color’,[0 1

1]);

for big light blue ’bananas’.

When MATLAB displays text, be
aware that there are a bunch of
special characters that may not come
out as the character you want. The
more common ones are:

_ – will make the following char-
acter a subscript, or a sequence of
characters if you place them within a
pair of curly brackets {}.
∧ – will make the following char-

acter a subscript, or a sequence of
characters if you place them within a
pair of curly brackets {}.

142 str=’do you like bananas?’;

3.4.5 Creating color maps
colormap (2)

As mentioned earlier, MATLAB
has a number of ’colormaps’ built in,
which are:

• parula (default)
• jet (old default ... avoid ...!)
• hsv
• hot
• cool
• spring
• summer
• autumn
• winter
• gray
• bone
• copper
• pink
• lines
• colorcube
• prism
• flag

and which you can set by:

» colormap NAME

(or colormap(NAME)), e.g.:

» colormap ’hot’

(or colormap(’hot’))

As mentioned earlier – MATLAB enables a range of different color
scales (colormaps) to be used in (esp. contour) plotting and provides
around dozen built-in possibilities (see Box).

Taking the earlier example of loading and plotting the global to-
pography data:

» data = load(’etopo1deg.dat’,’-ascii’);

» imagesc(data);

gives Figure 3.22, and

» colormap(’hot’);

» imagesc(data);

gives Figure 3.22.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.22: Global topography plot-
ted with the default MALTAB color
scheme.

You can also define your own colormap. Colormaps are simply a
matrix of [RGB] colors. The most trivial colormap would be:

» cmap1 = [0 0 0];

» colormap(cmap1);

creates and applies a colormap containing a single color (black). Try it
... but ti is clearly not very useful ...

Better, would be:

» cmap2 = [0 0 0; 1 1 1];

» colormap(cmap2);

which creates and applies a color scale containing 2 colors - black
and white and when used for the topography data, gives Figure 3.24.
59

59 Remember, imagesc plots using the
maximum number of colors available,
and in this example, the mid value
between the deepest place in the ocean
and highest point on land, divides the
colors into black and white – within
specifying a particular scale, this color
separation does not occur at zero
(sealevel)

You can keep adding colors, e.g.

» cmap3 = [0 0 0; 0.5 0.5 0.0; 0.0 0.5 0.5; 1 1 1];

but this is a lot of effort to keep adding single additional colors.
What you really want to do, is to define end-member colors, and then
tell MATLAB to interpolate in between these. Recalling back a couple
of subsections:

» ynew = interp1(xold,yold,xnew);

takes the y-values (yold) at x-values xold , and interpolates onto the
x-values defined by the vector xnew (and assigns the new y-values to
vector ynew). For instance, if we have the following crudely spaced
data60: 60 In MATLAB notation:

xold = [0 3 7 13 16 22
30];
yold = [0.2 0.6 0.7 0.3
0.3 0.1 0.0];

further ... matlab and data visualization 143

0 0.2
3 0.6
7 0.7
13 0.3
16 0.3
22 0.1
30 0.0

and we wanted to create an interpolated dataset from 0.0 to 30.0 (in
x-axis values) in steps of 1.0, we would first create the new x-axis
vector that the data will be interpolated on to:

xnew = [0.0:1.0:30.0];

and then we would write:

» ynew = interp1(xold,yold,xnew,’spline’);

and obtain the interpolated data as shown in Figure 3.25. (Try this.)

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.23: Global topography plotted
with hot .

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.24: Global topography plotted
with a basic black+white dual color
scheme.

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.25: Comparison of sparsely
sampled data (points) compared with a
more finely spaced spline interpolation
(solid line). (x-axis and y-axis are both
unit-less.)

We can do something similar for the colormaps. Consider the sim-
ple end-member black-to-white white scale:

» cmap2 = [0 0 0; 1 1 1];

We can write this as points along a vector x (the axis not representing
anything in particular – the number of the color, or simply the nor-
malized distance between the extreme end-member colors), together
3 color vectors (for the separate red, green, and blue component val-
ues):

xold =

(
0.0
1.0

)

, rold =

(
0.0
1.0

)

, gold =

(
0.0
1.0

)

, bold =

(
0.0
1.0

)

and:

» xold = [0.0; 1.0];

» rold = [0; 1];

» gold = [0; 1];

» bold = [0; 1];

If we want to create a scale of 11 total (from 0.0 to 1.0 in steps of
0.1) different colors, we can create a new x vector to interpolate on to:

xnew = [0.0:0.1:1.0];

and then either interpolate the 3 color vectors separately:

rnew = interp1(xold,rold,xnew,’spline’);

gnew = interp1(xold,gold,xnew,’spline’);

bnew = interp1(xold,bold,xnew,’spline’);

144 str=’do you like bananas?’;

or MATLAB allows us to interpolate all together if we first combine
the sperate vectors:

mapold = [rold gold bold];

and then:

mapnew = interp1(xold,mapold,xnew,’spline’);

If you now set the new colormap (» colormap(mapnew);) and
re-plot the global topography, you should get Figure 3.26.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.26: Global topography plotted
with a user-defined grey-scale.

further ... matlab and data visualization 145

3.5 Stats (it had to happen ...)

3.5.1 Basic (pretend) ’stats’

We are not going to delve into complex stats here. A variety of stats
related functions are included in the MATLAB Statistics Toolbox.
We’ll stick to some simple functions included as standard in the basic
package. Useful basic stats-related functions include:

• min – the minimum value of ...
• max – the maximum value of ...
• sum – the sum of a vector of numbers.
• mean – the mean of a vector of numbers.
• std – the standard deviations of a vector of numbers.
• var – the variance of a vector of numbers.
• median – the median value of ...
• mode – the mode value of ...

For instance, consider vector A (integers from 1 to 9, inclusive):

» A = [1:9];

Try out all of the above functions on the vector. Most of the values
you can pretty much guess. The mode of the vector is perhaps the
only one where it comes up oddly, because the mode of a set of val-
ues is defined as the most popular value, yet you have created only
one of each value in the vector. So all values are in theory equally the
most frequent and MATLAB simply returns the first.

So try adjusting the vector, adding an additional ’7’ at the end:

» B = [A 7];

Now what is the mode value of the vector B?
Sometimes you have have the situation where you have one or

more NaNs in the data. For example:

» C = [A NaN];

Now try out some of the same functions on vector C. What hap-
pens? Why MATLAB does this and does not simply ignore NaNs, is
anypony’s guess. I mean, what application could you possibly have
where when you ask for the mean of a vector, you are hoping to be
told ’NaN’? There are solutions.

1. Firstly – you could use find, to find and remove NaNs from
data. So if you have data that includes NaNs, you could simply
filter them out prior to processing the data. The function for de-
termining whether or not an array element is a NaN, is isnan)see
earlier Box).

146 str=’do you like bananas?’;

2. Or you could create a loop and test each element in turn as to
whether or not it is a NaN(again, using the isnan function).
3. The MATLAB functions listed above, all (most?) have an ad-
ditional optional parameter (see Box) that allows you to direct
MATLAB to ignore NaNs in the data.
4. Lastly, in the Statistics Toolbox, there are variants of all (most?)
of these functions that automatically ignore NaNs, such as nanmean

(the NaN-ignoring variant of mean)

Try out each of these solutions, applying them to the vector C (or a
NaN-containing vector of your choice).

All of these functions can also be used on 2D arrays (matrices) ...
with care. Consider the matrix:

» D = [1 2 3; 4 5 6; 7 8 9];

(which has the same elements as A, just in a different configuration).
What happens when you ask for mean(D) ? As per help (and the
Box): ’If A is a matrix, then mean(A) returns a row vector containing the
mean of each column.’ So mean(D) is returning the mean of [1 4 7] ,
[2 5 8] , and [3 6 9] . Try transposing the matrix and then using
the mean function. You should see that you now get the mean of the
individual rows (rather than columns) of matrix D:

» mean(D’)

ans =

2 5 8

This goes for sum and all (most?) the rest of the functions.
If you need the total sum of all the elements in a matrix, or mean

of all the elements in a matrix, you can simply nest the functions:

» sum(sum(D))

or if you prefer breaking things down into sperate steps:

» E = sum(D); » sum(E)

However, note that std(std(D)) is not the standard deviation of
all elements in the matrix D. Why?

3.5.2 ’Real’ stats

4

Further ... Programming

In this chapter we’ll get some (more) practice building programs
and crafting (often) bite-sized chunks of code that solve a specific,
normally computational or numerical (rather than scientific) problem
(algorithms) 1.

1 According to the all-mighty Wikipdeia
(and who am I to argue?) – an "algo-
rithm ... is a self-contained step-by-step set
of operations to be performed. Algorithms
perform calculation, data processing, and/or
automated reasoning tasks."

Search algorithms
Lets assume that you have a

function:
y = f (x)

There are two common cases that
you might want to solve (or approxi-
mate):

1. The value of x such that
the value of f (x) is minimized
(y ' 0).
2. The value of x such that the

value of dy
dx is minimized (first

derivative ' 0.

Lets further assume that you
can place some initial limits on
x : xmin ≤ x ≤ xmax .

A good place to start in both ex-
amples is to test the mid-point of
the limits: f (xmin+xmax

2) (In some
cases you might instead take the
log-weighted mean.)

In case #1 and assuming that dy
dx is

positive, if:
f (xmin+xmax

2) > 0

you replace xmax with xmin+xmax
2 (the

current tested value of x) and if:
f (xmin+xmax

2) < 0

you replace xmin with xmin+xmax
2 .

Keep repeating until the differ-
ence y and zero falls beneath some
specified tolerance.

In case #2, you need to test the
value of f (x) infinitesimally away
from f (xmin+xmax

2) to determine
whether the gradient is positive or
negative (assuming that you do not a
priori know the derivative function).
The idea here is to ensure that the
values of xmin and xmax correspond
to positive and negative (or negative
and positive) gradients. i.e. xmin+xmax

2
replaces xmin or xmax according to
which has the same sign of gradient.

148 str=’do you like bananas?’;

4.1 Nested loops

A helpful device, particularly when dealing with arrays of data in
MATLAB, is to nest loops – i.e placing one loop inside another one.
(So far, you have seen single loops, and single loops with conditionals
inside, but not nested loops.) A generic code for a nested loop might
look like:

% loop 1 start

for n=1:10

% loop 2 start

for m=1:10

%%% CODE

end

end

Here, the value of n cycles (’loops’) from 1 to 10 (i.e. the loop goes
around 10 times). Then ... for each value of n, the value of malso
cycles from 1 to 10. The code in the middle of the innermost loop is
then executed a total of 10 × 10 = 100 times.

Try this (in a new script file) and confirm that the outer loop cycles
around 10 times, and the inner loop ten times for each cycle of the
outer loop. (e.g. you might add a disp line both within the inner
loop, as well as outside of the inner loop (but still within the outer
loop), and/or you might add break points).

Why would you do this (what use could it be)?
Image you are programming a game of Tic-tac-toe (in fact we will,

in a later chapter!). The drawn grid might look like Figure 4.1.2

2 In this case, player x has obviously
already won. What was naughts think-
ing???

Figure 4.1: Tic-tac-toe game grid.

In terms of MATLAB and computer programming, we might
create a representation of the grid, and assign 0 to unpicked squares,
a 1 for where a cross is, and a 2 for where a naught is, as per Figure
5.7 (because we cannot numerically represent an actual cross or circle
shape).

Figure 4.2: Tic-tac-toe game grid with
numerical codes overlain.

To store this information, we could create an array in which each
location would have a value of 0 (unassigned square, 1 (player #1), or
2 (#player2)), e.g.

1 2 0
1 2 0
1 0 0

and as per Figure 4.3

Figure 4.3: Tic-tac-toe game grid –
numerical representation.

OK – ignore the existence of the MATLAB function find , and lets
say that you want find the locations of the crosses – ’1’s in the array
code notation. You need to test each and every location in the array
(lets call it tokens) in turn for whether its contents is a ’1’ or not.
We could do this long-hand ...

further ... programming 149

if ((tokens(1,1) == 1) || (tokens(2,1) == 1) ||

(tokens(3,1) == 1) || (tokens(1,2) == 1) || ...

... but would get desperately tedious pretty quickly.3 And what if the 3 Note what is being done here – we are
using a series of ORs (||) to determine
whether any of the array locations
(squares0 contain a value equal to 1.

grid (array) was 100 × 100? You could have to have 10, 000 tests of an
equality in the if ...

The idea then is to loop through all the locations in the array in
turn. And we do this by: For each row (which we search through in
a loop), we loop through all the columns. Our code fragment would
then loop like:

% loop 1 start

for row=1:3

% loop 2 start

for column=1:3

if (tokens(row,column) == 1),

%%% CODE

end

end

(where %%% CODEis simply a place-holder for some code we might
need here to act on having found a player #1 square.

This nested loop ensures that you visit each and every array loca-
tion in turn – working across every column, for each and every row,
as per Figure 4.4 and test for the occurrence of a value of 1.

Figure 4.4: Tic-tac-toe game grid –
search order: columns then rows.

We could also carry out the search of (rows, columns) in the oppo-
site order:

% loop 1 start

for column=1:3

% loop 2 start

for row=1:3

if (tokens(row,column) == 1),

...

end

end

and now loop through each row (inner loop) for each column (outer
loop) as illustrated in Figure 4.5. The result is exactly the same. To
some extent, which axis direction you choose as the outer loop is a
matter of personal preference.

Figure 4.5: Tic-tac-toe game grid –
search order: rows then columns.

You can also search in the opposite direction (sign), e.g.

% loop 1 start

for column=1:3

% loop 2 start

for row=3:-1:1

if (tokens(row,column) == 1),

%%% CODE

end

end

150 str=’do you like bananas?’;

searches across columns, form left-to-right, but rows in the order
bottom-to-top. This perhaps looks a little like how you might visual-
ize a search on a (lon,lat) grid(?)

The concept is the same even for very large grids (where you
cannot easily draw a graphical representation to help you).

Nor, do the number of rows and columns have to be the same. For
example you might want to access information stored in an array
that has a cell location for every day of the year. In this case, you
might have 12 columns for the 12 months, and 31 rows so that you
can accommodate the number of days in the longest month.4 In fact, 4 MATLAB does not allow the number

of rows to differ, from column to
column – a matrix must have a strictly
rectangular shape. MATLAB and
other programming languages allow
the creation of objects, that are more
flexible.

in this example, the inner loop – days – might have a different loop
maximum, depending on which month, e.g.

% month loop start

for month=1:12

% determine length of month

switch month

case {1, 3, 5, 7, 8, 10, 12}

day_max = 31;

case {4, 6, 9, 11}

day_max = 30;

case 2

day_max = 29;

end

% day loop start

for day=1:day_max

%%% CODE

end

end

Here, the switch ... case structure is used to test for which
month (number) it is, and set the day-of-the-month loop limit ac-
cordingly. Note the use of curly brackets {} in defining the list of
elements in the case statement. (A single element does not require
curly brackets.)

Try this code (in a new script file). Add a disp line within the day
loop to confirm that the correct number of days is being counted up
to each month.

Also – try (in the same script file, or create a new one) replacing
the switch ... case structure, with if ... elseif . You will
need to use OR (||), e.g.

if (month==1 || month==3 || month==5 ...)

(and then either 2 elseif bits, or 1 elseif and one else in the if

... structure).

further ... programming 151

To test your understanding ... for the matrix:

A =

4 66 13 42 36 14
33 4 0 28 11 22
18 26 7 1 5 19
12 9 23 30 7 2
0 0 2 0 15 33
14 42 17 27 8 0

determine ... NOT using find (or similar), but rather via a nested
loop, how many occurrences there are of values 5 6: 5 Hint: Before the next loop starts, you’ll

need to define a parameter to keep
count of the number of values you find
that meet the criteria, and set it to zero.
Then in the (nested) loop, increment
the counter variable by 1 each time you
find a value matching the criteria.
6 Also hint: At the start of the script (af-
ter your initial descriptive comments!),
define A.

1. greater than 9

2. greater than 9 but less than 20

Make a new script m-file for this. You’ll need to create a nested
loop to test each and every location in the array in turn. Display
(disp) the result at the end (after the (nested) loop has ended). You
an either set fixed loop limits, e.g.

% define A

A = ...

% row loop start

for row=1:6

% column loop start

for column=1:6

%%% CODE

end

end

remembering that within the inner loop, you access that particular
element of A by: A(row,column) .

Or you can be more clever/flexible and use the size function to
determine the number of rows and columns on the basis that A might
be any different matrix, e.g.

% define A

A = ...

% find size of A

[nrows,ncolumns] = size(A);

% row loop start

for row=1:nrows

% column loop start

for column=1:ncolumns

%%% CODE

end

end

which now becomes generic for any sized array A.
For e.g. the number of occurrences of values great than 9, you

will need a counter, which you initially set as zero, before the first

152 str=’do you like bananas?’;

loop starts ... and then you increment ... i.e. add 1 to its value and
re-assign the new total back to itself ... when the condition (value > 9)
is met:

if A(row,column) > 9

count = count + 1;

end

(This conditional test of whether the value of the current array ele-
ment is greater than 9 or not, will go within the innermost loop.)

After the outer loop has ended, disp lay the answer (value of
count).

Next: for the simple tic-tac-toe (3 × 3) grid, at each (column,row)
location, you are going to draw a colored square.

Firstly, at the start of a new script m-file, add the lines:

% **************************
% YOUR COMMENTS ON WHAT THE PROGRAM DOES

% **************************
% create a new figure window

figure;

% create a set of invisible axes that will the window

fh = axes(’Position’ ,[0 0 1 1], ’Visible’ , ’off’);

% scale the axes (to go from zero to 3)

axis([0 3 0 3]);

% hold on!

hold on;

Here:

• The line starting fh = ... creates a plotting area with no axes
visible, and filling the Figure window area ([0 0 1 1] in nor-
malized units). The handle to this is returned (variable fh), just in
case we ever need it later.

• Then, the axes are scaled for convenience – there are 3 rows and 3
columns in the grid we want to create, so a ’reasonable’ choice is
to set axis([0 3 0 3]) , although we need not have.

• You know what hold on does, right ... ?

You can then add the nested loop code framework7: 7 To your m-file, after the hold on line.

% loop 1 start

for column=1:3

% loop 2 start

for row=1:3

%%% CODE

end

end

further ... programming 153

Note that for convenience and to relate things to a more familiar
(x,y) coordinate system, we are now going to assume that column=1

corresponds to x=1 in the plot, and row=1 corresponds to y=1 in
the plot. i.e. we are working from the bottom left hand corner, first
across the columns, and then up the rows. (It does not matter what
array location in terms of (rows,columns) you assume any (x,y) loca-
tion corresponds to, as long as you remember what correspondence
between (column,rows) in the matrix and (x,y) in the plot, you are
assuming.)

To draw a square, the easiest function to use is patch (see earlier).
For the coordinate parameters to be passed to patch , if your current
location in the loop was column=1 , row=1 – assuming the notation
and orientation where we start counting from the bottom left-hand
corner – the coordinates for the bottom left hand square are:

(0, 0), (1, 0), (1, 1), (0, 1)

and for which patch will then take input:

patch([0 1 1 0], [0 0 1 1],’black’);

(remembering that patch takes a vector of all the x-coordinates as a
1st parameter, and then a vector of all the y-coordinates as the second
parameter).

If you do no more than this (and use the patch line exactly as
written above in your code and within the inner loop), you end up
looping through the (3 × 3) grid, but only even (re-)plotting the same
square in the bottom left-hand corner ... this is ’OK’ – exactly what
you have told the computer to do so far.

The mental leap is to generalize the problem and to notice that if
your column (x) and row (y) values correspond to the loop variables
column and row , respectively, you could write:

patch([column-1 column column column-1], ...

[row-1 row-1 row row],’black’);

Take a while to think about this – work through in your head what
would happen for column=1 and row=1 (this is the same as above).
Then ... what would happen for the next step in the loop – when
column remains 1, but row=2 . Where is this square plotted? (Draw
on a piece of paper or test in the code.) And then for column=1 and
row=3 ? Once we hit the end of the inner loop (row=3), the value of
column is incremented by 1 and the row count is reset to 1 – where
then would the patch square for column=2 and row=1 be drawn?

Play this mental (or on paper) game until the end column=3 and
row=3 or until you are happy how the code works and how each of
the squares in the (3 × 3) grid are going to be drawn in turn.

Figure 4.6: 3x3 grid of black squares ...

Try this (adding this patch command to your code). You should
end up with 9 black squares in a (3 × 3) grid ... which will simply

154 str=’do you like bananas?’;

look like a huge black square filling the figure window, as per Figure
4.6 ... :o)

You could make it a little more interesting by creating a color
value derived from the values of the column and row counters, e.g.

color = (column + row);

(on the line immediately before patch) and then modify the patch
command:

patch([column-1 column column column-1], ...

[row-1 row-1 row row],color);

Re-running the script, you now get Figure 4.7.

Figure 4.7: 3x3 grid of colored squares.

You might notice that the colors are the same along diagonals,
because you get the same value of color whether you are at location
(1, 2) or (2, 1). We could make the location colors more distinct by
modifying how we derive a value for color , e.g.

color = (column ∧2 + row);

(Figure 4.8) Figure 4.8: (yawn)

You could also create distinct colors by using the rand function
(see help and Box). e.g.

color=[rand rand rand];

where we are now specifying random values (in the range 0-1) for
each of the three red, green, blue color intensity components (see
earlier). (No figure example shown.)

Maybe play about a little creating different patterns of colors.

rand
rand (with no passed parameters),

returns a quasi random real number,
in the range 0.0 − 1.0.

This can be scaled, so e.g.
10.0 * rand returns a number in
the range 0.0 − 10.0.

1.0+9.0 * rand returns a real
number in the range 1.0 − 10.0.

round(0.5+9.999999 * rand)
returns an integer in the range
1 − 10.

(Remember, that having obtained
a random integer starting from 1,
you can use this to index an array
and hence ultimately, access different
images at random.)

As a final example, consider the chess board. A chess board
consists of squares in a 8 × 8 grid. The squares alternate black and
white. To define 8 squares (points) along the x-axis on the bottom
row, you’d write something of the form:

for m=1:8

% SOME CODE GOES HERE

end

(taking mas the counter along the x-axis).
Now, if you wanted to define 8 squares up each column (the y-

axis), at each and every x-axis value, you’d need to loop through all
the rows. So you need a loop in e.g. n, inside the loop for m:

for m=1:8

for n=1:8

% SOME CODE GOES HERE

end

end

further ... programming 155

Follow this through to satisfy yourself that for each and every value
of mfrom 1 to 8, n loops from 1 to 8, and hence visits every point in
turn of a 8 × 8 (n,m) grid.

zeros
zeros creates an array of dimen-

sion 2 or higher, consisting entirely
of zeros! Actually, this is not as
useless as it sounds, and represents
a simple way to create a large array
of a particular shape that can have
then have (non zero) values set
subsequently. To generate an n × m
matrix of zeros, you use:

A = zeros(n,m);

There is a short-cut if the 2 dimen-
sions are the same (i.e. n = m), and
you can simply write:

A = zeros(n);

Simply list additional comma-
separated integers (or variables
containing values), to extend to 3 (or
more) dimensions.

Actually, now we have got this far, it is good practice to consider
how we’d define the black and white squares. We’ll assume that
black is represented by ’1’ (true) and white by ’0’ (false) and create a
board (array) of all white squares to start with, i.e.

board = zeros(8);

(Refer to help or earlier for the syntax for help on the function
zeros .8) This array will be defined at the start of your program –

8 You could alternatively write this:

board = zeros(8,8);

after any comment lines and before the first loop starts.

mod
Not ... the opposite of rocker

(which doesn’t exist in MATLAB
anyway) but short for modulo.
Wikipedia helpfully tells us:

"In computing, the modulo operation
finds the remainder after division of one
number by another (sometimes called
modulus)."

Or in MATLAB-speak:

b = mod(a,m)

"returns the remainder after division of
a by m, where a is the dividend and mis
the divisor".

It turns out that as long as a is pos-
itive, you can use to test for whether
an integer a is even or odd by:

b = mod(a,2)

When the returned value b is 0, a is
even, and when b is 1, a is odd.

If we start with a black square (’1’) at the bottom left, we could
define an algorithm for creating the grid as: odd column number
squares are black, as long as row number is odd, otherwise white.9

9 Look up a picture of a chess board to
convince yourself that this works.

To implement this in code – as we loop through both column
(m) and row (n) on the board, we will test for the column number
being odd and row number odd, OR, the column number being
even and row number being even. If true, the square is defined as
black. The only tricky bit is to determine whether the row or column
number is even or odd. We do this by testing whether there is any
remainder after dividing by 2, using the function mod. i.e. if the
number is divisible by 2 with no remainder, the number is even; if
the remainder is 1, the number is odd.

A complete (but lacking comments!) code might look like:

board = zeros(8);

for m=1:8

for n=1:8

if ((mod(m,2)>0 && mod(n,2)>0) || ...

(mod(m,2)==0 && mod(n,2)==0))

board(n,m) = 1;

end

end

end

Given that mod 2 of an integer can only be 0 or 1, we could write:

board = zeros(8);

for m=1:8

for n=1:8

if ((mod(m,2)==1 && mod(n,2)==1) || ...

(mod(m,2)==0 && mod(n,2)==0))

board(n,m) = 1;

end

end

end

(don’t type this in yet ...)

156 str=’do you like bananas?’;

Easier to use and see,is to expand the if ... into its individual
parts and add comments, e.g.

board = zeros(8);

for m=1:8

for n=1:8

% Here we are asking if both m and n are odd

% => set value 1

if ((mod(m,2)==1 && mod(n,2)==1))

board(n,m) = 1;

% Here we are asking if both m and n are even

% => set value 1

elseif (mod(m,2)==0 && mod(n,2)==0))

board(n,m) = 1;

% Otherwise, one must be odd and one even,

% and we do not care which is which!

% (set value to zero)

else

board(n,m) = 0;

end

end

end

(you are GO to type this in!)

Here, the final else bit is not strictly necessary as the board

array has been initialized as being all zeros. (But it does not hurt to
reassign a zero value if it helps you better read and understand the
code.)

Spend a little time working through the code in your head and
making sure you are happy how it works. It simply creates an array
of zeros and then sets to a value of one, all the diagonally adjoining
squares (as per Figure 4.9).

Create a new script m-file and add this code to it (plus com-
ments!).

To crudely visualize the result (array contents), after the nested
loop has ended (after the very last end), add a line using the imagesc

function to plot the array contents (cf. Figure 4.9 and refer back to the
syntax of how to visualize array contents using this function). Beauti-
ful!

Figure 4.9: Chess board grid pattern.

You could also create a Figure – Copy and rename your working
(8 × 8) grid code m-file. Comment out the imagesc line at the end.
Then add to the top of your file, the code given to you from the start
of the tic-tac-toe (3 × 3) grid section.

To draw the different color squares, you will need to use the
patch function again. You can use the same algorithm as you used
before ... replacing column and m, and row with n.

further ... programming 157

The only complication is that you want to draw a square with one
color if the value of board(n,m) is zero, and another if board(n,m)

is one, although you could also ’cheat’ and simply not draw any
square if board(n,m) is zero and that would become the white
squares in the board (so then you only have to test for board(n,m)==1

and draw a black square using patch if true . Whichever you
choose – your if ... end structure will come still within the
inner loop, but after the if ... end structure that sets the value
of board(n,m) .

158 str=’do you like bananas?’;

4.2 Algorithms and problem-solving

This (algorithms10 and problem-solving) is not something that can 10 algorithm – "a process or set of rules
to be followed in calculations or other
problem-solving operations"

really be ’taught’ per se, but rather practised and aided by a logical
state of mind. We’ll go through a series of step-by-step examples.
Hopefully this will also illustrate some general coding approaches.

4.2.1 Example #1: max(!)

So yes, this is a built-in function max in MATLAB, but suspend dis-
belief for a moment ... and pretend that there is not one. What if we
wanted to create one, i.e. a function that is passed a vector of num-
bers, and returns the maximum value on that vector? 11 11 Example codes provided

So already, from the definition of the problem, you know how
to create a new m-file a define a function – one that takes as input a
variable (a vector), and returns the largest value in that vector.12,13 12 Note that you do not need to specify

that the input variable is a vector, just
that there is a variable input.
13 Here, my personal naming conven-
tion has:

s_out – the output variable, and s
for scalar

v_in – an input variable, with v
designating vector ...

(This is perhaps, overkill, but leads
little room for any confusion later.)

function [s_out] = maxx(v_in)

% maxx

%

% Takes a (single) vector as input;

% returns the maximum value.

%%% CODE

end

You have hence created a (empty) shell for the program (function).
You could try calling it/running it at the command line, just to check
there is no problem so far, although it is clearly not going to do any-
thing. To call your function at the command line – remember that you
have defined the function to take 1 input – you must therefore give it
an input ... First – make a test input in the MATLAB workspace (not
in the function), e.g.

» A = [1:100];

which defines a vector of integers between 1 and 100. You can now
call the function at the command line, passing in this test vector to
maxx:

» maxx(A)

Nothing gets returned yet, but equally, you should not be presented
with pages of red MATLAB error text.

You could extend your basic testing by returning just the first
element of the input vector, i.e., before end , add:

s_out = v_in(1);

and then re-try:

» maxx(A)

further ... programming 159

You are still not solving the problem yet, but in this step, you have
now demonstrated that your function can take in a (vector) input,
do something with it, and now set the output variable (and return
a scalar)14. This is an important step in developing more complex 14 Which in this example just happens to

be the first element of the vectorprograms.
OK, so ... we need to devise an algorithm to find the largest value

in the vector v_in . The first piece of potentially useful information
you can find, is the number of elements in the vector. You can obtain
this via the function length 15. 15 It turns out that length does not

care about the orientation of a vector,
and:

A=[1:10];
length(A)

gives the same answer (10) as:

A=[1:10]’;
length(A)

So near the top of the function (but below the function definition
line and the following comment lines), you could create a variable, set
equal to the number of elements in the vector that you are going to
have to process:

nmax = length(v_in);

What about the next part or structure in the program? You are go-
ing to need to search through all the elements of the vector if you are
going to find the maximum value, so presumably a loop is required –
one that loops through from the first to last element of the vector:

for n = 1:nmax,

end

(and which goes after the value of nmax has been defined).
The crux of the problem is recognising that you need to keep

tabs on the running maximum value, or a local or temporary max-
imum value, that is your maximum value so far as you progress
through repeated iterations of the loop. With this value, you are going
to test whether each element of the array is larger than it – if true
(the element in the vector being tested is larger than the current or
largest-to-date maximum estimate) – you are going to replace the
current maximum estimate with the vector element that you have just
found is larger than your largest so far. We could call this variable,
e.g. temp_max to indicate that is it temporary and not necessarily the
largest value of the vector as a whole.

Within the loop, the test we make is therefore:

if (v_in(n) > temp_max),

temp_max = v_in(n);

end

Make sure you are happy what this is doing – if the current loop
value of the vector (v_in(n)) is greater than the largest value found
so far as we work our way through the vector (temp_max), then we
update the value of temp_max with it.

Almost there! Run the program/function and see what happens.

160 str=’do you like bananas?’;

MATLAB is unhappy about the line where the value of temp_max

is being tested against v_in(n) . It may be obvious to you when (in
terms of loop iterations) this is occurring. If not, why not, just after:

for n = 1:nmax,

disp (lay) the value of n. OR, add a breakpoint on the problem line,
so that MATLAB will pause just before the line that gave the error, is
executed.

Either way, you should have found that the value of n is 1, i.e. the
error is occurring on the very first iteration of the loop. Why? As per
the error – MATLAB does not know what temp_max is. This occurs
because you have not yet assigned it a value when the loop starts.

So our problem is one of initialization – we need to give temp_max

an initial value, so that when the first iteration of the loop occurs, and
the first element in the vector is accessed, there is something to com-
pare it with.

There are 2 (probably 99999999) ways to go about this:

1. Seed the value of temp_max with a value so improbably small,
that you are betting that any conceivable array of numbers will
have a number greater than this.16 For example, before the loop

16 There are obvious dangers here,
should a vector of all insanely low
values be given as an input. You could
for instance determine whether any of
the values were higher than the seed
value, and if not, report or return an
error message. So in this case, even if
the function did not work, you would
be told why. A bit like MATLAB
functions in general, no?

starts, you might write:

temp_max = -999999999;

And then go through testing all nmax elements in the vector.

2. Better, would be to initialize your temporary maximum vari-
able with the fist element in the vector, i.e..

nmax = v_in(1);

You might also recognise that now, you need not test this against
the first element, and the loop could start at 2 rather than 1, e.g.:

for n = 2:nmax,

Finally, remember to set the output variable equal to the maximum
value that you find.17 17 After the loop ends.

There are 2 further testing or debugging (if you have issues) steps:

1. Firstly, simply go through in your mind, what you think hap-
pens on each iteration. Writing down how the values, e.g. of the
temporary variable change on each iteration, is a good idea. Obvi-
ously you can do this prior to writing the code, to give you an idea
of how it will work (or not).

2. Create a series of test arrays (vectors), or varying length, or-
dered, or random numbers, integers and/or reals, whatever youn
like ... and see if your function works each and every time.

further ... programming 161

When you are passably happy with that – write a (new) function
that finds the minimum element in a vector input.m18 Call this func- 18 Easiest is to copy the m-file, rename it

minx.m , and edit the function name on
the first line of the file. Then ... edit the
code to find the minimum rather than
maximum value.

tion minx . You will need this later on ...

[OPTIONAL] – To deal with duplicate maximum values occur-
ring – create a new (empty m-file) function that returns a second
variable from the function – equal to the number of elements that are
equal to the maximum.19 (i.e. if the maximum value appears 5 times 19 If we were cheating, and we are

not ... then one could use the built-in
MATLAB functions as so:

length(find(A==max(A)));

Which says ... find the elements in A,
equal to max(A) and determine the
length (number of elements) of this
resulting vector (find(A==max(A))) ...

in the input vector ... you additionally return the number ’5’.)
The structure of the (your new) function will now look like:

function [s_out1 s_out2] = maxxes(v_in)

% maxxes

%

% Takes a (single) vector as input,

% returns the maximum value

% PLUS the number of elements equal to that value.

%%% CODE

end

which passes back two variables (rather than the single one you had
before).

You might try exploring what you are doing to ’do’ with 2 out-
puts ... e.g.. if you (temporarily) added the following lines to your
function:

s_out1=v_in(1);

s_out2=v_in(2);

then at the command line, you could test the function:

» maxxes([1:100])

here passing in a vector of integers from 1 to 100, and you should see:

ans =

1

which ... is not right(!) and is only 1 of the outputs!!! So you need
to tell MATLAB to explicitly assign the result of your function to 2
variables, e.g.

» [a b] = maxxes([1:100]);

Now you get the results you were expecting (1, 100) returned and
assigned to the variables a and b, respectively. Note that as you are
returning result of your function, you can add the ; to the end of the
line to suppress unnecessary output at the command line.

Back to the construction of the algorithm and its coding ...
The code to generate the first variable (s_out1) – the maximum

value of the elements in the input vector – is as before. You only

162 str=’do you like bananas?’;

them need to work out the code to determine the value of s_out2 .
The key to this is recognising that previously, when the value of
temp_max was equal to v_in(n) , you did nothing, as you were only
interested in v_in(n) > temp_max and hence updating (replacing)
the current value of temp_max . What you need is an elseif state-
ment, and test whether you have found a second value in the vector
equal to temp_max . If so, you need to somehow record this.

A partial solution (i.e. a first next step in the development of the
code) might look like:

% Loop

for n = 2:nmax,

if (v_in(n) > temp_max),

temp_max = v_in(n);

temp_n = 1;

elseif (v_in(n) == temp_max),

temp_n = 2;

end

end

where temp_n is where we keep a track of the number of maxi-
mum elements – setting this to a value of 1, when we first find a new
largest value in the vector and then a value of 2 if we find a second
occurrence of that value.

This does not quite work. Why? Try some test vectors, e.g.

A = [1 5 7 3 8 2 4];

B = [1 5 7 3 8 2 4 3 5 8];

C = [1 5 7 3 8 2 4 3 5 8 7 7 8];

In particular – is the answer to C ... right?
So far, we have accounted for a duplicate (maximum) value, but

the solution (and code algorithm) is not general, i.e. we do not handle
the general case of there being n duplicate maximum values in the
vector. A more general solution looks like:

% Initialize max value

nmax = v_in(1);

% Initialize duplicate counter

temp_n = 1;

% Loop

for n = 2:nmax,

if (v_in(n) > temp_max),

temp_max = v_in(n);

% Reset the duplicate counter

% as a new max has been found

temp_n = 1;

elseif (v_in(n) == temp_max),

temp_n = temp_n+1;

end

end

further ... programming 163

Here we have to seed/initialize the value of temp_n because we start
by setting temp_max as equal to v_in(1) , i.e. we already have 1
instance of the value of v_in(1) being the maximum, by the time
the loop starts.

Missing from this code fragment is only the function definition and
how the 2 function return values are set. See if you can complete the
working function for returning the maximum value in a vector, and
how many times that maximum value occurs.

Again – a key to programming and developing algorithms, is to
follow the behaviour of the code in your head (as well as adding
break points and testing with a variety of inputs, including extreme
assumptions). For instance – assume that the 2nd element in the
vector was equal to the first, and follow the code around – check that
the value of temp_n is incremented appropriately and the output,
if the vector was only 2 long, or there were no larger values in the
remainder of the vector, is right. What if the 1st 3 elements were all
equal? How does that pan out in terms of behaviour and output?

In general – if the code works for a selection of extreme assump-
tions, it will generally work. Use a combination of your head (and
paper and pencil) and testing (and debugging if necessary).

4.2.2 Example #2: sort(!!)

(Yes, MATLAB also has functions for sorting values in an array ...)

In this second set of Examples – imagine that you have a vector
of numbers, and you wish to sort them into ascending order. The
function would take a vector as input, and return a vector of the same
length as output, comprising all the values of the input vector, but
now sorted in order.

How to go about this?
Well – first create the function framework (in a new m-file), as

before:

function [v_out] = sortx(v_in)

% sortx

%

% Takes a (single) vector as input,

% returns a vector of the same length, with

% all the values sorted in ascending order.

%%% CODE

end

What do we need to do within the function? Well, we should start
with a simple test of the function structure. For instance, we could
start by finding the minimum value in the array, and placing it at the
start of a new array – the one that will form the output. In this test,

164 str=’do you like bananas?’;

in place of %%% CODEin the empty function outlined above, would go
the following:

% Initialize the output vector (as empty)

v_out = [];

% Find minimum value

x = minx(v_in);

% Update output vector

v_out = [v_out x];

remembering that one way to build up a vector for output, is to ap-
pend to (concatenate) a value to an existing vector – the v_out =

[v_out x] bit. Also note that the vector must start defined as some-
thing ... here, we have created an empty vector ([]). 20 20 Also in this code fragment – you need

to have created that minimum finding
function ...

(Make sure you created the minx function!!!)
Try this out at the command line to check that it does indeed re-

turn the minimum value of the vector input, e.g.:

» sortx([1 2 3 4 5 6 7 8 9])

Of course, you could create a more complicated and challenging
vector to test it with and rather than pass the values directly, e.g. if
your vector of numbers to sort was assigned to variable testvec , then
you would type:

» sortx(testvec)

So far, your function returns the lowest (1st) value, rather than sort-
ing them all. You might spot that the 3rd through 6th lines of code,
need to be repeated – i.e. you keep calling the find-the-minimum
function, and adding this value to the output vector. But if this is all
you did, the program would run forever and return an infinite num-
ber of repeats of the minimum value (or give you a vector the length
of the input vector with identical (minimum) values in, depending on
how you set up the loop (e.g. for or while)) – this is because once
you have found the minimum value, and added it to the output array,
the value still exists in the input array and will be found again (and
again and again) if you create a loop around it.

The key ... at least, the key to creating the particular algorithm
... is to remove the element that you have just used from the input
array. e.g. if we find a ’1’ and this is the lowest value, after it has
been added to the output array, it needs to be deleted from the input
array. This means that we need to know ’where’ in the (input) array
the minimum value was.

So ... your next task, leaving your function sortx to the side for
a moment, is to modify your minx function, to return the position
in the vector that the minimum value occurred at (in addition to the
value of the minimum value itself).21 i.e. your minx (or whatever 21 HINT: When you find a new mini-

mum value in the loop, the index (the
position of that minimum value) is
n. So you need to create a temporary
variable that you update with the value
of n, only when a new minimum value
is found in the loop. You will see this
variable with ’1’, consistent with as-
signing the first minimum value from
index 1 in the vector.

you called it) function needs to look like:

further ... programming 165

function [s_out1 s_out2] = minx(v_in)

where s_out1 is the minimum found value, as before, and s_out2

is the index position of that number in the vector.
Get this working before moving on!

OK ... back to your function sortx :
Your use of minx now looks like:
[x p] = minx(v_in);

where in addition to passing back the minimum value and assigning
it to the variable x , you also pass back the position of that value in the
vector: p

You can now use this new information to delete this entry from
the input array by means of:

v_in(p) = [];

The code within your sortx (not minx) function, should now look
something like22: 22 Note the notation for catching the

2 returned values from the minxx
function:

[x m] = minxx(v_in);

function [v_out] = sortx(v_in)

% sortx

%

% Takes a (single) vector as input,

% returns a vector of the same length, with

% all the values sorted in ascending order.

%

% First: determine number of elements in vector

nmax = length(v_in);

% Initialize the output vector (as empty)

v_out = [];

% Loop through all the elements in vector

for n = 1:nmax,

% Find minimum value

[x p] = minxx(v_in);

% Update output vector

v_out = [v_out x];

% Remove used element

v_in(p) = [];

end

% function end

end

Code this up ... test it ... play with it ... try and totally break it ... just
make sure that you can come to an understanding of how it works.

For (easy) fun: create a (new) function that sorts in descending order.

OPTIONAL – For even more (but less easy) fun: create a (new)
function that sorts in descending order ... but ... excludes duplicate
values, i.e. no 2 values should be the same in the output vector.23

23 HINT: modify the maxx function to
return the index of all the elements
having a value equal to the maximum
value. This will be a vector, which will
be appended to as the loop progresses,
with each value being assigned the
current value of n (the position of the
maximum value in the vector).

166 str=’do you like bananas?’;

4.2.3 A gridded algorithm problem

We are going to base this next example around the (modern) topogra-
phy of a simple Earth system model (GENIE).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.10: Ocean topography (blues
through red) in the ’GENIE’ Earth
system model. Land is shown marked
in brown.

Load in the file: model_grid.txt24 in the ’usual way’. Briefly check

24 From week #1.

out the new array in the Variable window. If you were told that values
1 through 16 represented ocean cells25, and values above 90, land26

25 If you must know (but you don’t need
to know it at all): the lower the value,
the deeper that part of the ocean, with
1 representing the very deepest ocean
floor, and 16 the shallowest.
26 The values: 91 , 92 , 93 , 94 , represent
different compass directions of runoff
on land. (another not interesting and
barely useful fact.)

– it is possible to make out the shape of the continents visually in
the pattern of numbers in the array (albeit they are rendered at low
spatial resolution). The grid of numbers can also be visualized using
the image function (see earlier). See if you can specify the scaling
in such a way that you can render the ocean topography reasonably
well, e.g. as per Figure 4.10.

What you are going to do is to draw this grid ... using the patch

function. We’ll simplify things and assume that each cell is 1 unit
wide and 1 unit high – i.e. the grid goes from 0-36 units in both
longitude (x-axis) and latitude (y-axis) directions. In fact – lets forget
entirely about longitude and latitude for now.

Ultimately, the point of this exercise is to draw land as grey cells,
and assign the ocean cells a color according to their depth. But lets
start by drawing a grid of cells (of any color).

So how to start? Make yourself a new script (.m) file. I guess open
a figure window, set hold on , and set the axes from 0-36 in both direc-
tions.

To begin with, simply draw a single cell (the first cell of what will
become the grid). If should appear at the bottom left corner of the
plotting area. If you find you have an odd shape appearing ... you
have got a set of 4 y-coordinate values that is inconsistent (/out of
sequence) with the y-coordinate values. Draw out the coordinates on
a piece of paper and/or write down the 4 vertices of the rectangle, to
help visualize.

You know that you will need to draw a row of 36, 1 × 1 squares
using patch . So, make a loop ...

for i = 1:36,

...

end

(here: i for longitude). And then draw a series of squares, each with
their right-hand edge corresponding to the value of i (so the left-
hand edge is at (i-1)). For now, draw only a single row of cells,
with the y/latitude-axis (which I will use index j for) from 0 (bottom
edge) to 1 (upper edge).27

27 To make the individual cells more
apparent, you can specify a different
edge color, and also make the edges
thicker, e.g.

patch([0 0 1 1],[1 0 0
1],...
’k’, ...
’EdgeColor’,’red’, ...
’FaceColor’,’yellow’, ..
’LineWidth’,2);

(why it needs the 3rd, color option set,
when the face and edge are set sepa-
rately ... is one of life’s little mysteries
...)

The key step here is to add in i into the list of x-coordinates, so
that the x values progressively increase as the loop proceeds. (Leave
the y-coordinate values alone for now.) Again – if you have odd

further ... programming 167

shapes appearing ... you have got an inconsistent sequence of coordi-
nate values in the x and/or y vectors. Try substituting i=1 into your
list of 4 x-coordinate value and see whether you get the expected list
of 4 (x,y) pairs. Then try substituting i=1 in. (This can all be done on
paper if you like.)

Now, you need to draw the other 35 rows of cells above this.
Think about this for a moment – you have a loop, drawing each of

36 square cells in a row in the first (bottom) row. Now you need
to repeat the drawing of 36 rows ... a total of 36 times. This is a nested
loop. Its form is:

for j = 1:36,

for i = 1:36,

...

end

end

meaning that whatever code goes in the very middle, is carried out
36 × 36 times (and in fact there are 36 × 36 cells in total to draw).

If your code to draw one line of cells was e.g.:

for j = 1:36,

for i = 1:36,

patch([i-1 i-1 i i],[1 0 0 1],’r’);

end

end

you now need to modify the y-axis values in the patch command,
so that they reflect the increase in the value of j as you move up to a
new row (and the j loop progresses towards a value of 36).

See if you can get this working (just a 36 × 36 grid of cells ... colors
of your choice ...).

Once you have this working: get a coffee.28 28 You will need it.

Actually, you won’t need a coffee29 – this is the hardest part done. 29 The margin note above was an alter-
native fact.First, for the land cell designation. In the inner loop, rather than

just draw a colored square regardless of anything, you need to decide
whether to draw a grey ([0.5 0.5 0.5]) or e.g. red square, de-
pending on whether the model grid at that particular (i,j) location is
land or ocean. Land is designated by a value above 90. So you need
to test the value of model_grid 30 – greater than 90 results in a grey 30 Or whatever you called the array

when you loaded the data in.square being drawn, and less than or equal to 90 (or just else), a
e.g. red square. Try this, and if the grid comes out upside down, or
back-to-front or something, you know how to transform the array
you have read in.31 31 You might note that while we tend to

think about plotting of lon-lat as (i,j),
in MATLAB, i corresponds to rows
(lat) rather than columns (lon). So it is
helpful to flip the rows and columns of
the array around, so we can write (i,j)
as (lon,lat) (i.e. (x,y). You might also
find it is necessary to flip the array if it
comes out up-side-down.

Second, to assign colors that depend on the depth. Rather than a
e.g. red cell, when the cell is ocean (90 or less), create a RGB color
that is a function of the depth value.32 This is where the concepts of

32 In this particular model – depth
goes from a value of 1 (deepest) to 16
(shallowest).

algorithms comes in – they need not be long, complicated codes, but

168 str=’do you like bananas?’;

can be simple equations that achieve the desired result. For instance,
given the nature of the RGB scale, and that we have a scale of values
from 1 to 16, what immediately comes to mind is:

vcol = [1 1 1]/model_grid(i,j);

patch([i-1 i-1 i i],[1 0 0 1],vcol);

which has the effect of creating a grey-scale for the depth values from
1 (lightest) to 16 (darkest). The other way around would be:

vcol = 1.0 - [1 1 1]/model_grid(i,j);

patch([i-1 i-1 i i],[1 0 0 1],vcol);

This particular algorithm for converting depth to a unique color,
will clash with the grey coloring of the continents (which were as-
signed a mid-grey) for a certain depth. So try and devise a color scale
(in color!).

How about marking on the continental outline?

1. The first task is to draw the grid – as per above.33 33 You want to draw the complete
grid first, because if you draw on the
coastline lines as you go, you may find
that you end up partially obscuring a
coast line with the next filled cell.

2. Then, you want a second nested (i,j) loop, within which you
will test for a boundary between land and sea, and draw a line to
delineate this segment of coastline.

There are a variety of ways to go about all this, some long with
lots of duplicated code, and some cunning34 and compact. We’ll go 34 So cunning in fact, that you could put

a tail on it and call it a fox.for the ultra-crude approach, but leave it as an exercise for you to
think about how it could be simplified and rationalized later on.

We’ll take the case of the ocean being on the right hand side of a
land (continental) cell (i.e. a East coast). We’ll need to search through
the entire grid and hence need a double/nested loop as before:

for j = 1:36,

for i = 1:36,

...

end

end

The plan will be35: 35 Inevitably – you need to formulate
a plan – your algorithm, first, whether
simply in your head, or on paper.1. Test for whether the cell is land (value > 90).

2. If the above is true, test for whether the cell immediately to the
right, is ocean.
3. If the above is (also) true, then we have found a border between
land and ocean and just need to draw the border.

You have done the testing of grid point (cell) values before, in
coloring land one color and ocean (depth) another:

further ... programming 169

if (model_grid(i,j) > 90)

...

end

To then test the grid point to the right:

if (model_grid(i,j) > 90)

if (model_grid(i+1,j) <= 90)

...

end

end

Here – model_grid(i+1,j) is the cell to the immediately to the
right (greater longitude) than model_grid(i,j) .

It is then just a matter of identifying the start and end of the line

that you will draw.36 36 Setting a thicker-than-default line
width, e.g. ’LineWidth’,2 will help
the continental outline stand out.

The only one thing to note here, and if you have coded the loop
as show above, you’ll end up with an array out of bounds error
reported by MATLAB. Think through what happens in the loop
when the value of i reaches 36 – i+1 is then 37 , yet the array is
only 36 × 36. So in the case of finding the East coast segments of the
continental outline, you need to:

1. Only loop from i = 1:35 , so that the value of i+1 is always a
valid array index.

2. Because you still need to determine whether at the edge of the
grid, there is an East coast line, carry out a specific test for the
edge of the grid:

if (model_grid(36,j) > 90)

if (model_grid(1,j) <= 90)

...

end

end

Here – if the cell at the far right edge of the grid (i=36) is land, we
test whether the cell at the far left of the grid (i=1) is ocean.37 37 Remember that the grid wraps-

around in longitude.Note that this code fragment, because the value if j changes, goes
within the outer, 1:36 j-loop (but not within the 1:35 i-loop).

The complete code for this search ... except for the actual drawing
of the edge line, is:

for j = 1:36,

for i = 1:35,

% Search i from 1 to 35

if (model_grid(i,j) > 90)

if (model_grid(i+1,j) <= 90)

% DRAW EDGE

end

170 str=’do you like bananas?’;

end

end

% Special case of i=36

if (model_grid(36,j) > 90)

if (model_grid(1,j) <= 90)

% DRAW EDGE

end

end

end

It remains for you to create a similar code for finding (and draw-
ing) the West coast segments. And then, the North and South coast
segments. Remember in this latter search – the grid does not ’wrap-
around’ and j need only from 1:35 and 2:36 (with no ’special
case’).

In a final, optional, example ... of the bathymetry data – questions
such as: ’How many land cells are there? What fraction of the Earths
surface is land?’, ’What (area) fraction of land is within 70 m of the
current sealevel?’, can be answered with 1, or at most, a few lines of
code (and maybe a function call for the calculation of the area of a
1° grid cell). A more involved question might be: how many distinct
land masses are there? Or: can we assign a label to them (assuming
we want to in the first place).

Jumping straight into the full resolution 1 degree resolution
dataset is probably not such a good idea, so instead, to start with,
you are going to use the GENIE model grid/topography again.
Further-more, you are only going to be concerned with the land-sea
mask and not even worry about height above, or below, sea-level.

You are going to count up (and sequentially number) the different
land masses38. Obviously, you could do this by eye for this particular 38 By ’different’ – assume that dis-

tinct land masses (which here may be
continents or just islands) are groups
(or single) of land cells that share no
common edges (excluding diagonal
connections). The isolated block of cells
representing Australia ia an obvious
example.

example (but how about counting the unique land masses in the 1
degree topography dataset?). Think about how you are mentally
’doing’ this – i.e. what processes are going through your brain (other
than how long until the end of class) as you decide what makes any
particular land mass distinct from another one. This may well inform
how you go about coding and creating an algorithm to solve this.

A sensible start might be to loop through all the points in the grid.
As you should have gathered – this can be done as a nested loop.
To make it a littler cleverer: rather than setting in stone a specific
count limit in the loops, which in this example would be 36 (for both
longitude and latitude), you can extract the size of the array and
hence the limits to the 2 dimensions by:

[n_lat n_lon] = size(model_grid);

further ... programming 171

Here: size returns the number of rows and columns of the array,
corresponding to the number of latitude, and longitude bands, re-
spectively. Your code (which should be placed in an m-file) will the
start to look like:

topo = load(’model_grid.txt’,’-ascii’);

[n_lat n_lon] = size(topo);

lon=n_lon

for lat=n_lat

end

end

but with ... suitable comments added of course ... By all means add
some suitable debug lines and test it (the loop behaviour).

You are going to need an array, the same size as the topography
dataset, to store the number assigned to each land mass, i.e. each
grid cell needs to be labelled with a land mass number, and some-
thing distinct from this if it is not land at all (i.e. ocean). You can
create an array of zeros easily with the MATLAB zeros function
(see Box). Then as you raster through the grid (via the nested loop),
you can assign land points a value corresponding to the land mass
number, and leave the ocean points as zeros.

To get your hand in – first add to the code above, the creation
of the array of zeros (this is going to need to come after you have
determined the size of the data array and hence the values of n_lat

and n_lon , but before the loop starts). Then, within the loop, test for
whether or not the grid point is land or ocean (see above for what the
values in the GENIE model topography array mean), and if the point
is land, set the value to 1. Plot the results with imagesc and check
that you get just 2 colors – one for ocean (0) and one for land (1). In
fact, you could keep all this code and resulting array. Then for the
array storing the land mass number, create a second array of zeros.
(Remember to name the arrays something meaningful, not just A, B,
... , and comment the code adequately.)

So how are you going to go about identifying new land masses
and numbering them? You have to start somewhere, that somewhere
will be designated by a 1 (the first land mass). How do you know
that this is the first land point, and not the second? You could count
up, for instance – each time you find a land point, you increment a
counting variable by one, e.g.

n_runningtotal = n_runningtotal + 1

remembering that at the start of the code, you need to initialize the
value of n_runningtotal to zero.

This is not quite what you want, for instance, if you run the fol-
lowing:

172 str=’do you like bananas?’;

topo = load(’model_grid.txt’,’-ascii’);

[n_lat n_lon] = size(topo);

land = zeros(n_lat,n_lon);

land_id = zeros(n_lat,n_lon);

n_runningtotal = 0;

for lat=1:n_lat

lon=1:n_lon

if (topo(lat,lon) > 90)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

end

end

end

you should get all the land points numbered in turn (check this), but
not with land points grouped into continuous regions with different
numbers assigned only the distinct land masses. So ... it is getting
closer, but it is still missing something. 39 (It is quite pretty to plot

39 This is not a bad way of working
in fact – get something of a likely
correct form (e.g. nested loop in this
case, setting up some arrays of zeros,
creating a counter) but not quite getting
the answer going first, then refine to get
it doing what you actually want.

though, as per Figure 4.11. Perhaps also try the 2 loops the other
way around, with the lon loop first and outermost, and see what
happens (/is different about it).)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.11: The ’GENIE’ mode land
grid, with land points assigned a
sequential integer (working across and
dow the grid – from West to East, and
then North to South).

As you might imagine, the crux of the algorithm is how to assign
a new identifying land mass number to a land grid point only when
it does not connect to a land point which already has a number –
in this case, the same value for the identifying number needs to be
used. In other words: if a newly found land point connects to a land
point with the identifying value 5, then the new point also needs
to be labelled with a 5. So ... and here is the critical bit ... we need
to ’look around’ each new grid point to see if there is an already
labelled point immediately next to it. Pause and think about this.
Maybe mentally, or on paper, work your way through the start of
the grid, label the first land point you find, and work out what the
mental steps are upon finding the next land point, to see if it needs
to be assigned a new number, or not (and is instead connected to a
point which already has a number). This mental/conceptual step
is important and hopefully will lead you to a suitable and working
algorithm that can be written down in code. In essence, all you are
going to be doing is encoding (in code), using conditional tests and
perhaps further loops, the mental steps that you are going through40. 40 Unless you are just thinking about

icecream .

icecream
There is no icecream function in

MATLAB. I checked. In fact, rather
sadly, MATLAB tell me:

icecream not found.

OK. So how exactly are we going to go about it? There is a really
clever way, but we’ll skip over that :o) And, a crude and simple way,
but one that will still solve the problem (although it will turn out
that we will require additional steps – one to get most of the way
there and then several to make minor corrections to the initial algo-
rithm). We are going to keep the counting variable, but now only
update it (increment it by one) if we need a new land mass number.

further ... programming 173

So, *in practice* then, how are we going to decide if the counter is
incremented and hence what value to assigned to a particular cell?

First, we need to test whether the current cell is ocean or land:

1. If ocean – do nothing, and leave corresponding value in the
land mass array at zero.
2. Else (if land) – we need to work out what value to assign to the
cell in the land mass array, by:

(a) If an adjoining cell is land and has been assigned a value in
the land mass array, then assign the same value to the current
cell.

(b) If all adjoining cells have a zero value, either because they
are ocean, or because they have not been assigned a (non-zero)
value yet (because the loop has not yet reached that far in the
array), then increment the counter and assigned the cell this
new number.

This simple decision tree is something that you could draw a flow-
chart for if it helps. Also work through in your mind to see if it ap-
pears to ’work’.

The next step is coding the ’look around’ (the current grid cell)
bit. Actually, if you think about it, you need not look at the adjoining
cells in all of the N, S, E, and W directions, because if we are looping
through the grid such that we raster across the grid from left (W) to
right (E), and then from the top (N) to bottom (S), cells to the E and S
of the current grid point have not been reached yet and so must have
a zero value. Hence you only need to interrogate the value of cells to
the W and N of the current position (as defined by (lat,lon)). You
can write the conditional test for the adjoining cells being zero (and
hence ocean, as they must have already been visited and hence left
with a zero value), by41: 41 Not all of these parentheses are

necessary – I have written it like this
to make the conditional (hopefully!)
completely clear.

if ((land_id(lat-1,lon)==0) && (land_id(lat),lon-1)==0)

)

end

It should be obvious that this is testing for the cell immediately to the
North (lat-1) *and* the cell to the West (lon-1), both being zero.

Naturally, your first attempt does not work! Why? Think through
what happens as you start to make your way through the grid. You
only have to think through what happens at the very first grid point
in fact. The first grid point is (1,1) yet you are testing cells with
indices of lat-1 and lon-1 ... which will be zero and hence not
a valid array index42. So you need to avoid testing for lat-1 if 42 MATLAB array indices always start

at one. (Whereas in FORTRAN, it is
possible to start counting the array
rows or columns from zero, or even a
negative number.)

lat==1 , and avoid lon-1 if lon==1 . There are a variety of ways

174 str=’do you like bananas?’;

of structuring this, some using more and some less, code. One possi-
bility (and not necessarily the most optimal one) is:

if ((lat==1) && (lon==1))

% on both Western and Northern edges (top LH grid

corner)

CODE BLOCK #1

elseif (lat==1)

% on Northern edge

CODE BLOCK #2

elseif (lon==1)

% on Western edge

CODE BLOCK #3

else

% cell lies neither on Western nor Northern edge

CODE BLOCK #4

end

In ’CODE BLOCK #1’, you will simply need to increment the land
mass counter and assign the cell this value43. ’CODE BLOCK #4’ will 43 This will be executed only once

(assuming that the cell is land) because
there is only one situation in which
both lat and lon can have a value of
one – the top LH corner of the grid.

use the conditional code that you saw earlier:

if ((land_id(lat-1,lon)==0) && (land_id(lat),lon-1)==0)

)

end

and when this is true, increment the land mass counter and assigned
the cell this value. But as part of this conditional structure, you will
also need to test the values of the cells to the North and the West
individually. If either has a non-zero value, assigned this value to the
current cell (and do not increment the counter).

The remaining 2 pieces of code are sort of half way between #1
and #4, and will be conditionals testing for the situations:

land_id(lat-1,lon)==0

(#2) and having already excluded the possibility of both lon and lat

being equal to one, or:

land_id(lat,lon-1)==0

(#3) (having excluded the possibilities that firstly that lon and lat

are both equal to one, but also that lat is equal to one (and implic-
itly; lon is greater than one)). In both cases you only need to test the
value of one adjacent cell (and if zero, increment the counter etc., or
use the adjacent cells value, otherwise).

The code is inherently simple, but there is now lots of it and a big
chunk of code with lots of conditionals can look intimidating and
difficult to debug or understand. The key is to work through it with a
couple of example (lat ,lon) loop values and test what it does under
these conditions, verifying that the algorithm is doing what is should.

further ... programming 175

The complete code that tests the value of the surrounding cells and
on the basis of this result, assigns a land mass value,looks like:

if ((lat==1) && (lon==1))

% on both Western and Northern edges (top LH grid

corner)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

elseif (lat==1)

% on Northern edge

if (land_id(lat,lon-1)==0)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

else

land_id(lat,lon) = land_id(lat,lon-1);

end

elseif (lon==1)

% on Western edge

if (land_id(lat-1,lon)==0)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

else

land_id(lat,lon) = land_id(lat-1,lon);

end

else

% cell lies neither on Western nor Northern edge

if (land_id(lat,lon-1) ∼=0)

land_id(lat,lon) = land_id(lat,lon-1);

elseif (land_id(lat-1,lon) ∼=0)

land_id(lat,lon) = land_id(lat-1,lon);

else

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

end

end

and sits within the double loop and test for a land cell:

for lat=1:n_lat

lon=1:n_lon

if (topo(lat,lon) > 90)

CODE

end

end

end

Really, it is not as bad as it looks! Much of the code is simply dealing
with the special cases of the grid point being on one or other or both,
of the W/N grid boundaries. Without this, the generic code for the
rest of the grid is simple (the block labelled % cell lies neither

on Eastern nor Northern edge).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.12: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier ... almost ... (!)

176 str=’do you like bananas?’;

If you complete the code with the file loading and creation of the
arrays of zeros, and then plot using imagesc , you should get Figure
4.12. Soooooo close44. Many of the continuous blocks of land have 44 Note that one could also question

the decision to not count diagonal
connections as representing continuous
land. The result is that the single cell
representing Spain and Portugal, is
assigned a unique identifier. However,
allowing diagonal connections would
have the effect of joining North and
South America.

correctly been assigned a unique identifying number (the different
regions of the same color in the figure). But something ’odd’ happens
in Eurasia, creating those stripes of color when it should be a solid
block. It does not help to change the order of the loop (swapping the
inner, lon loop for the outer, lat one) (Figure 4.13) and similar (but
different – why?) artifacts arise (plus now one cell in Antarctica has a
different color from the rest of the continent).

The way to debug this problem and write the code needed to
adjust the algorithm is to again, work though in your head what hap-
pens when the loop is passing over the top of Eurasia. For instance,
you can see that the first, mid-blue (value 4 in the land_id array)
row is correct. But when the next row starts, because it starts at a
lower longitude with ocean to the North, simply looking to the W
and to the N does not reveal the existence of the row of 4s that start
slightly later (in longitude).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.13: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier (color).

As ever, there are a number of (equally correct) ways of correct-
ing this. Here, we’ll take the approach of post-processing the array,
i.e. we’ll leave the code that generates Figure 4.12 alone, but go back
through the land_id array in a new nested loop, and fix the acci-
dental partitioning of Eurasia into differently numbered strips. One
possible solution is given below:

for lat=2:n_lat

for lon=2:n_lon

if ((land_id(lat,lon)>0) && (land_id(lat-1,lon)>0)

...

&& (land_id(lat,lon) ∼= land_id(lat-1,lon))

)

old_id = land_id(lat,lon);

new_id = land_id(lat-1,lon);

land_id(find(land_id(:,:)==old_id)) = new_id;

end

end

end

In this, we skip the first row (Northern-most latitude) and first col-
umn (Western-most longitude) completely, because one might sus-
pect that these grid points cannot be incorrectly labelled (why?),
hence the 2:n_lat and 2:n_lon loop limits. The issue we are hav-
ing and why the previous algorithm did not fully succeed, is that
some of the land masses have been split into sperate strips, where
adjacent cells sharing the same longitude, have different index val-
ues. i.e. we need to look for grid cells which have a different index
value to the cell immediately to the North, as long as neither is ocean

further ... programming 177

(0). The way I have structured the if statement is to test for both lat

and lat-1 cells not being 0, AND the two cells not being equal (i.e.
having a different value). The result of applying this corrector code is
shown in Figure 4.14.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.14: The ’GENIE’ mode land
grid, with land points (almost) assigned
a unique identifier (color).

Finally ... the longitudinal edge of the domain is also creating a
problem, and land, which should be continuous across the longitudi-
nal domain boundary is instead treated as separated (i.e. the Eastern
edge of Eurasia on the LH edge of the plot is one color, but the rest of
Eurasia (RH side) is another ... We can fix this by adding one further
correction:

for lat=1:n_lat

if ((land_id(lat,1)>0) && (land_id(lat,n_lon)>0)

...

&& (land_id(lat,1) ∼= land_id(lat,n_lon)))

old_id = land_id(lat,n_lon);

new_id = land_id(lat,1);

land_id(find(land_id(:,:)==old_id)) = new_id;

end

end

which works though all the rows (latitude) and checks to see whether
the cell in the 1st column has a different value to the one in the last
(but with neither being zero) and then makes a substitution of all
occurrence of the superfluous label for the correct one, as before. The
result of applying this last adjustment to the code is shown in Figure
4.15 and now represents a complete solution to the problem.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.15: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier (color).

Actually ... it doesn’t quite represent the final word and if you
were a perfectionist, there is one last step to take. If you inspect the
contents of the index array you will see that some of the possible
values have been skipped45. The problem left for the reader (i.e. you)

45 Because we re-numbered them earlier,
right?

is to re-number the land masses such that for n land masses, they are
numbered from 1 to n. 46

46 HINT: You could find the highest
land mass index value, loop through
these values, and for each missing
value that is found, renumber the next
existing value to the missing one. Or
something like that.

This entire example actually took more trial-and-error than I have
owned up to. This is no ’bad’ thing per se and the creation of al-
gorithms for solving problems invariably involves adjustment and
refinement of an initial attempt, and sometimes throwing it all away
and trying something completely different instead. the key step is
to get started and formulate a basic structure for the code and ap-
proach. Thus you refine things partly through working through some
simple cases to explore what the code really does. Remember – to
really test the code you may need to invent cases that don’t actually
exist in a particular data set in order to put your algorithm through
its paces.

178 str=’do you like bananas?’;

4.3 Interpreting equations (0) – Basics

further ... programming 179

4.4 Interpreting equations (1) – Population models

4.4.1 Exponential (and unrestricted) growth

Consider the simple mathematical population model47: 47 Modelling animal and plant popu-
lations using simple equations gives
insights to the population dynamics
(i.e. whether numbers remain stable, or
go up and down slightly from year to
year, or oscillate up and down wildly
- almost to extinction one year and
increasing to pest levels the next).

P(n+1) = λ ∙ P(n)

This defines the number of individuals in the population that there
will be at some point in the near future, based on the number at the
current time, where:

• P(n) ... is the size of the population at generation (or time) n.
• P(n+1) ... is the size of the population at generation n + 1.
• λ ... is the average number of offspring produced, per adult per
generation, less mortality.

Don’t get put off by all the Ns and subscripts and things. All the
equation says is that the population size (number of individuals = P)
at the time of the next generation (n + 1) is equal to the population
at the current generation (n) multiplied by some factor. This factor
is given the Greek letter λ.48 The factor λ includes both gains due 48 We could equally write this in terms

of time and if the units of λ were per
year (yr−1), rather than generation
number n we would have time t (years
since the start (of the model)).

to the production of offspring and losses from the population due
to snowboarding off of a cliff or some other way of dying or being
eaten.

So, we are simply asking; how many individuals will there be
at the time of the next generation (n + 1)? The answer is; the same
number as currently, minus the fraction of the population who snow-
board off of a cliff or die of old age, αP(n), plus the number of births
in the population, which is also assumed proportional to the current
number of individuals in the population, βP(n).

If there are P individuals in the current generation, the number at
the next generation can be written:

p(n+1) = p(n) + β ∙ p(n) − α ∙ p(n)

In code, this would look like:

P = P + beta * P - alpha * P;

Re-arranging, we get:

P(n+1) = (1 + β − α) ∙ P(n)

The only even faintly subversive thing that has happened to the orig-
inal equation, is that all these factors have been included in the value
of λ = (1 + β − α).

Simple, eh? Mostly, that is about all there is to computer mod-
elling. You know how much stuff (rabbits, snowboarders, cloud

180 str=’do you like bananas?’;

water droplets, whatever) there is currently (or at a specific point
in time), and you want to predict how much there will be in the fu-
ture, which you take to be one unit of time (time-step) away. You
estimate the change in quantity (rabbits, snowboarders, cloud water
droplets) that occurs over the course of one generation, and add it to
the current quantity.

This model predicts that as long as λ > 1, the population will
increase exponentially, generation by generation, without end. Think
of bacterial cells dividing in a petri dish. On each subsequent gen-
eration (or time step) there will be twice as many cells as there are
currently (assuming that all the cells divide into two at the same rate
and there is no mortality of cells). The value of λ in this example
would be 2.

So to kick off – create a model of this system. You are going to
need a (single) loop – your choice as to whether you fix the number of
iterations (time-steps) beforehand in a for loop, e.g.

for ...

P = P + beta * P - alpha * P;

end

or use a while ... end construction and ensure the expres-
sion evaluates to false when a set number of cycles of the loop is
reached (you’ll need to create a counter for this), or the model might
end when a certain degree of convergence (on a solution) has been
achieved – i.e. when from time-step to time-step, the change gets
smaller and smaller each time and at some point gets smaller than
some pre-determined threshold.49 You might use a variable to govern 49 This of course rather depends on the

solution converging and not oscillating
or exponentially growing ...

how many iterations are executed (however you do this) rather than
hard-code in a value. The value of this variable could be set near the
start of the code, or the m-file could be configured with the number of
iterations passed in as an input parameter. You’ll also need to specify
the initial value of the population.

You’ll probably want to plot the results50 and so you may want 50 Your choice of a linear or log y-axis
scale – use the one that enables the
most information to be presented and
in the most useful way

to save the data of population number vs. generation or iteration
(i.e. 2 columns of data and a number of rows equal to the number of
iterations through the loop plus one (why?)). The save function can
be used for this.

4.4.2 Restricted growth (and an equilibrium state)

In a variant of this ... one might consider that most plant or animal
(or bacterial or snowboarder) populations do not behave like this –
instead they vary around some average level. This is because birth
& death rates vary depending on the size of the population. For
example:

further ... programming 181

• When the population is large, there may be little food to go
round and the birth rate falls (or death rate increases).
• Or, when the population is very small, all individuals may have
access to as much food as they can eat giving a high birth rate (or
low death rate). For the bacteria in a petri dish, the population
cannot go on expanding for ever – sooner or later the entire sur-
face of the nutrient agar will be covered, leaving no free space for
new cells to sit happily directly on the food. Later, the nutrients
in the agar might start to become depleted. Toxic waste products
might also start to build up, slowing down the rate of growth and
cell doubling in the bacteria.

We can include a density-dependence by modifying the original
equation, to give:

P(n+1) =
λ∙P(n)

(1+a∙Pn)b

There are two new parameters here:

b ... defines the strength of the density dependence and the dy-
namics of the population, and
a ... is a scaling factor.

Try starting with values of:

• λ = 2.0
• b = 0.1
• a = 0.1

and run for e.g. 100 or 1000 generations (or however you are count-
ing the loop in units of). Then systematically investigate the effect
of changing the value of parameter b on the dynamics of the pop-
ulation, keeping the values of the parameters λ and a constant.51 51 This sort of exercise is know as a

sensitivity analysis – i.e. quantifying
the sensitivity of the model behavior or
final result, to the value of a particular
parameter.

Increase the value of the parameter b and investigate how the dy-
namics change. Try values of b in the range 0.1 to 10. Try and find
the approximate range of values of b that give the following types of
dynamic of the population:

1. Monotonic Damping (smooth approach to a stable equilib-
rium).
2. Damped Oscillations (oscillates to start with then dampens
down to an equilibrium).
3. Stable Limit Cycles (regular pattern of peaks and troughs
with the population repeatedly returning to exactly the same size).
4. Chaos (population bombs about all over the place with no
regular pattern).52 52 Actually, some of the behaviour

of population size in the model is
probably not real – for certain ranges of
parameter value, the model is no longer
numerically stable. It is this that gives
rise to some of the strange population
size behaviour.

182 str=’do you like bananas?’;

Don’t spend too much time playing. I know how much fun you
are having ;) The key take-home message is to recognise that the
population value at each subsequent generation or iteration (n + 1)
depends directly on the value at the previous one (n).

Here you are using a numerical model to explore how a system
behaves, and how sensitive the behaviour is to a critical parameter
(b in this example). This sort of exploratory investigation can help
you identify critical parameter values that have a profound (and
maybe unexpected) effect – for instance, if parameter b related to
something that was impacted by climate change, you might be able to
determine the point in the future when climate change might make a
population unstable. You might identify a certain population level as
genetically viable (anything below this being un-viable). You might
then be in a position to make recommendations about conserving this
species. And all from just playing around with a computer model!

further ... programming 183

4.5 Interpreting equations (2) – Pure lovely maths

Here, we are going to code up a graphical representation of the
Mandelbrot Set – Figure 4.16, Figure 4.17, and see Box. But we are
going to do this nice and gently, via a simplified example.

The Mandelbrot Set, is the set of
complex numbers c, for which:

lim
n → ∞

∣
∣
∣z(n)

∣
∣
∣ ≤ 2

where

z(n+1) = z2
(n) + c

and

z(0) = 0

which ... shares all of the charac-
teristics of gobbledygook, and I
probably haven’t even defined it
mathematically correctly ...

A rendition of the solution is
shown in Figure 4.16 and zoomed-in,
in Figure 4.17.

-2.5 1
Real part

1.5

-1.5

Im
ag

in
ar

y
pa

rt

Figure 4.16: The Mandelbrot Set –
points representing complex numbers
that are members of the set, are shown
in black. Complex numbers for which
the sequence does not converge, are
graphically represented by the white
locations in the plotted domain.

-1.4 -1.3
Real part

0.05

-0.05

Im
ag

in
ar

y
pa

rt

Figure 4.17: ×50 (-ish) zoom in on
the Mandelbrot Set illustrating self-
similarity and the fractal nature of the
set boundary.

4.5.1 Sequence convergence (in 1D)

Consider the mathematical sequence:

z(n+1) = z2
(n) + c

Here – each successive, (n + 1)-th value of z, is equal to the n-th value
of z squared, plus c. We would write this in code:

for n=1:n_max

z = z ∧2 + c;

end

where the new value of z is set equal to the previous value squared,
plus the value of c. For the code to work – missing so far here is the
initial value of variable z , as well as what variable c is.

We’ll start the value for z of zero, and the code53 would look like:

53 Assuming just 10 iterations of the
sequence.

n_max=10;

z = 0;

for n=1:n_max

z = z ∧2 + c;

end

Here, defining beforehand (at the start of the code) the number of
iterations (n_max) that the loop will go through.

We are interested in whether, for a given value of c, the value of
z grows ever larger and larger (without limit for ever), or whether it
settles down and converges on some (finite) value.

You can hopefully see by inspection of the code (and/or equation),
and trying out different values of c, that some values of c lead to the
iteration converging, or remaining finite and small, while others lead
to progressively larger values, apparently growing without limit. For
some example (real number) values of c and the sequences of z they
lead to, refer to Table 4.1.

We could sort through a range of values of c, and for each value of
c, apply the equation:

z(n+1) = z2
(n) + c

iteratively, carrying out a given maximum number of iterations. We
could then determine for which values of c the sequence converges,
and for which it does not, e.g. 54

54 Instead of writing

z = z ∧2 + c;

faster is:

z = z * z + c;

184 str=’do you like bananas?’;

value of c sequence of values of z , as n increases (starting at n=0)

−3.0 0.0 → −3.0 → 6.0 → 33.0 → 1086.0 → ...
−2.0 0.0 → −2.0 → 2.0 → 2.0 → 2.0 → ...
−1.0 0.0 → −1.0 → 0.0 → −1.0 → 0.0 → ...
−0.5 0.0 → −0.5 → −0.25 → −0.4375 → −0.30859375 → ...

0.0 0.0 → 0.0 → 0.0 → 0.0 → 0.0 → ...
0.5 0.0 → 0.5 → 0.75 → 1.0625 → 1.62890625 → ...
1.0 0.0 → 1.0 → 2.0 → 5.0 → 16.0 → ...
2.0 0.0 → 2.0 → 6.0 → 38.0 → 1444.0 → ...
3.0 0.0 → 3.0 → 12.0 → 147.0 → 21612.0 → ...

Table 4.1: Examples of applying the
equation iteratively (different starting
values).

% clear workspace and close open figures
clear all ;
close all ;
% set (maximum) number of iterations to carry out
n_max=10;
% create sequence of numbers to test (vector)
v = [-3:0.1:3.0];
% fetch number of numbers in sequence (vector length)
n_v = length(v);
% loop through all the numbers in the sequence
for m=1:n_v

% initialize (zero) value of z
z = 0;
% set value of c from vector
c = v(m);
% loop
for n=1:n_max

z = z ∧2 + c;
end
% assign result value depending on whether converged
if (z > 2)

v_conv(m) = 0;
else

v_conv(m) = 1;
end

end

Here, after n = 10 iterations, the code tests whether the value of z
has exceeded 2.0 55 If the value of z has surpassed this threshold by 55 Here, we are assuming rather simplis-

tically, that 2.0 is a reasonable threshold
for testing for convergence. It is some-
what arbitrary and a different criteria
could equally have been used.

the end of the 10 iterations, we are assuming that the sequence will
never converge for this particular value of c. If not converging, the
value of the vector v_conv (at the same index as the value of c was
extracted from), is set to 0, otherwise, 1.

We could visualize the values of c for which it converges, via:

figure;
axis([-3 3 -1 1]);
scatter(v,zeros(1,n_v),50,v_conv, ’filled’);
xlabel(’Value of c’);
ylabel(’n/a’);

where I have created a dummy y-axis, with dummy (zero values).
Each point is large and filled and colored according to the value con-
tained in v_conv , which is either 1 (converging) or 0 (not converging
after 10 iterations). The result is shown in Figure 4.18.

-3 -2 -1 0 1 2 3
Value of c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n/
a

Figure 4.18: Solution space (blue points)
for the simple sequence.

further ... programming 185

We can make the plot a little more interesting, by color-coding a
measure of how quickly the sequence accelerates away to increas-
ingly high values. For instance, we could color the points, if not
converging, as some function of the highest value of z reached (when
n = 10), e.g.

if (z > 2)

v_conv(n) = 1/z;

else

v_conv(n) = 1;

end

It turns out this is not very effective, as after 10 iterations, if not con-
verging, generally very large values have been reached, and so in the
color scheme, all non-converging values of v_conv are still close to
zero.56 56 Nor does it help to simply set:

if (z > 2)
v_conv(n) = z;

else
v_conv(n) = 1;

end

(Try it and see!)

An alternative, is that for any given value of c, we identify how
many iterations it takes to surpass the prescribed threshold (2.0) –
the faster the sequence diverges, the fewer iterations of the loop will
be needed to surpass the threshold. Now we cannot simply loop
from 1 to 10 using a fixed do loop, because the value of 2.0 might be
exceeded long before 10 iterations total has been reached.57 57 Actually, we could use a fixed do

loop, but it is much more efficient
not to – if early on in the loop, the
threshold has been surpassed, why
keep iterating (and wasting CPU
cycles)?

Instead, we could use while . A basic substitution of the current
inner (do) loop would look like:

n = 0;

while (n <= n_max)

z = z ∧2 + c;

n = n+1;

end

Try this and satisfy yourself that it does exactly the same as before.
So now we add the additional criteria for terminating the while

loop also test for the threshold being surpassed:

n = 0;

while ((n <= n_max) && (z <= 2))

z = z ∧2 + c;

n = n+1;

end

Now, the loop continues only if there are more allowed iterations
(n_max has not been reached yet), and, the threshold has not yet
been exceeded.

This code is faster than before, but your problem is pretty simple
and you may not notice.58

58 If you would like to explore the
efficiency of your program a little
further:

1. At the very start of the code, add the
line:
tic;
and at the end of the program, add:
toc;
Giving you a timing of the code
execution.

2. Comment out all the lines of code
for the graphics, so that you are
left only with the calculations (and
initialization).

3. Force the program to carry out
a more challenging number of
calculations, e.g.

v = [-3:0.000001:3.0];
n_max=100;

The final step is to take the value of n that is reached when the
while loop terminates, and use that to plot the color-scale.

186 str=’do you like bananas?’;

...

% loop

n = 0

while ((n <= n_max) && (z <= 2))

z = z ∧2 + c;

n = n+1;

end

% assign value depending on whether converged

if (n == n_max)

v_conv(n) = 0;

else

v_conv(n) = 1.0-n/n_max;

end

...

Here, the test for convergence of the sequence is out counting vari-
able n having reached a value of n_max (i.e. for all the maximum
allowed iterations of the loop, the value of z has remained less than
or equal to 2.0).

Potting this now, looks like Figure 4.19.

-3 -2 -1 0 1 2 3

Value of c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n/
a

Figure 4.19: Solution space (blue points)
for the simple sequence, with the rate
of divergence forming the color scale
of light blue (slowest) through yellow
(fastest divergence).

4.5.2 Sequence convergence (in 2D)

Now to the Mandelbrot set ...
The idea is basically the same as before – we are going to generate

a sequence, and find out whether it converges, or if not, how quickly
it diverges and whizzes off towards infinity in value. The equation
is very similar to before (see Box), with the next value equal to the
current value squared, plus a constant, and we are varying the value
of the constant.

The big complication is that c, is now not a simple real number
(and one that we could simply plot along the x-axis), but a complex
number (see Box).

A complex number z, is a number of
the form:

z = a + bi
where i is the square root of −1
(or i : i2 = −1).

If we square z, we have:
z2 = (a + bi) × (a + bi)

= a2 + a × (bi) + (bi) × a + (bi)2

= a2 + 2 × a × b × i + (b)2 × (i)2

and remembering what i2 equates to:
z2 = a2 − b2 + 2 × a × (bi)

It is helpful to think of the real and imaginary components of the
number, as x and y values on an x-y plot59 and treat them exactly as

59 And in fact, this is exactly how we
will be plotting things later.

per you would vectors.
How to put this into code?
Well, the number c now has two parts – a real an imaginary part.

Lets call them variables x (real) and y (imaginary).
The number z also has two parts. We could represent these by

variables a and b. If we simply had the equation:

zn+1 = z(n) + c

we could write (within a loop):

a = a + x;

b = b + y;

further ... programming 187

For the equation

zn+1 = z2
(n) + c

we now have:

a = a∧2 - b ∧2 + x;

b = 2* a* b + y;

(see Box). Except ... although we have taken the value of a, updated
it, reassigned it back to the variable a ... when it comes to updat-
ing the value of b ... whoops(!) – we have already updated a (and
we should not have as the original value is needed to calculate b).
The simplest solution is to make the old and new values completely
explicit:

a_old = a;

b_old = a;

a = a_old ∧2 - b_old ∧2 + x;

b = 2* a_old * b_old + y;

The equation above (zn+1 = z(n) + c) in code, for n_max iterations
(of n), looks like:

do n=1:n_max,

a_old = a;

b_old = a;

a = a_old ∧2 - b_old ∧2 + x;

b = 2* a_old * b_old + y;

end

Again, we could replace the do with a while as as before, apply a
convergence criteria to terminate the loop (early):

while ((n <= n_max) && ((a ∧2+b∧2) <= 2 ∧2))

a_old = a;

b_old = a;

a = a_old ∧2 - b_old ∧2 + x;

b = 2* a_old * b_old + y;

end

or faster (but probably not important in this particular MATLAB
program) would be:

while ((n <= n_max) && ((a * a+b* b) <= 2 * 2))

(because multiplication is faster for computers than raising a number
to a power).

Mathematically, thats it. What remains is to create a set of values
of c to test for convergence on, and because complex numbers can be
represented in x-y space, we can create a 2D grid of real and imag-
inary component values, just as we did early for lon-lat values in
plotting maps.

188 str=’do you like bananas?’;

For example:

x = [-3:0.1:3.0];

y = [-3:0.1:3.0];

would create a range of real and a range of imaginary parts of the
complex number c = x + yi.

However, as per for lon-lat, we want all combinations in a 2D grid,
and so we use meshgrid :

[xx, yy] = meshgrid([-3:0.1:3.0],[-3:0.1:3.0]);

At this point – pause.

1. You have the loop framework code to test whether the maximum
number of iterations has been reached, or whether the test of con-
vergence has failed.

2. You have the code in the iteration loop, to square one complex
number (z) and add a second (c) to it.

3. You have create a pair of matrices – one of values of a (xx) and
one of b (yy) which together, map out a 2D space (/grid) to be
searched.

Next, the full code will be provided to you (as an alternative to you
trying to piece fragments together), but it is your job to make sure
you understand it ...

further ... programming 189

% clear workspace & close open figure windows

clear all ;

close all ;

% create a parameter to contain the threshold value

thresh = 2 * 2;

% maximum number of iterations

n_max = 10;

% create initial grid ...

% from -1 to +3 in both dimensions, ...

% with a step resolution of 0.1

%[xx,yy] = meshgrid([-3:0.1:3.0],[-3:0.1:3.0]);

% determine total number of points to test

m_max = numel(xx);

% reshape x and y matrices into 2 columns of vectors

v(:,1) = reshape(xx,[m_max,1]);

v(:,2) = reshape(yy,[m_max,1]);

% create a 3rd vector column ...

% for storing a measure of convergence/divergence

v(:,3) = zeros(m_max,1);

% loop thought the x-y vector columns

for m=1:m_max

% set the value of complex number c

x = v(m,1);

y = v(m,2);

% initialize z(n=0)

a = 0.0;

b = 0.0;

% initialize the count

n = 0;

% iterate and check for convergence

while ((n <= n_max) && ((a * a + b* b) < thresh)),

% copy old value of z (n)

a_tmp = a;

b_tmp = b;

% update z (n+1)

a = a_tmp * a_tmp - b_tmp * b_tmp + x;

b = 2* a_tmp * b_tmp + y;

% update count

n = n+1;

end

% set measure of convergence/divergence

if (n <= n_max),

v(m,3) = 1.0/n;

else

v(m,3) = 0.0;

end

end

% take results vector, and ...

% reshape back into matrix form (for plotting)

zz = reshape(v(:,3),[length([-3:0.1:3.0]),length([-3:0.1:3.0])]);

190 str=’do you like bananas?’;

In this code, you should note that I have avoided a double/nested
loop for looping through the 2D space of the real (a) and imaginary
(b) parts of the complex number c. Instead, I have simplified this to a
single loop, of all elements. The total number of elements in the grid
can be obtained using the numel function60. 60 In the code, it does not matter

whether you write:

m_max = numel(xx);

or

m_max = numel(yy);

as the 2 matrices are exactly the same
size.

Knowing the total number of elements in the xx and yy matrices,
it is a simple matter to convert these into vector form:

v(:,1) = reshape(xx,[m_max,1]);

v(:,2) = reshape(yy,[m_max,1]);

and then to add a 3rd column, that will hold the results:

v(:,3) = zeros(m_max,1);

You can plot the resulting grid of convergence/divergence values
using imagesc :

imagesc(zz);

as per Figure 4.20.

-3 3
Real part

3

-3

Im
ag

in
ar

y
pa

rt

Figure 4.20: Simple, low resolution
Mandelbrot set rendition.

-3 3
Real part

3

-3

Im
ag

in
ar

y
pa

rt

Figure 4.21: Simple, low resolution
Mandelbrot set rendition (now high-
lighting points that are members of the
solution set (black) vs. not (white).

To obtain a higher resolution plot – simply increase the resolution
of the x and y vectors used by the meshgrid 61. Also – the maximum

61 Note that you also have to make the
same changes at the end when you
reshape the results to the matrix zz .

of iterations allowed, n_max.
To create the simple black/white plot (e.g. Figure 4.16), I created

a color scale which as all white, apart from black at the very start of
the scale (corresponding to the lowest values). To do this, near the
start of the code (before any of the loops), or, after both loops have
finished, add:

% create color scale

brotmap = [0 0 0;

1+zeros(9,3)];

and which looks like:

» brotmap

brotmap =

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

further ... programming 191

defining black on the first row, and white on the next 9 rows. This
gives a color scale of ten rows, that corresponds to the maximum
number of iterations in your code, and hence the maximum number
of different values that zz can take.62 62 Other choices for number of rows

would have been perfectly acceptable in
this particular example.

Then, before you call imagesc , add:

cmap = colormap(brotmap);

The result is shown in Figure 4.21.

A more flexible way to define the grid limits and the resolution, is
instead of writing in directly the specifications passed to meshgrid ,
e.g.:

[xx, yy] = meshgrid([-3:0.1:3.0],[-3:0.1:3.0]);

is to first set the grid limits:

x_min = -2.5; x_max = 1.0; y_min = -1.5; y_max = 1.5;

define the resolution – here the number of divisions:

xy_res = 2000;

and then for meshgrid :

[xx, yy] = meshgrid ...

([x_min:(x_max-x_min)/xy_res:x_max], ...

[y_min:(y_max-y_min)/xy_res:y_max]);

This particular line is ’messier’ than before, but now it is much eas-
ier to change the grid limits, and/or the resolution, and when you
convert the results vector to a matrix, it is now just:

zz = reshape(v(:,3),[xy_res+1,xy_res+1]);

Try playing about with Mandelbrot Set plots – changing the x-
and y-limits (x_min ,x_max,y_min ,y_max) as well as the resolution
(xy_res) of the plot.

Figures 4.22, 4.23, 4.24 give examples of different regions (zooms)..

-3 2
Real part

2.5

-2.5

Im
ag

in
ar

y
pa

rt

Figure 4.22: Initial Mandelbrot Set
magnification.

-1.1614 -1.1565
Real part

0.28729

0.28241

Im
ag

in
ar

y
pa

rt

Figure 4.23: Example Mandelbrot Set
zoom.

-0.80566 -0.80078
Real part

0.18041

0.17553

Im
ag

in
ar

y
pa

rt

Figure 4.24: Example Mandelbrot Set
zoom.

These example plots also employ a slightly more complicated color
scheme:

brotmap2 = [0 0 0;

jet;

flipud(jet)];

which defines, as before, black as the color corresponding to the low-
est values – in this case the solution set (a sequence that converges).
But then it adds the built-in MATLAB jet color scheme to the end
of this. And then ... for good measure, it adds on another copy of

192 str=’do you like bananas?’;

jet , but this time inverted63 (colors occurring in the opposite se- 63 The flipud accomplishes this inver-
sion.quence).

The real advantage of defining x-y limits it this way, is that you can
re-formulate the code as a function, get the position of the mouse
on the screen, and click to zoom by some fixed and predetermined
amount, or to define a box to zoom to, and pass the new, updated
x-y limits back to the function to re-calculate the sequence, and then
re-plot the now zoom-ed in region of solution space.

In re-formulating your script as a function – you take as input,
the x- and y-limits (four variables total), and return as output, an
array of results values (zz). You would call this function from a script
that does the actual plotting of the figure. The script would also set
initial (default) x- and y-limit values and ... once the figure is drawn,
take mouse input for a single click (to define the center of a zoomed
in region) or two mouse clicks (to define the opposite corners of a
zoomed in region) and then re-draw the plot.

Example code of a script (make_brot.m), and the corresponding
function (fun_brot.m), are provided via the links.64 64 Simply type:

» make_brot

to start, left mouse-button click to zoom
to that point, and right-button mouse
click to end (the plot window remains
open however).

Zoom is controlled by the parameter
xy_mag in make_brot.m.

http://www.seao2.info/teaching/201718.GEO111/fun_brot.m
http://www.seao2.info/teaching/201718.GEO111/make_brot.m

5

Programming applications – games!

Games are great examples of many of the different facets of computer programming and MATLAB cov-
ered to date. They invariably contain algorithms and require problem-solving in the code, will contain
multiple functions and sub-programs, loops, conditionals, graphics of some sort. They will invariably be
complex, and hence put debugging skills to the test. They often even contain physics (and science)! They
also provide an important motivation for developing the code – a specific and hopefully fun, end-product.

194 str=’do you like bananas?’;

5.1 Tic-tac-toe

Tic-tac-toe1 – Figure 5.1 – ’is a paper-and-pencil game for two players, X 1 Also called ’Noughts and crosses’.

and O, who take turns marking the spaces in a 3 × 3 grid. The player who
succeeds in placing three of their marks in a horizontal, vertical, or diagonal
row wins the game.’ It is as common a muck and inevitably, everypony
knows how to play it, so we don’t need to spend time defining the
rules.

Figure 5.1: Tic-tac-toe. By Symode09
- Own work, Public Domain,
https://commons.wikimedia.org/
w/index.php?curid=2064271.

Here we’ll devise a basic version requiring 2 (mostly) human play-
ers, but note the possibility of developing an AI computer player(!)
(We’ll also not make use of the MATLAB GUI, so keep the code as
simple as possible, but note that as a further possibility for develop-
ment.)

IMPORTANT: In the sections that follow – a number of code frag-
ments are given to you. The idea is not simply to copy-paste the code
fragments and go home ... The key is getting the structure of the pro-
gram (and how the various sperate functions are created and utilized)
right. If you find yourself having no idea ’where’ to put a particular
code fragment ... please ask! Note that you can always simply write
your own code from scratch – there are many (infinite?) different
ways of creating the program and writing the code to solve the dif-
ferent steps. You might even find that easier as it should be more
obvious to you ’where’ to put different lines.

A schematic of the complete (final) code structure is shown in
Figure 5.2 as a guide.

To start – the following is a brain-dump on what we need to go
about designing and writing the game2,3: 2 You can devise all sorts of strategies

for creating the game, but you do need
some sort of strategy before you start to
write any code.
3 Despite the messy, additional
automatically-generated MATLAB
code, some of these are actually easier
in a GUI.

1. The game is almost wholly visual and so we need to think about
the graphics at the outset. For instance:

• We need a Figure window (no really)! Not having any ax-
es/axes labels showing would be nice.
• We need to draw a grid, consisting of two pairs of lines, at 90
degrees to each other.
• We then need to add a cross or a zero to the graphic when a
player clicks an empty square.
• If there is a winner, we need to draw a line through the
winning diagonal or row/column and the game finishes.

2. Associated with the adding of a cross or zero – we need to find a
way to identify which box a player chooses, and then apply the
cross/zero according to the selected box and player identity.

3. We need to keep a list (array) of the remaining empty boxes in the
grid and only allow a box to be chosen if it is empty.

4. We need to test for a winning line of crosses or zeros.

programming applications – games! 195

5. We also need some directions to be given to the players – who’s
turn it is, and who wins, or if there is a draw, that the game is
over. To simply things, for now, these messages can be sent to the
command line.

Figure 5.2: Schematic structure of the
complete code.

Some of these things you have seen and you will know (hopefully)
how to go about it, such as drawing the grid, printing messages at
the command line. Others are not so obvious and may prove tricky,
so we’ll tackle those first – to my mind, these are:

1. Selecting a location in the window.
2. Then filtering the chosen position to identify a specific box, and
hence position the cross/zero neatly.
3. The mechanics of placing the cross or zero in the grid.

Before we go through these and progressively build up a working
game, we’ll start with a shell program script m-file – game.m – that
we can test ideas and code in:

% **************************
% *** Tic-Tac-Toe game! ***
% **************************

% close currently open windows

close all ;

% clear variable space

clear all;

% create a new figure window

figure;

% create a set of invisible axes that will the window

fh = axes(’Position’ ,[0 0 1 1], ’Visible’ , ’off’);

% scale the axes

axis([0 3 0 3]);

% hold on!

hold on;

This is like you had before in drawing a grid graphic. You need not
include close all ... but you may not wish to accumulate Figure

windows for ever. Beasue this is a script m-file, not a function, the vari-
ables and their values remain in the MATLAB workspace even after
the program is terminated or finishes. clear all simply ensure
that a variable value from a previous test of the program, doesn’t
somehow interferer with the next test as you develop the code.4,5 4 It shouldn’t do, and there should be

no variables used anywhere, that are
not initialized to a specific value first.
5 If you prefer to frame the program
as a function ... with no inputs or
outputs, then that is fine, but remember
that you’ll need to add breakpoints to
interrogate any of the variable values as
they all become private.

The line starting fh = ... creates a plotting area with no axes
visible, and filling the Figure window area ([0 0 1 1] in normal-
ized units). The handle to this is returned (variable fh), just in case
we ever need it later.

196 str=’do you like bananas?’;

In scaling the axes – as there are 3 rows and 3 columns in the
game area, it seemed ’reasonable’ to set axis([0 3 0 3]) , al-
though we need not have.

Maybe before getting into any of the listed complexities, we could
draw the game grid to give us some visual perspective on things.
We could do this perfectly correctly, by adding the code to the main
m-file/program file, but it is much neater to put sections of code that
do specific things, and particularly if you might want to run these
sections of code again, in a subprogram, which could be a script or a
function. Here, even though there will be no inputs or outputs, we’ll
create a new m-file function (to be consistent with additional functions
that we will be creating) just for the grid drawing – draw_grid.m –
see Figure 5.2.

This is my function for drawing the grid (which will be called from
the main program script file) and which is saved to a second new
m-file draw_grid.m:

function [] = draw_grid()

%draw the game grid

grid_th = 2.0;

grid_col = [0 0 0];

line([1.0 1.0],[0.0 3.0], ’LineWidth’ ,grid_th, ’Color’ ,grid_col);

line([2.0 2.0],[0.0 3.0], ’LineWidth’ ,grid_th, ’Color’ ,grid_col);

line([0.0 3.0],[1.0 1.0], ’LineWidth’ ,grid_th, ’Color’ ,grid_col);

line([0.0 3.0],[2.0 2.0], ’LineWidth’ ,grid_th, ’Color’ ,grid_col);

end

(You should comment your version better!)
The 4 main lines of the code simply draw the 4 grid lines – 2 hor-

izontal and 2 vertical. Because the line width and color appear 4
times – one in each line command line, I have set the value of a
paid of parameters at the start – if I ever want to change line thick-
ness and/or color, I need only make an edit in a single place (where
the parameters are defined) rather than in each and ever line com-
mand line. (You could, for instance, experience with different line
thicknesses and colors.)

To call the grid-drawing function draw_grid.m – in you main pro-
gram (script m-file) – somewhere after hold on (refer to Figure 5.2),
add the line6:

6 Remember you are not passing any
parameters to this function, nor is it
returning anything back to you

draw_grid();

which then calls the function to draw the grid.
Run it so far. It should look like Figure 5.3, depending on the line

width and colors you choose in draw_grid.m .

Figure 5.3: Tic-tac-toe game grid drawn.

programming applications – games! 197

5.1.1 Mouse behavior

OK – so a key part of the game is being able to select a particular
grid square (cell), in order to place your (cross or circle) marker. One
could do this e.g. at the command line by specifying a coordinate
location, e.g. (1,1) for the bottom (or top) left cell, but this would
be pretty tedious and would mean flipping back-and-forth between
Command Window and Figure Window.

The MATLAB function ginput is provided to return the coordi-
nate of the mouse pointer when one of the buttons is clicked. The
coordinate returned is in the same units as your axes. Nothing is re-
turned if you click outside the Figure Window.7 ginput also returns 7 Because we defined the game area as

the entire area of the Figure Window, it
should not be possible to click in the
Figure Window but outside of the game
area, so we do not have to deal with
that possibility occurring.

which of the 2 (or 3) of the buttons was clicked. The ginput function
also needs to be told how many mouse clicks to return – we need
only one (per turn in the game).

ginput "ginput raises crosshairs in
the current axes to for you to identify
points in the figure, positioning the cur-
sor with the mouse ... [x,y,button]
= ginput(...) returns the x-
coordinates, the y-coordinates, and
the button . button is a vector of
integers indicating which mouse buttons
you pressed (1 for left, 2 for middle, 3 for
right)."

So ... basically – you move the
mouse and press a button, and
MATLAB kindly tells you which
button you pressed and where
(within the axes) you pressed it,

To try this out (at the command line):

» [x,y,button] = ginput(1)

A figure window will open (unless you already have one open) and a
set of cross-hairs appears indicating the current position of the mouse
pointer. When you click a mouse button, it then sets the variables x

and y equal to the (x,y) location of the mouse button click, and the
variable button to the ID corresponding to which mouse button it
was.

We’ll use this in your game.m script shortly.

5.1.2 Drawing the ’objects’

One strategy in programming, is to get *something* happening and
working first, and worry about the details and quite what you really
wanted, later. So lets draw *something* in response to the mouse
click, and not yet worry what exactly we draw.

Again – creating subprograms and functions are a great way of
reducing clutter in the main program, helpful in debugging, and all
but essential if you need to apply the same (or almost the same) code
more than once. The need to draw a number of crosses, and also a
number of circles, fits the bill. So lets create a pair of functions for
drawing first a cross, and then a circle. (See Figure 5.2.)

To begin with, the 2 functions will look almost identical, and differ
only in name:

function [] = draw_cross(x,y)

%draw cross

end

for the cross (saved as draw_cross.m), with the other one:

198 str=’do you like bananas?’;

function [] = draw_circle(x,y)

%draw circle

end

(saved as draw_circle.m).
Both function take a pair of parameters, x and y as inputs, which

will be the (x, y) locations to draw the objects.
We should draw *something* (in the draw_cross function) to get

things going. For now, try adding (in draw_cross.m):

dz = 0.25;

patch([x-dz x-dz x+dz x+dz],[y-dz y+dz y+dz y-dz],’b’);

which is obviously not a cross (nor a circle) ... but it’ll do for now. 8 8 You can also use scatter – plotting
a single point, with a specific marker
shape, to create the markers:

scatter(x,y,5000,’o’);
would create a circle, and:
scatter(x,y,5000,’z’);
a cross.
Here, the 5000 simply specifies a

’large’ marker size.
To create a more prominent symbol

and specify a particular color, add
to the list of parameters passed to
scatter , e.g.:

’LineWidth’,2,’MarkerEdgeColor’,’b’

Assuming the (x, y) location passed into the function is the centre of
the object, x-dz and x+dz create x-coordinate vertices symmetrically
either side (of x), and likewise for the y-coordinates. Experiment with
a suitable value of dz .

You could test this simply at the command line ...

» figure;

» axis([0 3 0 3]);

and then call the function, passing whatever pairs of coordinates in
the range 0 − 3 that you like, e.g.

» draw_cross(0.5,2)

» draw_cross(1.5,1)

» draw_cross(2.333,1.333)

Create a similar shape for draw_circle ... picking a different
color and/or a different shape. And then test this function (at the
command line) also.

Lets recap at this point – you should be in good shape at this point
– you have a main program (game.m), plus a function that draws
the game grid (draw_grid.m) (and which is called from game.m), and
... you have a pair of functions to draw a shape centered on (x, y)
(although so far they are not connected to anything else).

You also know how to find the (x, y) coordinates of a mouse but-
ton click (but have not added this to the main code yet.).

Now we come to the core of the game, which is that players can keep
clicking the grid and choosing squares until someone winds (or you
run out of un-claimed squares).

We are going to implement this with a while ... end struc-
ture (on the basis that something (code) keeps happening, until a

programming applications – games! 199

condition is met (end of game). So in your main program (game.m),
add the following after you have drawn the grid:

game_on = true;

while game_on

%%% CODE

end

You can test this by making MATLAB draw a marker symbol each
and every time the mouse button is clicked. So in place of % code,
add:

[x,y,button] = ginput(1);

draw_cross(x,y);

(and not fogetting to add your own illuminating comments!).
In this: having game_on = true without any line that could

set the value of the variable to false , means that the loop, while

game_on, loops ... forever. You’ll have to CTRL-C to get out of this (or
close the window), but if you click a number of times first, you start
to get something that looks like if your luck was otherwise, this could
be a 10 million dollar modern art piece (Figure 5.4).

Figure 5.4: Tic-tac-toe game – object
drawing test.

[OPTIONAL] As an experiment and test of your coding9, try mak-

9 If you need a hint – if

ing the other shape appear if the other button is clicked – ginput

returns a value of 1 to the variable button if it is the left mouse but-
ton, and 3 if it is the right. (See Figure 5.5.) i.e. in the code fragment
above, rather than always calling draw_cross each and every time a
mouse button is clicked – test for which mouse button it is and either
draw a cross or a circle (or whatever shape is currently representing
’circle’) depending on which it is.

Create a new m-file for this (by copying-and-renaming game.m),
because you do not want this additional piece of code to appear in
your final program.)

Figure 5.5: Tic-tac-toe game – object
drawing + mouse button test.

5.1.3 Identifying specific boxes

There is still much to do ... but an obvious and significant next step
is to place the objects in specific locations – i.e. centered in the box
in which the mouse button occurred rather than simply at the exact
same location of the mouse click. So we need to test the values of x

and y (returned by [x,y,button] = ginput(1)), and identify a
specific grid box (and its indices). 10

10 There is a simpler and sly-er way of
doing this, which would be particularly
useful if we have a really large grid and
having 100s of elseif s is not practical.

The function round , returns the
rounded up integer value of a real
number. So round(0.49) returns 0,
while round returns 1.

We could derive the value of xi
simply, in a single line, by:

xi = round(x+0.5);

where the +0.5 bit ensures values
in the range 0.0 − 1.0 returns 1 (and
1.0 − 2.0, 2).

Because you specified: axis([0 3 0 3]) near the very start of
your program, the grid is counted from the bottom left hand corner,
from 0 to 3 in both x and y directions, so that the first row or column
is in the range 0.0 − 1.0, the second 1.0 − 2.0, and the third 2.0 − 3.0.

However, what we want is the index of the square, which will be
1, 2, or 3 (corresponding to the 1st, 2nd, or 3rd, column respectively).

200 str=’do you like bananas?’;

We will call this index variable xi (for a variable containing the x
index (or ’integer’)) and could derive it from x by a piece of code
such as:

if (x < 1)

xi = 1;

elseif (x < 2)

xi = 2;

else

xi = 3;

end

(Work through this mentally, imagining a series of hypothetically
clicked x-values between 0.0 and 3.0 and confirm that it will correctly
give you the correct corresponding integer (1, 2, or 3).) 11 11 Or ... if you prefer:

Create a function with this code in,
with one input (x) and one output (xi),
and test passing different values of x in
when you call it.

You also need to write something similar for the y-direction.
Then – and add both these fragments of code (for determining

the value of xi , and then for yi) to your main program immediately
after the line:

[x,y,button] = ginput(1);

and before the line: draw_cross(x,y);

What you should not have is code within the loop, that determines
the (x,y) location of the mouse click, and then convert the returned x

and y values into a pair of (xi , yi) indices in the range 1 − 3.12 12 Note that there is an easier way
of obtaining the indices, using the
MATLAB function round .

Try this out (run the program). You should have filled shapes appear-
ing in a nice neat array, corresponding to each mouse button click,
but ... not appearing in the center of the grid squares, but rather at
the corners ... This is because we created the marker drawing func-
tions assuming that the (x,y) values corresponding to the center of
each shape were being passed. So we need to derive the center (x,y)
coordinates of each grid square, and pass those.

Hopefully you can see that when we call draw_cross (or draw_circle),
the center of the square which will be equal to the value of xi (and
yi), minus 0.5, i.e.

draw_cross(xi-0.5,yi-0.5);

Modify your code like this and try it out.
Now ... suddenly ... the game seems to be coming together in

terms of the graphics (Figure 5.6). (Obviously we are still missing a
lot, including correct shapes.)

Figure 5.6: Tic-tac-toe game – object
drawing now arranged in a grid.

programming applications – games! 201

Another re-cap.
What you code should look like so far is: after the hold on state-

ment in the initial code framework (the very first piece of code given
to start building the game.m program) is:

game_on = true;

while game_on

[x,y,button] = ginput(1);

...

immediately followed by one set of code to identify the (integer)
column (xi) number:

if (x < 1)

xi = 1;

elseif (x < 2)

xi = 2;

else

xi = 3;

end

... and then one near identical set of lines of code to identify the
(integer) column (yi) number following this:

if (y < 1)

...

end

And then:

draw_cross(xi-0.5,yi-0.5);

Only after all this does the end of the while loop occur in your code.

...

end

You should be testing this code, which comprises the main (script)
program game.m, plus 3 function m-files. It should run for ever,
placing a ’cross’ in the center of a square if whenever you click with
the mouse button. Note that so far, you can add multiple squares in
a row, and there is also nothing forcing you to alternative ’turns’. In
fact, where are the 2nd player’s markers?

5.1.4 Remembering turns (and arrays!)

A key to the game is that when a nought/cross has been placed
somewhere, you cannot place anything more there. So we need to
keep track of which cells have already been chosen. In fact, we need
to keep track of what is ’in’ each cell.

We will create a 3 × 3 array to store the information in, with each
(row, column) pair of the MATLAB array, corresponding to an (xi ,
yi) pair (cell location in the game grid).

202 str=’do you like bananas?’;

You have already seen how to create an n × m array of e.g. zeros.
In your program – somewhere near the start, and certainly before the
while loop, you can add13: 13 Or call the array variable something

better ... there is no completely obvious
and helpful variable name for what it
will end up holding.

tokens = zeros(3);

(but adding a suitable comment line ...)
Another important thing you’ll come across in programming is

devising notations for representing states in a model or game or
whatever. Pause and think about the possible states that each cell in
the game grid can have.

1. Not yet chosen.
2. Assigned to a Cross.
3. Assigned to a Naught.

We could hence decide to assign values in the tokens array:

0 == Not yet chosen.
1 == Assigned to a Cross.
2 == Assigned to a Naught.

(so the elements of the array can take a value of 0, 1, or 2, as illus-
trated in Figure 5.7).

Figure 5.7: Tic-tac-toe game grid with
numerical codes overlain.

Now ... in the loop, as the xi and yi indices are derived in the
code – use them to assign a value to the tokens array.14 You can

14 It is a personal preference whether
to simply remember that MATLAB
indexes arrays differently to reading a
normal (x,y) location, or try and make
the contents of the array, as viewed,
look like the game grid.

then test the value of the location that has just been chosen, and from
this, decide whether the move is legal or not.

In your code, after having determined the values of xi , yi , and in
place of the single line:

draw_cross(xi-0.5,yi-0.5);

add the following instead:

% test for square is empty (a zero value)

if (tokens(xi,yi) == 0)

% if empty ... draw cross ...

draw_cross(xi-0.5,yi-0.5);

% and then update array that is now has a cross

tokens(xi,yi) = 1;

else

% alert if square already taken

disp(’Illegal move! Choose again.’);

end

(here setting the value of tokens at that location to 1, because we are
assuming still the ’cross’ player in the variable and function naming
notation).

Now when you run your program, when you click in a square, it
always draws a cross, but only if there is not already one there.

programming applications – games! 203

5.1.5 Putting it all together

OK. Pause. Consider where you are at; what you have working ...
and what remains to do.

Done:

• Drawn grid.
• Created functions to draw the 2 different game pieces.
• Recovered the (x,y) mouse click location, and converted that
into the game grid (x,y) location.
• Checked to see whether a game cell is already occupied and
not allowing the move if so (other placing a symbol).

To-do:

• Alternate the player turns.
• Draw ’correct’ symbols(!)
• Test for the game finishing.

In terms of player turn – this is a simple binary state – either it is
the turn of player #1, or it isn’t (and hence the turn of player #2). So
we could create a (logical) variable player1 to keep track of whose
turn it is.15 If we initialize the game with player #1 starting first, near 15 Equally, we could have defined a

variable player, that took a value of 1
(for player 1’s turn) or 2 (player 2). We
would then need to change its value
after a player had taken a turn, from 1
to 2, or 2 to 1. This turns out to be more
awkward to implement than simply
taking the NOT of a variable state.

the top of the main program (before the while loop), we could set:

player1 = 1;

Now it is simple to alternate between the player turns, and after
the current player has taken their turn, we can simply write:

player1 = ∼player1;

which flips whose turn it is. This line will go within the while loop
and after a player has taken a turn.:

if (tokens(xi,yi) == 0),

draw_cross(xi-0.5,yi-0.5);

tokens(xi,yi) = 1;

player1 = ∼player1;

else

disp(’Illegal move! Choose again.’);

end

(We do not change the player turn if it is an invalid cell (else ...)
because the same player has to chose again.)

At this point, we are still not differentiating between the different
players – we need to draw a different symbol depending on which
player it is, and also set the corresponding element in the array to a
different value (1 for player 1, and 2 for player 2).

So we need to test for which player it is currently16. Now, in place 16 Note that we need only have one
occurrence of the line player1 =
∼player1; , although it would have
still worked fine to have put this line at
the end of the code in the if section,
and also the else section.

of the 3 lines of code above, i.e.

204 str=’do you like bananas?’;

draw_cross(xi-0.5,yi-0.5);

tokens(xi,yi) = 1;

player1 = ∼player1;

we instead write:

if player1,

draw_cross(xi-0.5,yi-0.5);

tokens(xi,yi) = 1;

else

draw_circle(xi-0.5,yi-0.5);

tokens(xi,yi) = 2;

end

player1 = ∼player1;

which tests for it being player #1’s turn, and if so, draws their symbol
and marks that cell (in tokens) as ’theirs’. Otherwise, draws player
#2’s symbol and marks the grid square as theirs.

Note that all this goes still within the if test of whether the move
is legal or not, i.e.:

if (tokens(xi,yi) == 0),

...

end

If you test the code now, the output of the forced turn alternation
should starts to look like Figure 5.8. The behaviour should be that
you can only play a marker in an empty square, and the player turns
alternate.

Figure 5.8: Tic-tac-toe game – object
drawing now arranged in a grid and
with forced alternation in player turn.

Finally, we need to think about the end-game. One way in which the
game ends, is if there are no free cells left. We could:

1. Search through the 3 × 3 grid, testing each cell in turn as to
whether it has a value of zero or not.

2. Or better – find – find the vector of indices of locations in which a
value of zero occurs, and test whether this vector is empty17: 17 See Box. Note that if find finds

nothing, it returns the empty vector [] .
remaining = find(tokens == 0);

if isempty(remaining),

break;

end

You could also add a message before break -ing out of the while

loop.18

18 An alternative to the use of break ,
would be to set the value of game_on
to false.

isempty
MATLAB says: ’Determine whether

array is empty’, and:
TF = isempty(A) returns logical

1 (true) if A is an empty array and
logical 0 (false) otherwise.

This code would go just before the end of the while loop and
either just before, or just after the line:

player1 = ∼player1;

programming applications – games! 205

Almost almost almost there ... and perhaps the single most hardest
part – detecting a ’win’.19 19 And don’t panic ... because the code

will be given to you at the end because
it is not at all simple (although you
might yet come up with a much better
solution ...).

Probably, the easiest way, which would not be true for many other
games, is to pre-define the every single winning pattern, and look
through this list to see if any of these patters occurs. For instance,
one winning pattern is shown in Figure 5.8 and would be repre-
sented matrix form by:

1 0 0
1 0 0
1 0 0

We could define a series of 3 × 3 arrays to represent these. We’d
end up with 8 different arrays and array names and that might be a
bit of a mess to deal with. Better is to create a single 3D array, with
the 3rd dimension having length 8 – one layer for each possible win-
ning pattern.20 If you did this (create a 3 × 3 × 8 array ... we’ll call it 20 If you like – make an analogy with

the month temperature data, where you
had 12 slices (the 3rd dimension) of a
2D (lon,lat) array of points.

array variable winning), we could simply loop through the 3rd di-
mension of the array, from 1 to 8 (in terms of the layer number), and
access each possible solution in turn. How to use this in practice?
Well, it is not obvious.

A slightly different alternative is to use find , and for each player,
obtain the list of ’linear indices’ (see below) of the grid cells containing
their symbol.

For instance, for player 1 (red symbol) in Figure 5.8, we could
create the matrix of the location of their marked squares and use it to
explore strategies for determining whether it constitutes a ’win’. The
matrix would look like this:

A = [1 0 0; 1 0 0; 1 0 0];

If you then do find for 1s (player 1’s token value), you get:

» find(A==1)

ans =

1

2

3

So for the winning 2D pattern in Figure 5.8, we could represent this
more simply as [1 2 3] .

Be careful here – for 2D (or higher dimension) arrays, rather than
the simple (1D) vectors you have been throwing at it previously –
find returns the ’linear indices’ of the array locations where the con-
dition is true. For a linear index – rather than giving a (row, colunn)
index, MATLAB counts continuously, down the rows in the first col-
umn, then down the next column, etc etc, to give an index as shown
in Figure 5.9.

Figure 5.9: Linear indices of a 3 × 3
matrix.

If we define a winning pattern as its 3 linear indices:

206 str=’do you like bananas?’;

winning = [1 2 3];

(for the first pattern), we can search the game grid at the end of the
each player turn and look for whether this (winning) pattern occurs
anywhere. We will use the MATLAB function ismember like this:

» ismember(winning,find(A==1))

ans =

1 1 1

where the three 1s indicate that each of the elements of winning ,
do indeed appear in the result of find(A==1) 21. Only if three trues 21 The ’1’ because this is the notation for

player 1.(1s) are returned, does the pattern completely match. To test for this
condition, we can calculate the sum of the result of ismember and
determine whether this is equal to 3. This then indicates to us that
the winning pattern exists.

Your only job (as the code needed is given below) – is to define the
8 × 3 array winning , which will contain all the 8 different winning
patterns (rows), in terms of a linear index (i.e. what find returns)
(see margin clues).22,23 For instance, the 3 different winning along- 22 The way to go about it is to create

a single winning pattern, and text the
code and that it works, then define the
remaining 7.
23 Also – write down on paper, the
linear indices of the 3 × 3 array – that
will help, e.g.:

1 4 7
2 5 8
3 6 9

column patterns would be represented by:

winning = [1 2 3 ; 4 5 6; 7 8 9];

and you need to add (in the same array, winning), the 3 winning
row patterns (in linear indices), plus the 2 diagonals, for a total of 8
different patterns of 3 indices.

Define this array (winning) somewhere before the loop starts.
The code for player 1, comes in the program (within the loop)

just after you have set the value of the current cell in tokens to 1

(i.e. after player 1 has just taken their turn and you want to check
whether they have just won):

pattern = find(tokens==1);

for n=1:8

test_for_win = ismember(winning(n,:),pattern);

if (sum(test_for_win) == 3),

disp(’Player 1 WINS!’);

game_on = false;

end

end

(and similar code is needed for player #2 just after they have taken
their turn). Note that if a winning combination is found, the game
ends and game_on is set to false .

You could, of course, rather than write out this code twice, once
for each player, create a function, passing in the player number, the
current tokens array (tokens), and the winning patterns (pattern),

programming applications – games! 207

and perhaps returning a logical value representing whether a win had
occurred.

It is also left up to you, to improve the shapes/symbols used to mark
the squares of each player. The cross is relatively easy to draw. The
circle is harder.24 24 A polygon with a very large number

of sides would do.Or use scatter and set the marker symbols and size appropri-
ately.

6

Graphical User Interfaces (GUI)

In this chapter we’ll learn how MATLAB can create a simple Graphical User Interface (GUI), which you can
used to interface to your program with (as an alternative to e.g. the command line). Scientifically ... this
is less useful, but it is how all computer/device software/apps tend to ’work’ these days and so is a good
thing to learn about/how to do. (excepting devices (e.g. wifi routers) that use a web-browser for their
interface, but then that is effectively a GUI within a GUI ...).

210 str=’do you like bananas?’;

6.1 MATLAB GUI basics

MATLAB kindly1 provides a tool (itself a GUI) for creating GUIs – 1 For once, it is not a sperate, zillion-
dollar license ...the ’Graphical User Interface Development Environment’ (GUIDE).

GUIDE does 2 main things for you:

1. It facilitates the design of the GUI window(s).
2. It creates a code framework for the associated program.

Figure 6.1: Starting GUI window of the
MATLAB GUIDE, GUI design tool.

You run GUIDE at the command line by typing its name:

» guide

and a window as shown in Figure 6.1 should appear.
We’ll only concern ourselves with the default option amongst the

(4) ’GUIDE templates’ – ’Blank GUI (default)’2. As for the tick-box ’Save 2 So don’t go randomly clicking on
anything just yet!new figure as:’ – we’ll leave this alone3. The ’Preview’ window is blank
3 You can save the resulting figure (and
code) under whatever filename you
wish, later anyway. (If you really want,
you can enter it in now here – it makes
little difference.)

at this point because you have selected a blank template (d’uh!) (and
are not loading in a previously created GUI).

Before you move on, it is worth pausing at this point and reflect-
ing on what happened and what the implications are for what you
might like to do (GUI-wise). At the command line, you entered the
command guide , which presumably ran a script or function (a piece
of code in any case). A window (the ’GUIDE Quick Start’ window)
was summoned (actually a figure window was created). The (figure)
window did not open blank, but instead you might note it has:

• Close/minimize/maximize buttons at the top right (and the
window can be re-sized by grabbing the corner and dragging the
mouse).

• A title at the top (in the title bar) with a cute (barf) MATLAB
icon.

• 3 buttons at the bottom right – ’OK’, ’Cancel’, and ’Help’. Pre-
sumably they’ll all do something (different) when clicked.

• Everything else is neatly enclosed in a pair of tabs (one labelled
’Create New GUI’ and one ’Open Existing GUI’ and you can switch
between tabs by clicking on the required tab.

• In the ’Create Existing GUI’ tab, there is:

– A list (of GUIDE template names plus that annoying cute little
icon again).
– An area with a border labelled ’Preview’ with a grey box

labelled ’Blank’ in the middle.
– There is a tick box and next to it (grey-ed out by default),

a box with a file path and name in and to the right of that, a
button labelled ’Browse’.

• (In the ’Open Existing GUI’ tab ... nothing much (yet) going on.)

graphical user interfaces (gui) 211

In essence, most of the primary (or at least, basic) features of a
GUI are here to see. Funnily enough, nothing much had changed,
at least in Windows, since ... the 80s4. Maybe that is a good thing 4 That is: 1980s, as much as some

might believe Microsoft has made little
progress since the 1880s ...

as despite the MATLAB GUIDE tool being completely new to you,
you hopefully can guess what would generally likely happen if you
clicked on random bits of the ’GUIDE Quick Start’ window.

(If you have not already clicked OK in the GUIDE window – do it
now.)

Figure 6.2: (Blank) GUI window editor
GUI window.

Rather than creating a blank m-file and/or some basic code first5,

5 Actually, MATLAB has done this too
and you would have seen it open up in
the Code Editor window if you have
provided a filename in the ’GUIDE Quick
Start’ window.

MATLAB throws you straight into a window design tool as per
Figure 6.2. There is a lot going on here, but start by noting there is
the usual drop-down menu bar at the very top (under the title bar
(’untitled.fig’) of the window) and a row of icons underneath that (no
re-appearance of the MATLAB icon thankfully). At the bottom of the
window there is some information, mostly about location (of what?)
– Current Point and Position. To the left of the window is a group of
icons6 plus a (depressed, by default) mouse pointer icon. Most of

6 Still no re-appearance of the MATLAB
icon!

the window is made up of a pane (whose contents apparently is, or
might be, larger than the area shown as indicated by the presence of
scroll bars along the right and bottom edges). The pane itself is ruled
with a grid pattern. (At least, that is what I see!)

Again – the great advantage of familiarity (of program GUI de-
sign) – you might guess (you’d be correct if you did) that the icons
to the left allow you to select an object and place it in the pane, the
grid serving to help you position the object. And this leads us to an
important point – creating GUI-based programs is as much (or more)
about design as it is about programming. The cleverest program (and
most complex calculations) might simply be a total fail if the GUI is
wholly unappealing or complete un-intuitive (or lacks a GUI entirely)
and no-one wants to use the program (zero user-base). The grid is
there for a reason and that is to guide you towards creating an or-
dered (and aligned), logical, and uncluttered arrangement of things
(we’ll come to what the ’things’ are shortly) within the GUI window.

You might be tempted ... to click on everything and throw all
sort of objects (what things?) into the pane of your embryonic GUI
window. But the more GUI objects you have ... ultimately, the more
code and the more debugging7 you’ll have to do. So we’ll start as 7 Which has a steep power relationship

with the amount of code.simply as possible and build up.

6.1.1 Hello, World [Static Text (box)]

This is as simple as it is going to get for a ’program’ with a GUI. In
the GUIDE window editor, which should be already open if you haven’t
fatally mucked about with it (or open up a new GUI by typing

212 str=’do you like bananas?’;

guide (lowercase) at the command line again) – identify the Static

Text icon (by hovering the mouse pointed over an icon, its function is
revealed). Click (left mouse button) on it. The mouse pointer,
when over the gridded design pane, should change to a cross-hairs
mouse pointer icon.8 Find a convenient place perhaps at the inter- 8 Note that this is to facilitate the po-

sitioning of the icon rather than being
anything about guns and shooting at
the coders behind Windows.

section of two grid lines, click the mouse down and drag out a box
– this will be the size (and location) of the Static Text object. Release
the mouse button to finish. If you don’t like the size or location, you
can move/re-size just like you would with a normal Windows (or
MacOS etc.) window.

So far, the (static) text object has a rather unappealing default
content of ’Static Text’ in a small font. You can edit the properties of
this object by double-clicking on it9. Whoa! That’s a long list of ... 9 I didn’t actually read this anywhere –

the operation of the editor or Windows
has the same feel and intuitive usage
as the sort (hopefully) of Windows you
you are going to create in your GUI(s)).

actually, properties of the object (thats two new buzz-words in one
sentence – object and properties). Each property (the column on the
left) has a default value (the column on the right) assigned to it.
Evidently, you can edit the properties using the design tool rather
than in the code code, setting a parameter value.10 For now, we’ll just 10 In reality: MATLAB is secretely

writing the relevant code and setting
the parameter value ...

make two changes:

1. For the String property – click in the box to the right, delete
’Static Text’ and write ’Hello, World’.
2. The text is pretty small ... so for the FontSize property, click in
the box to the right, delete 8.0 and write ... well, try something
larger.

Within reason, why not also play with some of the other proper-
ties if you like (at least, the ones that you can make a reasonably in-
formed guess as to what they do). Maybe you end up with a design
window looking like Figure 6.3. Note that the effect of your changes
is only shown if you e.g. hit Enter or click on a different property. If
you accidently click outside of the text object an in the design pane,
you’ll end up switching the property editor to the window itself,
which you don’t want. (You can simply click back inside the text
object to return the property editor to the text object’s settings.)11

11 Unfortunately, the title of the prop-
erty editor window is completely
unhelpful – matlab.ui.control.UIControl
when the text object properties are be-
ing edited, and matlab.ui.Figure when the
(figure) window properties are being
edited. So maybe watch out for Figure
appearing in the title bar as an indicator
or quite what is being edited.

Figure 6.3: Design of the Hello, World
window!

When you are done (editing properties) – click the Save icon. If
this is a GUI that you have not previously created or previously as-
signed a filename to, you’ll get a Save As dialogue box. At this point,
MATLAB is going to save the window design with a .fig extension.

Something a little scary now happens – MATLAB opens up the
code editor window and there is a whole bunch of code in it (a series of
functions in fact). Note that the code file has a filename the same as
you entered in for the .fig window but now with a .m extension (and
so is presumably directly associated with the figure you just created).
There is nothing we need worry about ... yet. In fact, half the file is

graphical user interfaces (gui) 213

taken up with a main function that has the comment: DO NOT EDIT.
Please take this advice ... :o)

In fact, you get given the framework code for 3 functions (pay
attention to where each function ’ends’ ... it is not super-clear ... and a
common cause of issues/bugs is accidently placing code within one
of these (particularly 1st and 3rd) functions:

1. The long one at the top (which you DO NOT edit ...):

function varargout = FUNCTIONNAME(varargin)

% UNTITLED MATLAB code for FUNCTIONNAME.fig

FUNCTIONNAME– defines the function for your app/program.
This section ends:

% End initialization code - DO NOT EDIT

(and you should not place any code in this section).

2. The middle one ...

% -- Executes just before untitled is made visible.

function FUNCTIONNAME_OpeningFcn(hObject, eventdata,

handles, varargin)

FUNCTIONNAME_OpeningFcn– allows you to execute any code
before the window appears. Such code is typically associated with
initialization (setting sup arrays and defining parameters etc.)
This one ends:

% UIWAIT makes untitled wait for user response (see

UIRESUME)

% uiwait(handles.figure1);

(This is the only one of the 3 that you might place code in (for the
purpose of this class).)

3. And ... the third and final one:

% -- Outputs from this function are returned to the

command line.

function varargout = FUNCTIONNAME_OutputFcn(hObject,

eventdata, handles)

simply allows you to set any output (function return) variables that
you wish to pass back to the command line. (You need not pass
anything back.)
and ends:

% Get default command line output from handles

structure

varargout1 = handles.output;

Although there looks like a lot of stuff here, the code is automati-
cally generated and generic and there are both a bunch of blank lines

214 str=’do you like bananas?’;

that bloat it all up and lots of comment lines, mostly briefly describ-
ing the functions and their inputs (and of which we do not care very
much about).

Close the design window (and the code editor if it distracts you).
At the command line, type the filename (no extension) to run the
automatically generated code m-file. A window opens up ... the
contents should come as no surprise, because you have just speci-
fied them (via the GUIDE GUI design tool). Your first GUI-based
program! But one you might notice does not actually do anything
– it just sits there unresponsive. Although you can at least close it
(because it is automatically generated with the usual basic close/min-
imize icons plus the name of the m-file in the titlebar.

6.1.2 Simple GUI responses [Push Button]

A GUI is only of any real use if it allows some response to input.
This is going to involve a little code of your own ... so we’ll start with
the simplest possible action – a button that performs a simple action
(in this example – closes the window).

Re-run the guide program and open up a new window editor (by
clicking OK in the GUIDE Quick Start window). Now find the Push

Button icon, click it, and drag out a push button object in the design
pane. You should see a box (with a pseudo 3D shading at the edges)
with the text Push Button in the centre as per Figure 6.4. As before,
you can edit the properties of the push button object (because the
default properties are totally boring) by double-clicking it. Start by
editing the font (size) and message. Perhaps ’Go away!’. And then
save it.

Figure 6.4: Design window with a
default push button object.

When it saves, MATLAB again opens up the code associated
with the figure window that it has automatically generated. There
is slightly more code in the file this time and shortly, you’ll need to
look at it. But for now: ignore it again and type the name of your
m-file file at the command line. Again, you’ll get a window opening
with the push button you created in it. Click on it. It does seems to
’respond’ (pretends to depress by means of changing the edges with
the pseudo 3-D shading) to the mouse click, but ... nothing else hap-
pens. This is where YOU (and your amazing coding skills) now come
in.

If you have closed the design window, re-run GUIDE (» guide)
and rather than creating a new GUI – switch to the Open Existing

GUI tab and double-click your filename (of the push button GUI) or
select and OK. Double-click on the push button object to open up the
property editor. We’ll make only one (more) change here – down the
list of properties, find: ’Tag’. This is the name (ID or handle) of the

graphical user interfaces (gui) 215

push button object.12 By default, the name is pushbutton1. Edit this to 12 In essence, no different from a file-
name – a unique identifier for an object
(/file).

... goawayButton (or pick an alternative name) and re-save the GUI.
Go to the code editor for the associated m-file (which will have the

same name as the .fig figure, remember). In the file we have:

• The main function which we can ignore (and indeed apparently
should not be edited!). But for completeness, it consists of:

– The function definition header line:
function varargout = NAME(varargin)

where NAMEis the name you assigned the file.
– Some comment lines:

% NAME MATLAB code for NAME.fig

% NAME, by itself, creates a new NAME or raises

the existing singleton * .

Note that there is a continuous block of comment (%) lines.
MATLAB treats this as the help text on function NAME.
– Then some more, but separated (by blank lines) comment

lines.
– Then the body of the function, starting with:

% Begin initialization code - DO NOT EDIT

and then ending with:
% End initialization code - DO NOT EDIT

• function NAME_OpeningFcn which is executed when the
GUI is started up. This is the place to put code for initializing
models or whatever (hence the automatically generated part of the
function name – OpeningFcn).

It is not obvious (to me) what either:

% Choose default command line output for NAME

handles.output = hObject;

or

% Update handles structure

guidata(hObject, handles);

actually do ... so ignore these lines for now.
If you need to execute any code when the program/app first runs,
place it after these lines.

• There follows another function call:

% -- Executes just before NAME is made visible.)

function NAME_OpeningFcn(hObject, eventdata, handles,

varargin)

which seems to prepare any data that you wish to return from the
main function and back to the command line.
Textbooks helpfully say to ignore this. Great idea.

216 str=’do you like bananas?’;

• Finally, there is:

function goawayButton_Callback(hObject, eventdata,

handles)

This function is executed when your ’Go Away!’ push button is
pressed. Anything you wish to ’happen’, in terms of code exe-
cuted, when you click on this particular button, goes here in this
function.

Note that MATLAB does not formally end any of the functions
with end. Don’t get confused as to where to place code – assume that
where you see the next function definition starting, that the previous
function has ended. If it helps – add in lines (with end) to end each
function. Or perhaps add some ASCII art/comment line before each
new function to help make it clearer, e.g.

% === END FUNCTION ===

In the current example, after:

% -- Executes on button press in goawayButton.

function goawayButton_Callback(hObject, eventdata,

handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)

is a blank line (and then the end of the page). This is where any code
associated with the function goawayButton_Callback should go.

In this simple GUI, we have only one figure and it is active (it has
the mouses’ attention)13, so we could simply use the close com- 13 Often in operating systems – the

active window, i.e. the one that is the
one to respond to mouse clicks or key
presses, has its titlebar highlighted in a
bright color (while inactive ones might
be grey.)

mand (’deletes the current figure’) on its own (just this single command
on its own, on one line).

Insert this simple command (close) in the

function goawayButton_Callback

function, after the last comment line.14 Save the m-file and re-run. 14 Note that automatically generated
MATLAB code does not seem to ever
formally end a function as one really
should do ...

Now if you run your program and click on the ’Go Away!’ push
button, the window does indeed go away (aka, closes).

Phew! So, to recap – you have created a program with a window,
and within that window a Push Button object. In the design window,
you gave that button a special property, such that when clicked, a
message (an event) would be passed back to your program. The code
(a function) that responds (is called) when the button is clicked was
automatically generated for you, but with no code inside. You added
the code (to close the program/window). And it worked!(?)

graphical user interfaces (gui) 217

6.1.3 Updating object properties (do you like bananas?)

Bananas. Do you like them? Perhaps the GUI can provide an answer
(rather than just text statements written to the command line via
disp as before).

Now you are going to want to think about the design of the GUI a
little. Perhaps sketch out a design on paper15 first. 15 The white flat stuff that you write on.

Maybe you have forgotten what it is?
Clue: it is not an app on iTunes.

What we want is for the the GUI to display a question (’Do you
like bananas?’). There will be two options, ’Yes’ and ’No’ that can
be clicked. Depending on which one is clicked, some appropriately
supportive, or otherwise, message will appear in response. We need:

1. A plain (static) text box as before to display the question.
2. A pair of push buttons (again as before ... but 2 of them, rather
than just 1).
3. Another plain (static) text box to display the answer/response.

And ... we are going to need some code that, depending on which
button is pushed, leads to a different message being displayed.

The latter part is not as bad as it sounds. We could have no text
initially in the 2nd (static) text box. We just need to change its text
property (i.e. change the initial no text, to the text of our message).
This is mostly a case of working out and using the unique identifier
of this text box object AND the identifier of the text property (of the
text box object). i.e. you need two bits of information – the ID of the
text box, and the ID of the property of the box that sets the actual text
to be displayed. You’ll see how this pans out shortly.

OK ...
Firstly – re-run GUIDE (» guide). Create a new GUI window

with the 4 elements (2 static text boxes and 2 push buttons). It is
up to you how you arrange these 4 objects in the design pane. You
might be guided how windows in programs that you have used, are
designed. At the minimum, it is standard practice to place a ’No’
push button next to and aligned horizontally with, the ’Yes’ (and
often ’Yes’ to the right of ’No’).

No idiot would design anything like Figure 6.5 and certainly not
with those color choices ... but you get the idea.

Figure 6.5: (completely) Bananas design
window.

For each of the objects (2 text boxes and 2 push buttons), rename
them (the Tag property) to something more memorable than e.g.
button or box, or #1, #2, #3, etc etc..

The code that MATLAB generates for bananas.m (my name choice!
it need not be yours ...) is not a lot more involved than before. Pri-
marily, there is just a second function associated with a mouse click
on the 2nd push button. The end of the automatically generated
MATLAB code now looks like:

218 str=’do you like bananas?’;

% -- Executes on button press in yesbutton.

function yesbutton_Callback(hObject, eventdata,

handles)

...

...

% -- Executes on button press in nobutton.

function nobutton_Callback(hObject, eventdata, handles)

...

...

The logic is going to be very simple. In fact, we don’t need any, be-
cause if the Yes button is clicked, MATLAB will call the first function
(my name: function yesbutton_Callback), and if the No but-
ton is clicked, the second function (function nobutton_Callback)
is called. As alluded to above, how do we get the text to change in
the 2nd text box (from the default of no text)?

Unfortunately, MATLAB does get all weird here.16 If you had a 16 Actually, no weirder than Python ...

friend called Luna, you might reasonably communicate with them
via the name ’Luna’. MATLAB doesn’t do it this way and instead as-
signs a numeric ID. Think of it as rather than storing information in
a database about Luna and by name, information might be stored by
SSN instead. So to retrieve or write information about Luna, you do
it via their SSN.17 Here, we want to change a property (the displayed 17 Or you could think about university

student databases and access via the
unique student number.

text of the 2nd text box), and you are going to have to get its ID first
in order to do it.

First off, you can get the ID of the object property using the
findobj function and assign the result to some memorably vari-
able18, e.g. 18 Here, the h bit stands for ’handle’ but

you might chose id for ID instead?.
h_answertext = findobj(’Tag’,’answertextbox’);

This is as simple(!) as asking to find the ID of the object which has a
Tag with value ’answertextbox’ (which was the value I set in the design
editor).19 19 What we might refer to as an ID,

MATLAB calls a handle. Hence com-
monly an ’h’ might appear at the start
of a variable name to indicate it con-
tains a handle.

Put this line of code at the start (after the function definition, and
after the initial comment lines) of the function yesbutton_Callback

and because you have two buttons, both of which will need to be able
to change the text in the 2nd text box – also duplicate this line of
code in the function nobutton_Callback .

set
Sets ... the property value of an

object. The syntax is:

set(h,name,value)

where h is the handle (the ID ob-
tained via findobj), name, is the
name of a property, and value , the
value of a property.

Now – we have the ID of the 2nd text box and we can now set its
property (from containing no text, to displaying a suitable message).
Lets first implement an answer if the Yes push button is clicked. The
command to set a property is ... set . In our example, the handle of
the text box we have already obtained and assigned to the variable
h_answertext . The name of the property we want to change (refer
to the column list in the property editor if you like as a reminder) is
’String’ . And the text ... well, you can have whatever you want.

graphical user interfaces (gui) 219

The line is then:

set(h_answertext,’String’,’Yes, it is an excellent

fruit.’);

The complete(!) 2-line piece of code in function yesbutton_Callback

should then look like:

h_answertext = findobj(’Tag’,’answertextbox’);

set(h_answertext,’String’,’Yes, it is an excellent

fruit.’);

Save and run the program. You could see something like the result
shown in Figure 6.6 (if you click on Yes).

Figure 6.6: (completely) Bananas GUI in
action.

Now extend your program so that an alternative answer is pro-
vided if the No button is clicked. This is going to pretty much well be
a duplication of the code you have already written for the Yes button.

Other embellishments you could make might be to make the color
of the button you clicked change. This is simply a matter of finding
its object ID, and setting the property BackgroundColor.20 20 For example:

set(h_answertext,’Backgroundcolor’,’g’);

To put your coding skills more to the test: how about displaying a
3rd message (’Make up your mind!’?) if someone changes their mind
– i.e. if a second button is pressed (after the first one). You’ll need
a variable to remember whether a button (any of them) has already
been pressed. You can assign this variable an initial value of false
(becasue when the program starts, no button has yet been pressed):

var_pressed = false;

The idea is whenever either button is pressed, var_pressed will be-
come (will be set to) true. So before displaying the message in either
of the button press callback functions, the value of var_pressed

needs to be tested – a false means this is the first time any but-
ton has been pressed. Once that initial message is displayed, the
var_pressed becomes true, and when the next time a button is
pressed and the value of var_pressed tested, a true leads to a dif-
ferent message.

All that is needed is:

• A if var_pressed ... else ... end structure in each
click button callback function, to determine which message to
show.

• A line initializing var_pressed to false, which will go in the
function: function bananas_OpeningFcn).

Go add these bits of code.

There is just one problem ...

220 str=’do you like bananas?’;

If you remember – variables in functions are ’secret’ (private) and lim-
ited (in scope) to just that function. So the variable var_pressed

which you initialized at the end of function bananas_OpeningFcn

cannot be ’seen’ by the callback function.
We can enforce that the same variable is seen by multiple functions

by stating that it is global (in scope):

global var_pressed;

This line needs to appear at the start of each function in which you
need to read or write the value of var_pressed , which here will be:
both callback functions as well as the initialization function.

What is going on is that in each function that a variable is de-
fined as being global – the value of that variable is linked, so that any
change made to the value of that variable in any function, is seen by all
the other ones.21 21 Like multi-way Skype call, where

the global definition is each person
connecting to the conference call.

A complete code for the Yes button call box function is:

% -- Executes on button press in yesbutton.

function yesbutton_Callback(hObject, eventdata,

handles)

% hObject handle to yesbutton (see GCBO)

% eventdata reserved - to be defined in a future

version of MATLAB

% handles structure with handles and user data (see

GUIDATA)

% MY CODE FOLLOWS > > >

% link ’button-pressed?’ (global) variable

global var_pressed ;

% get textbox handle (ID)

h_answertext = findobj(’Tag’,’answertextbox’);

% test for whether no button has yet been pressed ...

% set textbox properties (with a message) accordingly

if ∼var_pressed

set(h_answertext, ’String’ , ’Yes, it is an excellent

fruit.’);

else

set(h_answertext, ’String’ , ’Make up your mind!’);

end

% update button-pressed variable

var_pressed = true;

and with the code:

global var_pressed ;

var_pressed = false;

appearing in function bananas_OpeningFcn (to initialize the
value of var_pressed to false).

Complete all the code in your program (primarily for the 2nd ’no’
click-button) and try it out!

graphical user interfaces (gui) 221

6.1.4 Simple GUI responses [Sliders]

We can create a variant on the previous program to illustrate numeri-
cal input and output, and introduce the Slider object.

1. First create a new (blank) GUI.

2. Add a Static Text box object to ask: ’On a scale of 0 to 10, how
much do you like bananas?’ (replace the default text by editing the
object).

3. Add a second Static Text box object to report the value. Create it
blank to start with (i.e. delete the default text).

4. Add ... a Slider! Double-click to edit the Slider object.
Firstly, note that there is a Max and Min property – these are the
values assigned when the Slider is at it maximum and minimum
position, respectively. Since you want a score for 0 to 10 – edit the
Max value. There is also a Value property which will be the default
value of the Slider when the program/app starts up. (If you want
change the default value.) Make any other e.g. cosmetic changes
you fancy. Close the editor (’Inspector’) window.

5. Save the GUI.

In place of the click-button Callback functions, you now have:

% -- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

(although if you were paying attention earlier, you would have name
the Slider something helpful rather than the default of slider1).
And a last function (slider1_CreateFcn) that we shall ignore.

This is not so different form the click-button example – when the
slider bar is dragged, or the up/down arrows are clicked (and the
slider bar moved that way), this function is called. It is then up to you
(in code) to:

1. Read the value of the Slider.
2. Do something with that value (i.e. display it!)

As before, we need to get the ID of the Slider object, and then read is
Value property.

h_slider1 = findobj(’Tag’ , ’slider1’);

bananaindex = get(h_slider1, ’Value’);

(which goes in the slider1_Callback function).
To set the text in the Static Text box object, as before you need to

obtain the ID of the object:

222 str=’do you like bananas?’;

h_text2 = findobj(’Tag’ , ’text2’);

(here again ... not the greatest of variable names ...)
Now simply set the String property of the Static Text box, to the

value of the Slider, contained in variable bananaindex .22 22 Remember that you cannot display
a number directly where a string is
required – use num2str .

Now ... if the value of the variable bananaindex goes above 5, make
the text box background blue. And if bananaindex is below (or
equal to) 5, set the color to red.23 (You’ll need an if ... , obviously.) 23 The Static Text box property is called

Foregroundcolor. To set, e.g. add the
code:

set(h_text2, ’Foregroundcolor’ ,[1
0 0]);

There are various further refinements that you could make, such as
when the program/app starts up, you could read the default value of
the Slider and update the display (the Static Text box)24. Maybe try to 24 Code going in the function,

OpeningFcn .do this.

graphical user interfaces (gui) 223

6.2 MATLAB apps

7

Example codes

226 str=’do you like bananas?’;

7.1 Chapter 1 codes

example codes 227

7.2 Chapter 2 codes

Section 2.4

Basic code for loading, storing, and plotting, monthly global temperatures

% **
% Program to load in 12 monthly temperature data-sets

% plot each monthly global temperature distribution,

% and generate a MATLAB format animation (M)

% **
% close all currently open figure windows

close all ;

% START OF MONTHLY LOOP

for month=1:12

% create filename

filename = [’temp’ num2str(month) ’.tsv’];

% load data and assign to a new array ’slice’

temp = load(filename);

% plot data

pcolor(temp);

% store frame for animation

M(month) = getframe;

end

% END OF MONTHLY LOOP

% **

% **
% Program to load in 12 monthly temperature data-sets,

% store the data in a 3D array,

% and plot each monthly global temperature distribution

% in a separate figure window

% **
% close all currently open figure windows

close all ;

% START OF MONTHLY LOOP

for month=1:12

% create filename

filename = [’temp’ num2str(month) ’.tsv’];

% load data and assign to a new array ’slice’

temp(:,:,month) = load(filename);

% create new figure window and plot data slice

figure;

pcolor(temp(:,:,month));

end

% END OF MONTHLY LOOP

% **

228 str=’do you like bananas?’;

Code for creating an avi format animation

% **
% Program to load in 12 monthly temperature data-sets

% plot each monthly global temperature distribution,

% and generate an avi format animation

% **
% Prepare the new file.

vidObj = VideoWriter(’my_animation.avi’);

open(vidObj);

% START OF MONTHLY LOOP

for month=1:12

filename = [’temp’ num2str(month) ’.tsv’];

temp = load(filename);

pcolor(temp);

% Write each frame to the file.

currFrame = getframe;

writeVideo(vidObj,currFrame);

end

% END OF MONTHLY LOOP

% Close the file.

close(vidObj);

% **

example codes 229

Section 2.4

Code for loading and plotting the continental outline

%%% code to plot the continental outline %%%

% load data files

% (and assign the contents to short name variables)

co_start = load(’continental_outline_start.dat’);

co_end = load(’continental_outline_end.dat’);

co_lat = load(’continental_outline_lat.dat’);

co_lon = load(’continental_outline_lon.dat’);

% determine number of line segments

% (either the segment start, or end, vector will do)

n_lines = length(co_start);

% create new figure window and set axes

% (for the global domain)

figure;

axis([-180 +180 -090 +090]);

% ’hold on’ ...

hold on;

% LOOP ... and draw thin line segments

for k = 1:n_lines

plot(co_lon(co_start(k):co_end(k)), ...

co_lat(co_start(k):co_end(k)),’k-’,’LineWidth’,0.25);

end

% adjust the plot aspect ratio to be more map-like

set(gca,’PlotBoxAspectRatio’,[1.0 0.5 1.0]);

% draw a nice boundary to the map

h = plot([-180 +180],[-90 -90],’k-’);

set(h,’LineWidth’,1.0);

h = plot([-180 +180],[+90 +90],’k-’);

set(h,’LineWidth’,1.0);

h = plot([-180 -180],[-90 +90],’k-’);

set(h,’LineWidth’,1.0);

h = plot([+180 +180],[-90 +90],’k-’);

set(h,’LineWidth’,1.0);

% ’hold off’ (not strictly necessary)

hold off;

% label plot

xlabel(’longitude’,’fontsize’,15);

ylabel(’latitude’,’fontsize’,15);

title(’Continental outline’,’fontsize’,18);

% export graphics (as postscript)

% (or manually save from the figure windows as a jpg)

print -dpsc2 ch3p2p6.ps;

230 str=’do you like bananas?’;

7.3 Chapter 3 codes

Section 3.1

Code for using textscan

% === program to load in data using textscan ===

%

% first - open a ’file pipe’ (ID: file_id)

% (to pen the file for subsequent data reading)

file_id = fopen(’paleo_CO2_data.txt’);

% now ... load in the actual contents,

% with a data format defined by: ’%f %f %f %f’

% (4 columns of floating point numbers)

my_data = textscan(file_id, ’%f %f %f %f’);

% now close the file!

fclose(file_id);

% BUT, the contents of my_data is a ’cell array’ :(

% => convert to a ’normal’ array ...

my_data_array = cell2mat(my_data);

% ... and now the data array looks like before

% and you can go ’do’ something useful with it.

%

% === END ===

example codes 231

7.4 Chapter 4 codes

Section 4.2

Code for the maxxx function

function [s_out] = maxxx(v_in)

% maxxx

%

% Takes a (single) vector as input,

% returns the maximum value.

% Determine number of elements in vector

nmax = length(v_in); % Seed temporary (running maximum)

variable

temp_max = v_in(1);

% Loop through all

% but the first element in the vector

for n = 2:nmax,

if (v_in(n) > temp_max),

temp_max = v_in(n);

end

end

% Set function (return) value

s_out = temp_max;

end

Bibliography

Douglas Adams. The Hitchhiker’s Guide to the Galaxy. Pocket Books,
1979. ISBN 0-671-46149-4.

Index

.mat environment, 41
; environment, 21
= environment, 20, 22

addition environment, 22
addpath environment, 38
and environment, 23
axis environment, 29, 30, 125

break environment, 84

cell array environment, 96, 98
cell2mat environment, 96, 98
clabel environment, 106
clear all environment, 24
clear environment, 24
close all environment, 24
close environment, 24
colon operator environment,

25–27, 33
colorbar environment, 107, 132
colormap environment, 104, 136
Command Window, 16
comment symbol environment, 124
comments environment, 96
contour environment, 103, 106
contourf environment, 103

disp environment, 54, 79
division environment, 22

else environment, 64
elseif environment, 64
end environment, 27
environments

.mat , 41
; , 21
=, 20, 22
addition , 22

addpath , 38
and , 23
axis , 29, 30, 125
break , 84
cell array , 96, 98
cell2mat , 96, 98
clabel , 106
clear , 24
clear all , 24
close , 24
close all , 24
colon operator , 25–27, 33
colorbar , 107, 132
colormap , 104, 136
comment symbol , 124
comments , 96
contour , 103, 106
contourf , 103
disp , 54, 79
division , 22
else , 64
elseif , 64
end , 27
equality , 22, 23
errorbar , 47
exist , 85, 89
exit , 24
exponentiation , 21
fclose , 94
figure , 28
find , 113–115, 117
fliplr , 26, 34
flipud , 26
flipup , 34
fopen , 94, 95, 97
for , 72
fprintf , 39
FUNCTION, 9
gca , 130

geoshow , 111
getframe , 81
ginput , 191
greater than , 22
greater than or equal to , 22
help , 9, 17
hold , 46
hold on , 125
icecream , 166
if ... end , 64
image , 49, 103
imagesc , 104
imread , 49
inequality , 22
input , 65
interp1 , 121
isempty , 198
ismember , 200
isnan , 117, 139, 140
isnana , 117
legend , 47
length , 26, 91, 153
less than , 22
less than or equal to , 22
line , 129
load , 39, 41, 42
m-files , 29
max, 113
meshgrid , 108
min , 113
mod, 149
movie2avi , 81
multiplication , 22
NaN, 115
ncread , 100
not , 23
num2str , 79
numel , 184
or , 23

236 str=’do you like bananas?’;

patch , 133
pcolor , 49, 90
pi , 23
plot , 28, 44, 46
print , 31
quiver , 132
rand , 148
reshape , 119
rmmissing , 118
rocker , 149
rotate , 34
round , 193
save , 41, 174
scatter , 28, 48
set , 130, 131, 212
sin , 30
size , 26, 33, 165
sort , 43
sortrows , 43
strcmp , 66
subplot , 30
subtraction , 22
sum, 34
switch ... case ... end ,

70
text , 135
textscan , 94–97
title , 29, 30
transpose , 34, 104
transpose operator , 27
VideoWriter , 81
VideoWriter, , 81
while , 72
xlabel , 29
xlsread , 99
ylabel , 29
zeros , 149, 165

equality environment, 22, 23
errorbar environment, 47
exist environment, 85, 89
exit environment, 24
exponentiation environment, 21

fclose environment, 94
figure environment, 28
find environment, 113–115, 117
fliplr environment, 26, 34
flipud environment, 26
flipup environment, 34
fopen environment, 94, 95, 97
for environment, 72

fprintf environment, 39
FUNCTIONenvironment, 9

gca environment, 130
geoshow environment, 111
getframe environment, 81
ginput environment, 191
greater than environment, 22
greater than or equal to

environment, 22

help environment, 9, 17
hold environment, 46
hold on environment, 125

icecream environment, 166
if ... end environment, 64
image environment, 49, 103
imagesc environment, 104
imread environment, 49
inequality environment, 22
input environment, 65
interp1 environment, 121
isempty environment, 198
ismember environment, 200
isnan environment, 117, 139, 140
isnana environment, 117

legend environment, 47
length environment, 26, 91, 153
less than environment, 22
less than or equal to environ-

ment, 22
license, 2
line environment, 129
load environment, 39, 41, 42

m-files environment, 29
max environment, 113
meshgrid environment, 108
min environment, 113
mod environment, 149
movie2avi environment, 81
multiplication environment, 22

NaNenvironment, 115
ncread environment, 100
not environment, 23
num2str environment, 79
numel environment, 184

or environment, 23

patch environment, 133
pcolor environment, 49, 90
pi environment, 23
plot environment, 28, 44, 46
print environment, 31

quiver environment, 132

rand environment, 148
reshape environment, 119
rmmissing environment, 118
rocker environment, 149
rotate environment, 34
round environment, 193

save environment, 41, 174
scatter environment, 28, 48
set environment, 130, 131, 212
sin environment, 30
size environment, 26, 33, 165
sort environment, 43
sortrows environment, 43
strcmp environment, 66
subplot environment, 30
subtraction environment, 22
sum environment, 34
switch ... case ... end

environment, 70

text environment, 135
textscan environment, 94–97
The command line, 16
title environment, 29, 30
transpose environment, 34, 104
transpose operator environ-

ment, 27
typefaces

sizes, 50

variable, 18
VideoWriter environment, 81
VideoWriter, environment, 81

while environment, 72

xlabel environment, 29
xlsread environment, 99

ylabel environment, 29

zeros environment, 149, 165

	How to use this Textbook
	Fonts and highlighting
	Help(!) and keyword definitions
	Side notes and other distractions from the main text
	What and when to type
	Code structure
	'Answer' codes
	MATLAB versions

	Elements of ... MATLAB and data visualization
	Using the MATLAB software
	Basic concepts
	Vectors and arrays #1
	Basic graphing (aka. 'data visualization')
	Vectors and arrays #2
	Loading and saving data
	Basic data processing (and yet more plotting)
	Nicer graphing
	Further matrix math (systems of equations)

	Elements of ... programming
	Introduction to scripting (programming!) in MATLAB
	Functions
	Conditionals '101'
	Loops '101'
	Loops and conditionals ... together(!)
	Even more (and loopier) loops

	Further ... MATLAB and data visualization
	Further data input
	Further (spatial / (x,y,z)) plotting
	Further data processing
	Even nicer graphing and graphics
	Stats (it had to happen ...)

	Further ... Programming
	Nested loops
	Algorithms and problem-solving
	Interpreting equations (0) – Basics
	Interpreting equations (1) – Population models
	Interpreting equations (2) – Pure lovely maths

	Programming applications – games!
	Tic-tac-toe

	Graphical User Interfaces (GUI)
	MATLAB GUI basics
	MATLAB apps

	Example codes
	Chapter 1 codes
	Chapter 2 codes
	Chapter 3 codes
	Chapter 4 codes

	Bibliography
	Index

