Snowball Earth

The Neoproterozoic: Gateway to a metazoan-dominated, oxygenated, 'modern-like' biosphere?

	Neoproterozoic			Mesoproterozoic				Paleoproterozoic								Achean							
		ļ	l				II			I	I		I	U	I				I	I			
500	1000				1500			2000				2500				300							
								Т	ïme	e (My	∕r B.	P.)											

The Neoproterozoic: Gateway to a metazoan-dominated, oxygenated, 'modern-like' biosphere?

The Neoproterozoic: Gateway to a metazoan-dominated, oxygenated, 'modern-like' biosphere?

Evidence for glaciation

From: Hoffman and Schrag [2002]

From: Fairchild and Kennedy [2007]

Evidence for glaciation

From: Hoffman and Schrag [2002]

From: Fairchild and Kennedy [2007]

From: Hoffman and Schrag [2002]

'snowball Earth'

Hoffman et al. [1998] (Science 281)

SNNW THE STORY OF THE GREAT GLOBAL CATASTROPHE THAT SPAWNED LIFE AS WE KNOW IT

GABRIELLE WALKER

The snowball Earth hypothesis [Hoffman and Schrag, 2002] (Terra Nova 14, 129-155)

The snowball Earth hypothesis

Temperature

Snow cover

positive "ice-albedo" feedback

Snow cover

= -1/2°C

Temperature

Snow cover

TOTAL CHANGE = -1/2°C

Temperature

Snow cover

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C$

Temperature

Snow cover

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C$

Temperature

Snow cover

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C - 1/8^{\circ}C$

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C - 1/8^{\circ}C - 1/16^{\circ}$ -

Temperature

Snow cover

TOTAL CHANGE = $-1^{\circ}C - 2^{\circ}C - 4^{\circ}C - 8^{\circ}C$

The snowball Earth hypothesis

The global carbon cycle (modern)

Long-term controls on atmospheric pCO_2

Terrestrial weathering can be (approximately equally) divided into carbonate (CaCO₃) and calcium-silicate ('CaSiO₃') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

(3) $\operatorname{Ca}^{2+} + 2\operatorname{HCO}_{3}^{-} \rightarrow \operatorname{CO}_{2(aq)} + \operatorname{H}_{2}O + \operatorname{CaCO}_{3}$

It can be seen that in (2) + (3), that the CO₂ removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO₂ is permanently removed to the geological reservoir. This CO₂ must be balanced by mantle (/volcanic) out-gassing on the very long term.

Long-term controls on atmospheric pCO_2

Terrestrial weathering can be (approximately equally) divided into carbonate (CaCO₃) and calcium-silicate ('CaSiO₃') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{-1}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

(3) $Ca^{2+} + 2HCO_3^{-} \rightarrow CO_{2(aq)} + H_2O + CaCO_3$

It can be seen that in (2) + (3), that the CO₂ removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO₂ is permanently removed to the geological reservoir. This CO₂ must be balanced by mantle (/volcanic) out-gassing on the very long term.

Long-term controls on atmospheric pCO_2

Terrestrial weathering can be (approximately equally) divided into carbonate (CaCO₃) and calcium-silicate ('CaSiO₃') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

(3) $Ca^{2+} + 2HCO_3^{-} \rightarrow CO_{2(aq)} + H_2O + CaCO_3$

It can be seen that in (2) + (3), that the CO₂ removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO₂ is permanently removed to the geological reservoir. This CO₂ must be balanced by mantle (/volcanic) out-gassing on the very long term.

The snowball Earth hypothesis

The snowball Earth hypothesis

Snowball or Slushball?

Let the Battle of the Models commence ...

sea-ice

Study	ATM	SEA- ICE	OCN	ICE- SHT	pCO ₂ threshold	(conclusions)		
Jenkins and Smith [1999]					1700 ppm	(snowball)		
Chandler and Sohl [2000]					<40 ppm	snowball unlikely		
Hyde et al. [2000]; Crowley et al. [2001]					130 ppm	slushball probable		
Baum and Crowley [2001,2003]					<340 ppm	slushball probable		
Poulsen et al. [2001,2]; Poulsen [2003]					n/a	no snowball		
Bendtsen [2002]					n/a	snowball less likely		
Godderis et al. [2003]					130 ppm	(snowball)		
Goodman and Pierrehumbert [2003]					130 ppm	snowball more likely		
Donnadieu et al. [2003]					500 - 990	slushball unlikely		
Lewis et al. [2003,2004]					1800 ppm	(snowball)		
<i>Donnadieu et al.</i> [2004a,b]					<149, 250	(snowball)		
Edwards and Ridgwell [unpublished]					200 ppm	(snowball)		
KEY: 'ADVANCED' e.g. 3D GCM, thermodynamic	'INTE e.g. 2 seas	ERMEDI/ 2D EBM, onal mixe	ATE'		BASIC' e.g. 1D EBM, slab ocean	DECOUPLED		

layer ocean

The enigma of the 'cap carbonates'

CO₂ chemistry in seawater

From: Barker and Ridgwell [2012]

ocean

http://www.nature.com/scitable/knowledge/library/ ocean-acidification-25822734

CO₂ chemistry in seawater

CO₂ chemistry in seawater

ocean

carbonate ion

CO₂ chemistry in seawater

ocean

CO₂ chemistry & mineral phases

Aragonite: less stable orthorhombic polymorph (e.g., many corals, pteropods)

Calcite: more stable

(and more abundant) trigonal polymorph (e.g., coccolithophorides, foraminifera)

CO₂ chemistry & mineral phases

The addition of CO_2 to seawater results in a decrease in carbonate ion (CO_3^{2-}) concentration and 'ocean acidification'. A decrease in CO_3^{2-} , in turn, suppresses the stability of $CaCO_3$, defined by its saturation state:

 $\Omega = [Ca^{2+}] \times [CO_3^{2-}]/k$

⇒ The thermodynamic efficiency of precipitating $CaCO_3$ is a function of $[CO_3^{2-}]$ (and carbonate 'saturation').

The enigma of the 'cap carbonates'

The enigma of the 'cap carbonates'

Potential evolution of ocean saturation during a 'snowball'

NOTE: ocean composition format; [mean alkalinity, mean DIC] (µmol kg⁻¹)

Potential evolution of ocean saturation during a 'snowball'

NOTE: ocean composition format; [mean alkalinity, mean DIC] (µmol kg⁻¹)

The global carbon cycle (modern)

(1) Silicate and carbonate weathering plus volcanic outgassing (source)

(2) Biogenic carbonates (sink)

Ignoring hydrothermal input and low temperature alteration. Also ... the entire organic carbon sub-cycle ...

(1) Silicate and carbonate weathering (source)(2) Biogenic carbonates (sink)

Ignoring hydrothermal input and low temperature alteration.

Note that biogenic carbonates are only a mass trivial sink, but that the δ^7 Li proxy signal is recorded in them. Values are for the *modern* system.

- (1) Silicate weathering (source)
- (2) Clay sink
- (3) Clay (MACC) sink
- (4) Hydrothermal input (source)
- (5) Low temperature hydrothermal alteration (AOC) sink

Age (Ma)

Values are for the *modern* system.

Pogge von Strandmann et al. [in prep]

- (1) Silicate weathering (source)
- (2) Clay sink
- -(3)-Clay-(MACC)-sink-
- (4) Hydrothermal input (source)
- (5) Low temperature hydrothermal alteration (AOC) sink

Pogge von Strandmann et al. [in prep]

From: Hoffman and Schrag [2002]

