
ANDY RIDGWELL

GEO111 – NUMERICAL SKILLS
IN GEOSCIENCE

UNIVERSITY OF CALIFORNIA, RIVERSIDE / DEPARTMENT OF EARTH SCIENCES
2015/6

Copyright © 2016 Andy Ridgwell

http://www.seao2.info/teaching.html

Except where otherwise noted, content of this document is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 license (CC BY-NC-SA 3.0) (http://creativecommons.org/licenses/by-nc-
sa/3.0/)

First printing, October 2016

http://www.seao2.info/teaching.html

Contents

1 Elements of ... Computers and software 19

2 Elements of ... MATLAB and data visualization 21

2.1 Using the MATLAB software 22

2.1.1 Starting MATLAB 22

2.1.2 The command line 22

2.1.3 MATLAB GUI 22

2.1.4 Help(!) 23

2.2 Basic concepts 24

2.2.1 Variables 24

2.2.2 Numerical expressions 26

2.2.3 Relational and logical operators 27

2.2.4 Functions (built-in) 28

2.2.5 Miscellaneous commands 28

2.3 Vectors and arrays #1 30

2.3.1 Creating vectors 30

2.3.2 Basic vector manipulation 30

2.3.3 Addressing elements in vectors 31

2.4 Basic graphing (aka. ’data visualization’) 33

2.4.1 Plotting 33

2.4.2 Graph labelling 34

2.4.3 Sub-plots 34

2.4.4 Saving graphics and figures 35

4

2.5 Vectors and arrays #2 36

2.5.1 Creating matrices and arrays 36

2.5.2 Basic matrix manipulation 37

2.5.3 Some matrix math :(39

2.6 Loading and saving data 40

2.6.1 Where am I? 40

2.6.2 Loading and importing data 41

2.6.3 Saving and exporting data 41

2.6.4 Loading and saving the workspace 41

2.7 Basic data processing 42

2.8 Yet more graphing 46

2.8.1 Modifying lines/symbols in plot 46

2.8.2 Plotting multiple data-sets 46

2.8.3 Scatter plots 47

2.8.4 Histograms 49

2.8.5 Simple 2D data and bitmap visualization 50

3 Elements of ... programming 51

3.1 Introduction to scripting (programming!) in MATLAB 52

3.1.1 Programming good practice 53

3.1.2 Debugging the bugs in buggy code 55

3.2 Functions 58

3.3 Conditionals ’101’ 60

3.3.1 if ... 60

3.3.2 switch ... 64

3.4 Loops ’101’ 66

3.4.1 for ... 66

3.4.2 Other loop configurations and usages 69

3.4.3 Fun(!) worked examples 70

3.5 Loops and conditionals ... together(!) 74

3.5.1 for ... and conditionals 74

3.5.2 while ... 76

5

3.6 Even more (and loopier) loops 79

4 Further ... Computers and software 83

5 Further ... MATLAB and data visualization 85

5.1 Further data input 86

5.1.1 Formatted text (ASCII) input 86

5.1.2 Importing ... Excel spreadsheets 89

5.1.3 Importing ... netCDF format data 90

5.2 Further data processing 94

5.2.1 Data interpolation 95

5.3 Further (spatial / (x,y,z)) plotting 96

5.3.1 Plotting maps 103

6 Further ... Programming 105

6.1 find! 106

Bibliography 113

Index 115

List of Figures

1 Course schedule: weeks 1 through 5. 13
2 Course schedule: weeks 6 through 10. 14

2.1 Default output of plot. 33
2.2 A plot illustrating axis auto-scaling (maximum x and y values now

slightly larger than 10 and 100, respectively). 34
2.3 A (only very slightly) improved plot. 34
2.4 Arrangement of subplots. 35
2.5 Spline fit to measured changes in CO2 concentration in Law Done

ice core, following Etheridge et al. [1996]. 41
2.6 proxy reconstructed past variability in atmospheric CO2. 42
2.7 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 43
2.8 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 46
2.9 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 47
2.10 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 47
2.11 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 47
2.12 A 2D plot of some random gridded model data. 50
2.13 A 2D plot of some random gridded model data ... but with the un-

derlying data matrix re-orientated before plotting. 50

3.1 Output from the (bug-fixed version of) plot_some_dull_stuff m-
file. 57

3.2 Extremely unappealing blocky plot of Earth surface temperature (who
cares with month? – the graphics are too poor to matter ...). 73

3.3 Continental outline (of sorts). 79
3.4 Another continental outline (of sorts). 79
3.5 Another go at the continental outline! 81

5.1 Very basic imaging (image) of an array (2D) of data – here, global bathymetry. 97
5.2 Slightly improved very basic imaging (imagesc) of bathymetry data. 97
5.3 Example result of basic usage of the contour function. 99
5.4 Example usage of contourf, with the hot colormap (giving dark/brown

colors as deep ocean, and light/white as high altitude). 99
5.5 Example usage of contour, contouring only the zero height isoline,

and providing a label. 99

8

5.6 Usage of contour but with lon/lat values created by meshgrid func-
tion and passed in (and with the hot colormap (giving dark/brown
colors as deep ocean, and light/white as high altitude). 101

5.7 Example contour plot including meshgrid-generated lon/lat values.
Result of contourf(lon,lat,temp7,30), where the data file was temp7.tsv,
with some embellishments. 103

6.1 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 110
6.2 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 111

List of Tables

About the Course

GEO111 will provide an introduction to computer programming and numerical modelling for Earth and
Environmental Science problems. It will provide a chance to learn a computer programming language and
all the elements that constitute it, including concepts in number bases and types, logical constructs, debug-
ging, etc. The course will develop programming skills step-wise, applying them at each point to practical
questions and outcomes, such as data processing and visualization. How complex environmental processes
can be encapsulated and approximated, and numerical models thereby constructed, will be illustrated.
Guided opportunities will be provided to build a ’DIY’ climate model and in doing so, further develop
programming and modelling skills at the same time as reinforcing basic concepts in climate dynamics
through practice in addition to theory.

The cumulating objectives of the course are to:

1. develop an understanding of how computers and the internet work and hence foster a critical under-
standing of modern technology,
2. provide hands-on training in how computer programs are written and numerical models con-
structed, and
3. develop both general (transferable) as well as specific numerical and analytical skills applicable to the
Earth and Environmental Sciences.

The associated learning goals are firstly; to provide, through hands-on practical exploration, factual knowl-
edge and an understanding of:

• Number bases, how computers work plus computer programs and their basic building blocks.
(Learning Outcome 2).
• Numerical models and the representation of time. Construction and application of a variety of mod-
els spanning box models of biogeochemical cycles and population dynamics, through 1D reaction-
diffusion models of surface Earth processes, to 3D gridded global models. (Learning Outcomes 1 and
2).
• The Greenhouse effect and basic climate feedbacks. (Learning Outcome 1).
• Awareness of how webpages and the internet work. (Learning Outcomes 2 and 4).
• The use of numerical models in addressing scientific questions and testing hypotheses as well as the
limitations of numerical models. (Learning Outcomes 2 and 4).

and provide transferable skills in

• Written communication and presentation. (Learning Outcome 3).
• Problem solving and logical analysis, fault-finding. (Learning Outcomes 4 and 5).
• Computer programming. (Learning Outcomes 2 and 4).

12

Course logistics

Format

The weekly format of the Class is: one 1-hour lecture, together with
one 3-hour computer practical session, plus a 2-hour interactive lec-
ture/discussion session of worked problems and examples. The
computer practical class is the central element, and will consist of
structured exercises leading step-by-step through the components of
computer programming and numerical model construction, debug-
ging, and testing, plus applications to common geosciences problems.
The lecture starting each week will outline the basics and introduce
the key concepts of the week. The purpose of the 2-hour lecture/dis-
cussion session ending the week is to ensure all the concepts are
understood and misconceptions resolved and will be a mix of presen-
tation and worked-through examples, plus questions and discussion.

Timetable

Assessment

The course will be assessed as follows:

• Midterm paper – 50%
• Finals paper – 50%

The mid-term paper will be w written exam, consisting of a mix-
ture and multiple choice and short-answer format question. its pur-
pose is to test basic knowledge of computers and programming, plus
general concepts and basic commands in MATLAB. The testable con-
tent comprises the material covered in the lectures and lab sessions
(in weeks #1-5). The exam will be 2 hours long. The mid-term paper
will constitute 50% of the total assessment of the course.

The Finals paper will be based upon the development and applica-
tion of a computer model written in MATLAB and will be presented
in the form of a science paper describing the model, its evaluation,
application to a specified science question, plus discussion of model
caveats and suggestions for future improvements. The scope of the
model exercise will be somewhat restricted with a short menu of
possible choices, but with considerable flexibility in terms of exactly
what is done and explored with it (i.e. there is some slightly possibil-
ity of actually having fun!). This will constitute the remaining 50% of
the total assessment of the course.

13

M o n d a y a m (1) Mo n d a y a m (2) F r i d a y p m

I n t r o d u c t i o n t o t h e c o u r s e
[C h a p t e r 0]

F o r m a t a n d c o n t e n t o f t h e
c o u r s e .
O f f i c e h o u r s .
O v e r v i e w o f c o u r s e
a s s e s s m e n t .

C o m p u t i n g ' 1 0 1 ' # 1
[C h a p t e r 1]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 2]

W o r k e d e x a m p l e s & Q & A

B a s i c c o n s t i t u e n t s a n d
f u n c t i o n i n g o f c o m p u t e r s .
C o m p u t e r o p e r a t i n g s y s t e m s ,
p r o g r a m s , a n d s o f t w a r e .
C o m p i l e d a n d i n t e r p r e t e d
l a n g u a g e s .
I n t r o d u c t i o n t o M A T L A B .

M A T L A B b a s i c s , i n c l u d i n g
v a r i a b l e s a n d m a t r i x e s , d a t a
I / O .
D a t a p r o c e s s i n g i n M A T L A B .
B a s i c s t a t i s t i c s . "
B a s i c p l o t t i n g a n d d a t a
v i s u a l i z a t i o n .

F u n d a m e n t a l s o f c o m p u t e r
p r o g r a m m i n g [C h a p t e r 3]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 3]

W o r k e d e x a m p l e s & Q & A

B a s e s , l o g i c a n d l o g i c g a t e s .
L o o p s a n d c o n d i t i o n a l s .
S u b r o u t i n e s a n d f u n c t i o n s .

S u b - p r o g r a m s a n d f u n c t i o n s .
C o d e d e - b u g g i n g p r a c t i c e .

A l g o r i t h m s a n d p r o b l e m -
s o l v i n g [C h a p t e r 6]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 6]

W o r k e d e x a m p l e s & Q & A

A l g o r i t h m s a n d n u m e r i c a l
t e c h n i q u e s .
S e a r c h a n d s o r t a l g o r i t h m s .
P r o g r a m m i n g b e s t p r a c t i c e
a n d d e b u g g i n g .

D a t a v i s u a l i z a t i o n
[C h a p t e r 5]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 5]

W o r k e d e x a m p l e s & Q & A

2 - D p l o t i n g a n d i n t e r p o l a t i o n .
R e - g r i d d i n g . D a t a b i n n i n g a n d
h i s t o g r a m s .
A c c e s s i n g a n d v i s u a l i z i n g
n e t C D F f o r m a t d a t a .

C o m p u t i n g ' 1 0 1 ' # 2
[C h a p t e r 4]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 4]

M I D T E R M E X A M

H o w t h e i n t e r n e t ' w o r k s ' .
C o m p u t e r n e t w o r k s .
W e b p a g e s a n d b a s i c h t m l .
P r o g r a m G U I s .

B u i l d i n g a M A T L A B G U I .
2 4 /
2 8 t h
O c t .

L e c t u r e A
0 8 : 1 0 - 0 9 : 0 0
G E O L 1 4 4 4

C o m p u t i n g l a b
0 9 : 1 0 - 1 2 : 0 0

W a t k i n s 2 1 0 1

L e c t u r e B
1 4 : 1 0 - 1 6 : 0 0

W a t k i n s 2 1 0 1

1 7 /
2 1 s t
O c t .

W E E K

2 6 /
3 0 t h
S e p t .

3 /
7 t h
O c t .

1 0 /
1 4 t h
O c t .

1 9 /
2 3 r d
S e p t .

Figure 1: Course schedule: weeks 1
through 5.

14

M o n d a y a m (1) Mo n d a y a m (2) F r i d a y p m

I n t r o d u c t i o n t o n u m e r i c a l
m o d e l l i n g [C h a p t e r 7]

0 - D (b o x) m o d e l l i n g
[C h a p t e r 7]

W o r k e d e x a m p l e s & Q & A

Ti m e - s t e p p i n g a n d i n t e g r a t i o n
t e c h n i q u e s .
N u m e r i c a l s t a b i l i t y a n d
a c c u r a c y .
M o d e l c o d e s t r u c t u r e .

E x a m p l e : s i m p l e g l o b a l
r a d i o c a r b o n b o x (r e s e r v o i r)
m o d e l .

G l o b a l c l i m a t e m o d e l l i n g # 1
[C h a p t e r 8]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 8]

V E T E R A N S D A Y

F u n d a m e n t a l c l i m a t e s y s t e m
p r o c e s s e s a n d t h e i r
r e p r e s e n t a t i o n i n m o d e l s .
S u r f a c e e n e r g y b u d g e t a n d
g r e e n h o u s e g a s e s .
H e a t c a p a c i t y .
A t m o s p h e r i c t r a n s p o r t .

E x a m p l e : 0 - D c l i m a t e (e n e r g y
b a l a n c e) m o d e l .

G l o b a l c l i m a t e m o d e l l i n g # 2
[C h a p t e r 8]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 8]

W o r k e d e x a m p l e s & Q & A

E v a l u a t i o n o f n u m e r i c a l
m o d e l s .
M o d e l - d a t a a s s e s s m e n t .
N u m e r i c a l m o d e l s i n t h e
l i t e r a t u r e , t h e w o r k o f t h e
I P C C , a n d m o d e l ' i n t e r -
c o m p a r i s o n s ' .

E x a m p l e : 1 - D c l i m a t e (e n e r g y
b a l a n c e) m o d e l .

B i o g e o c h e m i c a l m o d e l l i n g
[C h a p t e r 9]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 9]

T H A N K S G I VI N G

D e r i v a t i o n a n d a p p l i c a t i o n o f
e m p i r i c a l r e l a t i o n s h i p s .
G e o c h e m i c a l a n d
b i o g e o c h e m i c a l m o d e l s .
M o d e l l i n g o c e a n
b i o g e o c h e m i c a l c y c l e s .
1 - D r e a c t i o n - t r a n s p o r t
m o d e l s .

E x a m p l e : 1 - D g a s d i f f u s i o n
a n d c o n s u m p t i o n i n s o i l s .

E a r t h s y s t e m m o d e l l i n g
[C h a p t e r 1 0]

L a b - b a s e d e x e r c i s e s
[C h a p t e r 1 0]

W o r k e d e x a m p l e s & Q & A

M o d e l l i n g f e e d b a c k s i n t h e
E a r t h s y s t e m .

E x a m p l e : ' D a i s y W o r l d ' .

L e c t u r e B
1 4 : 1 0 - 1 6 : 0 0

W a t k i n s 2 1 0 1

3 1 /
4 t h

N o v .

7 /
1 1 t h
N o v .

1 4 /
1 8 t h
N o v .

2 8 /
2 n d
D e c .

2 1 /
2 5 t h
N o v .

W E E K
L e c t u r e A

0 8 : 1 0 - 0 9 : 0 0
G E O L 1 4 4 4

C o m p u t i n g l a b
0 9 : 1 0 - 1 2 : 0 0

W a t k i n s 2 1 0 1

Figure 2: Course schedule: weeks 6
through 10.

15

Office Hours

There are no specific Office Hours, but rather an open invitation to
drop by1 (excluding Thursdays) and/or email2 questions. Part of the 1 My office is in the Geology building,

room 464 (basement floor).
2 andy@seao2.org

purpose of the lab session on Fridays is to provide an opportunity for
further clarification of the course material and to go through worked
examples.

Course text

There is no one (or even two between them) commercial (published)
course texts that covers both basic computer programming and nu-
merical modelling at a suitable level, and certainly not in the context
of MATLAB. Hence the reason for this e-book – to provide a 1-stop
shop for a range of information and practical tutorials in useful and
commonly used data manipulation and visualization, numerical tech-
niques, and programming methodologies.

In conjunction with the course text (this document), a recom-
mended (but note required) course textbook is Matlab (Third Edition):
A Practical Introduction to Programming and Problem Solving3, which 3 Stormy Attaway. Matlab (Third Edition):

A Practical Introduction to Programming
and Problem Solving. Butterworth-
Heinemann, 2013

provides a good general introduction to MATLAB and covers similar
material to some of the course.

For additional reading (on both MATLAB and numerical mod-
elling), try:

• The Climate Modelling Primer (4th Edition), by Kendal McGuffie
and Ann Henderson-Sellers. Wiley-Blackwell (2014). ISBN: 978-1-
119-94336-5.
• Introduction to MATLAB (3rd Edition), by Delores M. Etter. Pren-
tice Hall (2014). ISBN: 978-0133770018.
• Mathematical Modelling of Earth’s Dynamical Systems, A Primer, by
Rudy Slingerland and Lee Kump. Princeton (2011). ISBN: 978-0-
691-14514-3.

How to use this Textbook

1

Elements of ... Computers and software

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dic-
tum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis in, pretium
quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mol-
lis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi.
Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis
vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan biben-
dum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi
ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante.
Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.
Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus
mauris.

2

Elements of ... MATLAB and data visualization

Hello Newbies! This first lab’s porpoise is to start to get you familiar with what MATLAB is all about
and understand how to import and manipulate (array) data in this software environment and do some
basic plotted (aka ’data visualization’). If your are clever, you might find menu items or buttons to click
that will do the same thing as typing in boring commands at the command line. In fact, you would have
to be pretty dumb not to notice all that brightly colored eye-candy in the GUI (Graphical User Interface –
i.e., menus, buttons, and stuff) at the top of the screen. However, you will get to grips with programming
much quicker if you stick with the instructions and do almost everything that is asked of you using the
command line (rather than doing stuff via the GUI), at least to start with. You’ll just have to trust me for
now ... We’ll start with the very basics and things that you could easily do in Excel instead, and build up.

Graphics is one of the important strengths of MATLAB. Although other software packages and scripting
languages exist that perhaps have the edge on MATLAB in terms of visually appealing plots and graphs,
MATLAB is worlds apart from e.g. Excel.

22 geo111 – numerical skills in geoscience

2.1 Using the MATLAB software

2.1.1 Starting MATLAB

To start with: find the MATLAB icon on the desktop; run the pro-
gram. You should see a number of sub-windows arranged within the
main MATLAB window, hopefully including at the very least, the
Command Window1. Depending on whether you have used MATLAB 1 Conveniently labelled Command Window

– you cannot possibly fail to identify it
...

before and it has remembered your settings, windows may also in-
clude: Command History, Workspace, Current Folder. If instead you see;
’Tetris’, ’Grand Theft Auto: San Andreas’, and ’World Championship
Pool’, then you have the wrong software running and are going to
find learning MATLAB rather hard. However, there is big $$$ to be
made in on-line gaming tournaments these days. Would you really
rather be a geologist and spend the rest of your days hitting rocks
with a hammer? If so, read on ...

2.1.2 The command line

When MATLAB initially starts up, the Command Window should
display the following text:

Academic License

»

or in order versions of the software:

To get started, select MATLAB Help or Demos from the Help

menu.

»

but in either case, with a vertical blinking line (cursor) following the
double ’greater than’ symbols2. 2 Note that in nerd-speak the » is

called the command ’prompt’ and is
prompting you to type some input
(Commands, swear words, etc.). See –
the computer is just sat there waiting
for you to command it to go do some-
thing (stupid?). If one does not appear
at the bottom of whatever is in the Com-
mand Window is means that MATLAB
is busy doing something extremely
important. Or perhaps, MATLAB may
have completely died. Either way, it will
not accept any new/further commands
until it is done calculating/dying.

If you are unfamiliar with using command-line driven software
... Don’t Panic! Nothing bad can happen, regardless of what you do.
Well, almost. It is possible to accidently clear MATLAB’s memory of
the results of calculations and data processing and close plots and
graphs before you have saved them, but MATLAB remembers all the
commands you type, so in theory it is perfectly possible to quickly
reproduce anything lost. (Later on we will be placing the sequence
of commands into a file (that is saved) and so ultimately, MATLAB
should turn out to be mostly fool-proof.)

2.1.3 MATLAB GUI

There are lots of fancy looking icons and pretty colors and you could
spent all day staring at them and not getting any work done. Or

elements of ... matlab and data visualization 23

learn good programming practice. Which is why we mostly will
ignore the eye-candy and little (if any) guidance will be given as to
the functionality of the GUI. Look at this as a lesson for the user (to
read the Help, textbook, on-line documentation, or simple go Google
for an answer3). 3 i.e. Internet fishing

2.1.4 Help(!)

Press F1 or click on the question mark icon on the tool-bar, to bring
up the indexed and searchable MATLAB documentation.4 4 It is also possible to obtain context-

specific help, e.g. on a specific (built-in)
function, which we’ll see in due course.

24 geo111 – numerical skills in geoscience

2.2 Basic concepts

2.2.1 Variables

A variable is, in a sense, a pointer to a location in computer memory
where a piece of information is stored5. A variable is associated a 5 In the bad old days, this pointer was

the actual address in memory and
might have looked something like
f04da105.

name to make things rather more easy and convenient. The name
can be anything you like in MATLAB, as long as it does not contain
numbers or special characters. So actually, you are only allowed se-
quences of letters (otherwise knows as ’words’). But you can create
a variable name based on 2 (or more) words, separated by an under-
score (_). Valid variable names would include:

A

B

cat

derpyhooves

this_is_boring_stuff

BIG

big6 6 Note that MATLAB distinguishes
between lower and UPPER case letters
in a variable (i.e. BIG and big would
represent two different and distinct
variables).

Variables are entirely useless unless they have some information
assigned to them. In fact, you can type in any of the variable names
above (at the command line) and MATLAB will deny it knows what
you are talking about7. 7 Technically, MATLAB reports:

Undefined function or variable

which tells you it is neither a func-
tion name (more on this later), nor is
defined as having any information
associated with it.

So far so useless – you need to assign something to it. Which
brings us to quite ’what’ and ’how’. First of, you need to know that
variables can have the following types:

• Integer – An integer number is a counting number, i.e. 1, 2,

3, ... and including zero and negative integers. MATLAB has
different representations for integer numbers, depending on how
large a number you need to represent (and how much memory it
will need to allocated to storing it). This is something of a throw-
back to the days when computers only had 1/10000000th of the
memory of your iPhone and were slower than a lemon.

• Real (floating point)8 – A real number can have a non-integer 8 The distinction (sort of) is that floating
point is a specific representation of a
real number.

component, e.g. 1.5 or 6.022140857 × 1023. Real numbers also
come in different precisions in MATLAB (also to do with memory
allocation and speed), determining not just the number of decimal
places that can be represented, but also the maximum size.

• String (character) – One or more characters, but now allowing
spaces (unlike in the case of naming variables).

• Logical – true or false.

• etc – No, not a real type, but to note that MATLAB defines
and recognises a whole bunch of other types, including Complex

elements of ... matlab and data visualization 25

(MATLAB can handle complex numbers) and Object (we will also
not worry about objects, which can incorporate a combination of
types. At least, not yet ...).

The first thing to learn is to ideally, do not attempt to mix up
(combine) variables of different types. MATLAB is very forgiving
when it comes to combining an integer and a real number in the same
calculation, but in other programming languages, this should be
avoided. However, even in MATLAB, strings and reals (or integers) are
very different things. When necessary, different variable types can be
converted between (see Variable Type Conversion Box).

Variable Type Conversion
MATLAB provides a variety of

functions (see later) for converting
between different types of variables.
The most commonly-used/useful
ones are as follows:

1. converting from a number to a
string (s)

• s = num2str(N), where N is
any number type variable

• s = int2str(I), where I is
an integer

2. converting from a string (s) to a
number

• x = str2num(s), where N is
(generally) a double precision
(real) number

Case #1 (num2str) is generally the
most useful, e.g. in adding specific
captions to plots (with caption text
based on the value of a numerical
variable) – examples are given later.

The second and perhaps rather more important thing, is how to
assign a value to a variable (and in fact, create the variable in the first
place). Programming languages such as FORTRAN require you to
define the variable beforehand and assign it a type. MATLAB allows
you to define and assign a value to a variable all at the same time,
and it will kindly work out the correct type based on the value you
assign to it. You assign a value using the assignment operator =9. For

9 This is NOT ’equals’ in MATLAB. We
will see the equality operator shortly. =
assigns the value or variable on its right
the variable on the left.

example:

A = 10

will assign the value 10 to the variable A. If you type this at the com-
mand line, MATLAB will kindly repeat what you have just told it
and report the value of A back to you:

A =

10

Note that you do not need to add a space before and/or after the as-
signment operator (=). This is something of a personal programming
and aesthetics preference, i.e. whether to pad things out with spaces
or not. (Chose what you feel happiest with and later on, whatever
leads to the fewest programming mistakes ...)

MATLAB will also report in the Workspace window, the name
and value, type (called Class), etc of all your current variables (just
one currently?). Actually, it is not all quite so simple. If you take
a look at the Class of the variable A in the display window – it is
listed as double (a real number) rather than an integer. So by default,
if MATLAB does not know what you really want, it defines A as a
double precision real number10. 10 If you genuinely wanted an integer,

there are ways to do this, such as using
a type conversion function form real to
integer (see above).

The next complication comes when assigning a string (a sequence
of characters) to a variable. For example, try:

B = apple

and MATLAB is far from happy. As it turns out, a sequence of char-
acters can also refer to a function11 in MATLAB, and this is what 11 You will see functions shortly. For now

– note that they are ’special’ (reserved)
words that perform some action and
hence cannot also be used for a variable
name.

26 geo111 – numerical skills in geoscience

MATLAB looks for (i.e. a match to apple in the list or variable (and
function) names). To delineate apple as a string, you need to encase it
in (single12) quotation marks: 12 Double "" quotation marks will not

work.
B = ’apple’

Just as MATLAB creates new variables on the fly, you can re-
assigned values to an existing variable, even if this means changing
the type, e.g.

A = ’banana’

has now replaced the real number 10 with the character string ba-
nana in variable A. This is reflected in the updated variable list details
given in the Workspace window (and a Class now listed as char).

Finally, it is possible to suppress output to the Command Window
when making assignments – simply an a semi-colon (;) to the end of
the assignment statement, i.e.

C = ’banana’;

now does not results in anything being echoed to the command line
(but the Workspace is still updated to reflect this variable assignment).
If you wish to see the contents of the variable, you can either just
type its name at the command line, or view its value as listed in the
Workspace window.

2.2.2 Numerical expressions

You can do normal maths in MATLAB. Or at least, something that
looks at least a little intuitive. (In fact, I often use MATLAB as a cal-
culator.) The primary/common numerical expressions are:

• exponentiation — ∧ — raises one number of variable to the
power of a second, e.g. ab, a to the power b, which is written in
MATLAB as a∧b.
• multiplication — × — e.g. a×b, written in MATLAB as a∗b.
• division — / — (written as you would expect).13 13 Entertainingly, it turns out that if you

write the reverse, backslash character
(\) in the equation, you divide the
over way (i.e. denominator divided by
numerator).

• addition — + — (guess).
• subtraction — - — again, obvious/intuitive.

The order in which the numerical operators are written down is
important and MATLAB will execute them in a specific order (op-
erators higher up the list, executed first), i.e. first ^, then ∗,/, and
last +,-. There is also ’negation’, when you change the sign of a vari-
able, and which is executed immediately after exponentiation. The
assignment operator (=)14 comes last. If you are unclear about the 14 This is NOT ’equals to’, as you’ll see

shortly.order numerical operators are carried out, then place parentheses
() around the component of the calculation you wish to be carried

elements of ... matlab and data visualization 27

out first to enforce a particular order (this can also help in making
an equation easier to read and ultimately, easier to debug code). For
example, consider:

A = 3;

B = 6;

C = 2;

D = C*(A/B+1)

E = C*A/(B+1)

F = C*A/B+1

G = A*C/B+1

Try these out (and make up your own combinations) and confirm
that the answers are what you would expecty them to be.

2.2.3 Relational and logical operators

We will see more of relational and logical operators later when we start
to get into some proper coding. For now, you only need to know that
a relational operator is one of:

• greater than — MATLAB symbol >

• less than — MATLAB symbol <

• greater than or equal to — MATLAB symbol >=
• less than or equal to — MATLAB symbol <=
• equality — MATLAB symbol ==
• inequality — MATLAB symbol ∼=

and test the relationship between 2 variables. Note in particular,
that the equality symbol (that tests the equivalence between two
variables) is represented by TWO = characters (==), and remember
that a single = character is the assignment operator.

In everyday language, the answer to any one of these relational
tests would be a ’yes’ or a ’no’. But in MATLAB (and other computer
languages), the answer is given as the binary (logical) equivalent
where ’yes’ is represented by 1 and ’no’ by 0. You can also use true

(1) and false (0), e.g. A = true returns:

A =

1

Finally, the logical operators (again, more on this later) are:

• or — symbol ||
• and — symbol &&
• not — symbol ∼

For now – be familiar with how numerical expressions are written
in MATLAB (you’ll need to be using these from the outset), and keep
in mind the existence of relational and logical operators.

28 geo111 – numerical skills in geoscience

2.2.4 Functions (built-in)

MATLAB provides numerous built-in functions15. These functions 15 We will be constructing our own
later, at which point it should become
apparent that there is nothing particular
special about them.

have specific names assigned to them, so care needs to be take not to
give a variable the same name as a function to avoid getting confused
further down the road. Giving an exhaustive list (and brief descrip-
tion) is outside the scope of this document16. Common functions 16 A full list of functions can be found

in the MATLAB Help Documentation
under functions.

will be progressively introduced as this text progress. Note that in
addition to the on-line Help documentation, information on how to
use a function and example uses is provided by typing help and
then the function name (separated by a space) at the command line.

MATLAB also provides several built-in mathematical constants
(saving having to define a variable with the appropriate number).
This are simply variables that have been already defined and as-
signed values, but which you cannot change (hence the term ’con-
stant’). For instance, the value of π, is assigned to a built-in variable
with the name pi. You can access (display) its value by typing its
name at the command line:

» pi

ans =

3.1416

In this example, the use of the function is rather trivial – you need
to tell the pi absolutely nothing, and it spits back the same thing
(the value of π) each and every time. In most other functions, you
will find that you have to pass some information, and the return
value will depend on the input. (This will all become apparent in due
course ...)

2.2.5 Miscellaneous commands

Related to what you have seen so far and will see soon, useful miscel-
laneous commands include:

• clear — Removes all variables from the workspace.
• clear all — (Removes all information from the workspace.)
• close — Closes the current figure window.
• clear all — (Closes all figure windows.)
• exit — Exits MATLAB and hence enables additional drinking
time in the bar.

Note that a useful trick – if you want to re-use a previously used
command but don’t want to type it in all over again, or want to issue
a command very similar to a previously-used one – is to hit the UP
arrow key until the command you want appears. This can also be
edited (navigate with LEFT and RIGHT arrow keys, and use Delete

elements of ... matlab and data visualization 29

and Backspace to get rid of characters) if needs be. Hit Enter to make
it all happen.

30 geo111 – numerical skills in geoscience

2.3 Vectors and arrays #1

So far, your variables have all be what are known as scalars – i.e.
single numbers (or strings). One of the most powerful things about
MATLAB is its ability to represent vectors (1D columns or rows of
numbers or strings) and arrays – 2D and higher dimensional regular
grids of numbers or strings. (matrix17 is the name commonly given to 17 Not to be confused with the film

starting Keanu Reeves.a 2-D array.)

2.3.1 Creating vectors The colon operator can be used to
much more rapidy create vectors (as
long as the elements form a simple
sequence in value) as compared to
typing in the list of values explicitly.
There are two variants to the syntax:

A = j:k

and

A = j:i:k

In the first example, j and k and
the minimum and maximum values
in the sequence of numbers in the
vector. MALAB completes the se-
quence by assuming that the values
monotonically increase and that the
elements are separated by one (1.0)
in value. e.g.

» A = 0:3

A =

0 1 2 3

Note that MATLAB is not inclined
to let you directly create a vector
of elements that decrease in value
(you’ll need to flip this puppy about
to re-order it if that is what you want
– see later).

In the second example, i is the
increment MATLAB will use to
complete the sequence from j to k.
In the example in the text, you could
have created the array B by typing:

» B = 0.5:0.5:2.5

B =

0.5000 1.0000 1.5000

2.0000 2.5000

(More commonly, you might
place the colon operator and its
min/(/increment)/max values
inside a pair of brackets, i.e. A =

[0:3]. so that it is unambiguous
that you are creating an array

Vectors are 1-D arrangements of numbers (or strings). You can enter
them into MATLAB as a list of space-separated value, encased in
(square) brackets, [], e.g.

B = [0.5 1.0 1.5 2.0 2.5]

or with the value comma-separated:

B = [0.5, 1.0, 1.5, 2.0, 2.5]

Either way, you end up with a vector on its side as a single row of
numbers which in math-speak would look like:

B =
(

0.5 1.0 1.5 2.0 2.5
)

You can also create the equivalent, upright orientated vector (as
a single column of numbers) by separating the elements by a semi-
colon:

C = [0.5; 1.0; 1.5; 2.0; 2.5]

which gives the maths-speak representation:

C =

0.5
1.0
1.5
2.0
2.5

2.3.2 Basic vector manipulation

There are several basic and very useful ways of manipulating vectors
(and as we’ll see later – matrices). To start with, you might want to
determine the orientation and length of a vector. There are several
different ways to go about this, which in order of grown-up-ness are:

1. Display the contents of the vector in the command window by
typing its name at the command line. Obviously, this will quickly
become useless for very large vectors18.

18 Try creating a vector from 1 to 100,000
and then displaying it ...

elements of ... matlab and data visualization 31

2. Refer to the Workspace window, although this also ends up a
total Fail for long vectors.
3. Use the length or size function (see Box).

length

You can determine the length of a
vector A with ...

length(A)

returning its integer length, and
which could in turn be assigned to a
variable, e.g. B = length(A). (Tech-
nically, length returns the largest
dimension of an array.)

size (use #1)
Returns both dimensions, even

though for a vector, one of them
always has a value of 1. This does
allow you to determine its orienta-
tion though, as for the example of A
= [1:10]:

» size(A)

ans =

1 10

(1 row and 10 columns). For A = A’:

» size(A)

ans =

10 1

(10 rows and 1 column).

If you find that you want a different orientation (row vs. column)
of the a vector, the vector can be flipped around (converting row-to-
column and column-to-row) using the transpose operator (.’), e.g.:

D = B’

will turn the vector B into one (assigned to the variable D) with he
same orientation as C.

You can also re-order the values in a vector (hence addressing
the restriction in using the colon operator to create a vector that the
values must be monotonically increasing rather than decreasing).
Depending on the orientation of the vector, you can use either the
flipud (for column vectors), or fliplr (for row vectors), functions to
re-order the elements.

flipud, fliplr
These two functions allow you to

re-order a vector. Their use is simple:

» B = flipud(A)

will invert the order of elements of a
column vector, and:

» B = fliplr(A)

will invert the order of elements of a
raw vector. Simples! Lesson over.

2.3.3 Addressing elements in vectors

Values can be extracted from a vector by specifying the index (tech-
nically, this should be an integer, but MATLAB is pretty forgiving
and you can get away with using a real number when specifying
an index) of the element required (counting along, left-to-right, or
top-to-bottom, depending on the vector orientation), e.g.

» B(5)

ans =

2.5000

or:

» C(3)

ans =

1.5000

The transpose operator, in MAT-
LAB-speak, "returns the nonconjugate
transpose of A". Who knows what
that means. In slightly more ev-
eryday (i.e. down here on Earth)
language, it: "interchanges the row
and column index for each element".
Or sort of, just interchanges the rows
and columns. The operation can be
written:

» B = A.’

or

» B = transpose(A)

In practice, you can get away with
being lazy (and in fact this is how it
was in the old days, and just write):

» B = A’

(but get into the habit of using the
formally correct, Mathworks official
and UN-approved, syntax of .’).

(In this text, I will refer to accessing a particular element (or ele-
ments) of a vector (or array) via its index as addressing. Unless I
forget, then I might say something else. You’ll have to keep on your
toes – don’t expect consistency here!)

There is a MATLAB function end (see Box) that enables you to
easily address (accessing via its index) the very last value in a vector
(in MATLAB, the index of the first position is always 1).

For addressing more than one element of a vector at a time, you
can use the colon operator (see Box).

As well as reading out an existing value of a vector, you can also
replace an existing value by assigning the new value to the appro-
priate index position. e.g. to replace the first element with a value of
0.0:

32 geo111 – numerical skills in geoscience

B(1) = 0.0

(Here, you are saying that you would like to assign the value of 0.5
to the element in the vector given by the index 1. The previous con-
tent of the array at index position 1 is simply over-written.)

You can access more than a single
element of a vector at a time, by
means of the colon operator, : to
define a min, max range of indices.
For example:

» B(2:4)

ans =

1.0000

1.5000

2.0000

To select all elements:

» B(:)

ans =

0.5000

1.0000

1.5000

2.0000

2.5000

end

Represents the largest index in
a vector when addressing it, or in
MATLAB-speak: "end can ... serve
as the last index in an indexing
expression".

elements of ... matlab and data visualization 33

2.4 Basic graphing (aka. ’data visualization’)

So far ... I suspect this is heavy-going and there is a lot to try and
remember, such as command names, although knowing just that cer-
tain commands exist, is enough to start with and MATLAB Help can
be used later tot find out the exact name (and usage syntax). All this,
and we have not even gotten on to matrices (2-D arrays) yet ... So,
we’ll take a diversion to look at some basic plotting techniques that
will make sense now that you can create vectors of numbers to plot
(and later, important some ’real’ data). Unless you have forgotten
how to create vectors already ... :(

2.4.1 Plotting

The command figure creates a figure window, which is where MAT-
LAB displays its graphical output ... but on its own, without any-
thing in it ... useless. So, lets put something in it, with the simplest
possible graphical way of displaying data called plot. But first – cre-
ate yourself a dummy dataset to plot. You are going to need to create
yourself a pair of vectors – these can have any values (all numbers
though) in them that you like, but perhaps aim for 1 vector with val-
ues counting up from 1 to 10 – this will form your x-axis, and the 2nd
column ... whatever you like. 19

19 Looking ahead – you could create a
y-axis vector formed of the squares of
the numbers in the x-axis vector:

» Y = X.∧2

(The .∧ bit says to square the value of
each and every element in the vector.)

plot

The MATLAB function plot ...
plots. More specifically, it plots pairs
of (x,y) data and by default, does not
plot the points explicitly but joins
the(x,y) locations up by straight line
segments. MATLAB calls these a
’2D line plot’, although there are
plotting options that allow you only
to display the individual (x,y) points
(making it like the scatter function,
which we’ll see later).

Its most basic usage is:

plot(X,Y)

where X and Y are vectors – of the
same length (important), but not
necessarily of the same orientation
(i.e. if one was a row vector and
one a column vector, MATLAB
would work it out, although it is per-
haps best to avoid such a situation
arising).

There are many options that go
with this function, some of which
we’ll see and use later. You can also
input matrixes as X and Y apparently.
But I have absolutely no clue as to
what might happen. I suspect that
the plot will end up looking like a
bad acid trip.

As always, refer to the MATLAB help text on plot before using it
(also refer to Box). The key information that will get you started is at
the very top:

PLOT(X,Y) plots vector Y versus vector X.

So, you need to pass it your x-axis data vector (by its variable name),
followed by your y-axis data vector (by its variable name) – comma
separated. Do this, and depending on just what or how random your
y-axis data was, you should end up with something like Figure 2.1 in
a window captioned "Figure 1".20

20 If you cannot see the figure window
... check that the window is not hidden
behind the main MATLAB program
window!

This ... is easily the least professional plot ever. And one that
breaks all the most basic rules of scientific presentation, such as an
absence of any labelling axes. There is also no title, although here in
the course text I have added a figure caption in the document so I
can sort of get away with it. But this is the default state of the basic
plot function and you’ll just have to deal with it (i.e. add a series of
commands to add missing elements of the plot).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 2.1: Default output of plot.

Note that by default, MATLAB also scales both axes to reason-
ably closely match the range of values. In the example here, the
default min and max axes limits in fact turn out to be the min and
max values in the x and y-axis data because the data is composed of

34 geo111 – numerical skills in geoscience

relatively simply/whole numbers. If however the maximum y value
was vary slightly larger, you’d see that MATLAB would adjust the
maximum y-axis limit to the next convenient value so as to preserve
a relatively simple series of labelled tick marks in the axis scale. In
fact, why not try that – replace your maximum data value, with a
value that is very slightly larger (an example is given in Figure 2.2).
21 Then re-plot and note how it has changed (if at all – it will depend

21 If you have created a dummy dataset
in which the value in the last row is
the largest, replacing it is simple –
remember the use of end in addressing
an element in an array. If your dataset
does not monotonically increase and
the largest value falls somewhere in the
middle ... you could cheat’ and open
the array in the variable editor and
discover which row it occurs on.

somewhat on what data you invented in the first place).

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Figure 2.2: A plot illustrating axis
auto-scaling (maximum x and y values
now slightly larger than 10 and 100,
respectively).

2.4.2 Graph labelling

You have two options for editing the figure and e.g. adding axis
labels. Firstly, you can use the GUI and the series of menu items
and icons at the top of the Figure window to manipulate the figure.
I suspect you’ll prefer this ... but it is not very flexible, or rather, it
requires your input each and every time you want to make changes
or additions to a figure. The second possibility is to issue a series of
commands at the command line. (The advantage with the latter we’ll
see later when we introduce m-files.) For now, I’ll illustrate a few
basic commands:

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Whatever values

W
ha

te
ve

r
va

lu
es

 s
qu

ar
ed

A plot of some values vs. their squares

Figure 2.3: A (only very slightly)
improved plot.

1. The first, obvious thing to do is to add axis labels. The com-
mands are simple – xlabel and ylabel. They each take a string as
an input, which is the text you would like to appear on the axis. If
you change your mind, simply re-issue the command with the text
you would like instead.
2. The command for title, perhaps unsurprisingly, is title. Again,
pass the test you would like to appear as a string (in inverted
commas ”), or pass a the name of variable that contains a string
(no ’’ then needed).
3. You might want to specify the axis limits. The command is
axis and it takes a vector of 4 values as its input – in order: min-
imum x, maximum x, minimum y, and maximum y value. e.g.
axis([0 10 -100 100]) would specify an x-axis running from 0 to
10, and a y-axis from -100 to 100.

Information as to how to use all of these commands can be found
via MATLAB help. But a typical sequence, that gives rise to the im-
proved plot shown in Figure 2.3, is given in the margin.

Example of adding axis labels and a
plot title ...

» xlabel ...

(’Whatever values’);

» ylabel ...

(’Whatever values

squared’);

» title ...

(’A plot of some ...

values vs. their ...

squares’);

2.4.3 Sub-plots

You can also have more than one plot in a single Figure window. As
an example, create some sine waves using the sin function (see help)
over the range 0 < x < 2π, e.g.:

elements of ... matlab and data visualization 35

» x = 0:0.1:2*pi;

» y = sin(x);

» y2 = sin(2*x);

(Note how in the first line, the colon operator is used to create an
x vector from 0 to 2π, in steps of 0.1. The second and third lines
calculate the sine of all the x values, and sine of 2 times the x values,
respectively, and assign the results to a pair of new vectors, y and y2.)

To place several different plots on the same figure uses the subplot

command 22. The subplot command is used as: subplot(m,n,p) 22 » help subplot

where m is the number of rows of plots you want to have in your
figure, n is the number of columns of plots in your figure, and p is
the index of the plot you wish to create (see: Figure 2.4).

Figure 2.4: Arrangement of subplots.

The basic code then goes something like:

» figure(1);

» subplot(2,2,1);

» plot(x,y);

» subplot(2,2,2);

» plot(x,y2);

» subplot(2,2,3);

» plot(x,-y);

» subplot(2,2,4);

» plot(x,-y2);

In this case, the 3rd and 4th subplots simply display the inverse of
the curves in the subplots above.

2.4.4 Saving graphics and figures

You might just want to save the figure. (Why create it in the first
place in fact if you are just going to throw it away ... ?) Again, you
can do this via the GUI or at the command line 23. From the GUI,

23 To export a graphic at the command
line, use the print function. To cut a
long story short (see: help print), to
print to a postscript file:
print(’-dpsc2’, FILENAME)

where FILENAME is the filename as a
string or a variable containing a string.

you have the option to save the figure in a way that can be loaded
later and re-edited – this is the .fig format option. Or you can save
(export) in a variety of common graphics formats (although once
saved in this format, the graphics can only be edited later using a
graphics package).

You can also close figure windows (see Box). No seriously. They
are not forever. ;)

To close the current (active) Figure
window, the command is:
» close

To close all currently open Figure
windows:
» close all

36 geo111 – numerical skills in geoscience

2.5 Vectors and arrays #2

A matrix is another special case of an array – this time 2-D (rather
than 1-D in the case of a vector). MATLAB totally hearts them.

2.5.1 Creating matrices and arrays

You can enter matrices (2-D arrays) into MATLAB in several different
ways:

1. Enter an explicit list of elements. To enter the elements of a
matrix, there are only a few basic conventions:

• Separate the elements of a row with blanks or commas.
• Use a semicolon, ; , to indicate the end of each row.
• Surround the entire list of elements with brackets, [].

2. Load matrices from external data files.
3. Generate matrices using built-in functions.

As an example, type in the following at the command prompt:

A = [15 7 11 6; 13 1 6 10; 21 17 5 3; 5 15 20 9]

MATLAB then displays the matrix you just entered24: 24 Remember that you can add an ; to
the end would prevent the assignment
being displayed.A =

15 7 11 6

13 1 6 10

21 17 5 3

5 15 20 9

Once you have entered the matrix, it is automatically remembered in
the MATLAB workspace. You can refer to it simply as A.

Now go find the array you have just created in the Workspace win-
dow. Double-click on its name icon and see what goodies appear on
the screen. This is a fancy array editor which looks a bit like one of
those dreadful spreadsheet things. You can see that this might be
handy to edit, view, and keep track of at least moderate quantities
of data. This is a useful facility to have. However, we are going to
concentrate on the command-line operation of MATLAB in the Lab
because that will give you far more power and flexibility in applying
numerical techniques to problem solving, and will form the basis
of scripting (computer programming by another name) that we will
see in a few lectures time. Close down this nice toy to leave just the
original windows.

Elements in the matrix can be addressed using the syntax:

A(i,j)

elements of ... matlab and data visualization 37

where i is the row number, and j is the column number. It is very
very easy to keep forgetting in which order the rows and columns are
indexed., but I’ll tell you here and now before I forget:

rows, columns

(You can always create a test matrix and access a specific element to
check if in doubt!) In the example above:

» A(1,3)

ans =

11

(i.e. the value of the element in the 1st row, 3rd column, is 11).
In general, the same functions and operators that applied to vec-

tors and you saw earlier, also apply to matrixes (or specific dimen-
sions of matrices). (See Boxes.)

Similarly as for vectors, you can
access more than a single element
of a matrix by means of the colon

operator, :. For example:
A(:,1) – selects the 1st column
A(3,:) – selects the 3rd row
A(2:3,2:3) – selects the 2×2 ma-

trix of values lying in the centre of A,
while A(1:2,:) selects the top half
(first 2 rows) of the matrix.

Finally – a fundamental way of accessing data that you need to
learn and be familiar with, is to employ the color operator to select
specific columns (or rows) of data. You’ll find that this skill ends up
inherent to many of your attempts to process and graph data. For
instance, if your (x,y) data to plot ended up in MATLAB workspace
in matrix form (it very commonly does) rather than as 2 sperate vec-
tors (as you had when you first plotted anything), you will need to
select separately the x (e.g. 1st column) data, and the y (2nd column)
data, and pass these to the plot function. For the example of matrix
A above, all the first column data can be selected by typing A(:,1)25, 25 Remembering the HUGE hint above

in 100 pt font as to the order of rows
and columns ...

which says all the rows (:) in the first column. Similarly, all the 2nd
column data alone can be selected by A(:,2). (You’ll practice this
endlessly later on and hopefully get it!) You can also determine the shape of

your array using the size function.
For a 2D array (matrix), when you
pass it the name of your array, it
returns the number of rows followed
by the number of columns (in that
order).

2.5.2 Basic matrix manipulation

You can treat vectors and matrices (or parts of vectors and matrices),
mathematically, as you would treat single values (i.e. scalars) but
unlike a scalar, the transformation is applied to all specified elements
of the array. This applies for all the basic numerical operators26. For 26 Technically ... or at least to be consis-

tent with other operations, you might
write multiplication as .* rather than
just plain old *. The preceding dot tells
MATLAB not to treat this as matrix
multiplication but to carry out the
operation on each element in turn. In
this case, it is the same thing (and both
notations work the same), but later, is
not. (This will make more sense when
you get to see it in action, later.)

example, for vector B in the earlier example,

» 2*B

ans =

0 2 3 4 5

and

» B-1.5

ans =

-1.5000 -0.5000 0 0.5000 1.0000

38 geo111 – numerical skills in geoscience

Question: Multiply all the elements of A by the number 17. As-
sign the answer to a 3rd array (C). What is the value of the element
C(2,3)? How would you ask for the 4th row, 2nd column element of
the array C, and what is its value?

Question: What is the sum of the 4th column of C ? (Sure – you

The function sum ... sums things. The
MATLAB Help documentation (help
sum) says:

’If A is a vector, sum(A)

returns the sum of the

elements.’
’If A is a matrix, sum(A)

treats the columns of A as

vectors, returning a row vector

of the sums of each column.’

also do it by using a calculator, but you will not always have such a
small data-set as here. Perhaps you’ll get a much larger data-set in
the assessed exercise ;) So, practice doing it properly.)

Question: What is the sum of the 2nd row of C? sum gives returns
the sums of each column, and so on its own;

» C

C =

255 119 187 102

221 17 102 170

357 289 85 51

85 255 340 153

» sum(C)

ans =

918 680 714 476

gives you a row vector consisting of the sums of the individual
columns of the matrix C above.

This is where the transpose function (’) comes in handy (see
earlier). In this case, it flips a (2D) matrix around its leading diagonal
(columns become rows, and rows, columns)27 .

27 This is almost true. Technically the
function you want is .’, as ’ will
change the sign of any imaginary
components. For real numbers, they are
the same.

In addition to transpose, other
useful array manipulation functions
include:
flipup – flips the matrix in the
up/down direction
fliplr – flips the matrix in the
left/right direction
rotate – rotates the matrix
(As always, refer to the help on
specific functions.)

» C’

ans =

255 221 357 85

119 17 289 255

187 102 85 340

102 170 51 153

(transposing the matrix turns the rows into columns)

» sum(C’)

ans =

663 510 782 833

Now you get a row vector consisting of the sums of the individual
columns of the matrix C, but since you have transposed the matrix C

first, these four values are actually equal to the row sums.
Finally, you could transpose the answer:

» sum(C’)’

ans = 663

510

782

833

elements of ... matlab and data visualization 39

now with a row vector gives you a format that looks like the row
sums of the original matrix C. 28

28 Note how you can combine multiple
functions in the same statement to
create sum(C’)’. However, to start
with, it is much safer to do each step
separately and hence be sure what you
are doing.2.5.3 Some matrix math :(

We will not concern ourselves with multiplying vectors and matrices
together ... just yet ...

40 geo111 – numerical skills in geoscience

2.6 Loading and saving data

There are a number of different ways to load/import data into the
MATLAB Workspace. Rather than try and tediously list and describe
the commands and syntax and blah blah, we’ll be going through a
couple of (hopefully) slightly-less tedious data-based examples as
we progress through the course text. In this way, if nothing else, you
might accidently learn some ’science’ even if nothing much about
MATLAB ...

2.6.1 Where am I?

Before anything – you need to know where you are. If your file to
load is not in the directory MATLAB us using, it will not find it. And
if you save something and have no idea where it is being saved ...
that can hardly go well.

By default, MATLAB looks to a file directory located within its
installation directory ($MATLAB/data). So, where the load command
requires a filename to be passed, you will need to enter either the
full location of the file; i.e., starting with the drive letter (e.g. as per
displayed in the Windows Filemanger address bar, or the relative
path to where the file is located (e.g. if there is a subdirectory called
data, you will pass data/sediment_core_d18O.txt29). Alternatively,

29 Remember that this is a string type.

you can change the MATLAB directory that you are working in. (This
works similar to UNIX/LINUX for those of you who are familiar
with navigating your way around these operating systems.) You can
make the download directory the default directory for working from
by typing:

» cd DIRECTORY_PATH

where DIRECTORY_PATH is the path to the directory in which the data
file has been saved30, remembering that DIRECTORY_PATH is a string

30 You can view the files that are present
in the directory that you are working in
by typing (more LINUX-speak): ls.

(i.e. enclosed in ”). Or ... you can add a ’search path’ (addpath) so
that MATLAB knows where to look. (Note that both these alternative
possibilities can be implemented from the GUI.) The command addpath will add a

search path to the MATLAB workspace.
e.g.
addpath DIRECTORY_PATH

There is also, of course, the GUI – from the File menu the option
Import Data... will run the data import Wizard – note that you
might have to select All Files (*.*) from the file type option box in
order to find the file. I’ll leave you to work the rest out for yourselves
... Maybe try importing the data into MATLAB this way once you
have done it successfully using the load function at the command
line.

load

Loads variable from a file into the
workspace. The syntax is:

» load(filename)

where filename is the name of the
file (remember: as a string, it needs
to be enclosed in quotation marks).
The file might be plain text (ASCII)
or a MATLAB workspace file (see
below), in which case it should have
the file extension .mat. To force
MATLAB to treat the file input as
ASCII or a MATLAB workspace file,
pass a second parameter (separated
from the filename by a comma) –
’-ascii’ for ascii, and ’-mat’ for a
MATLAB workspace file.

Note that in loading an ASCII
data file, any line starting with a %

is ignored. Also note that the data
must be in a column format with no
missing data.

For an ASCII file, the name of the
variable created to hold the data
being imported is automatically gen-
erated. So in the example of the data
file being called ’twilight.txt’,
the variable generated will be called
twilight. You cna instead chose
to assign the imported data to a
variable name of your choice, by e.g.:

» sparkle =

load(’twilight.txt’);

elements of ... matlab and data visualization 41

2.6.2 Loading and importing data

The simplest way (other than via the MATLAB GUI and the beautiful
green Import Data icon) is to use the load function (see Box)31. 31 There is also a much more flexible

way of loading text-based data using
the function textscan, but that also
requires files to be explicitly opened
and closed using fprintf. We’ll see a
little of this later.)

As a brief exercise and practice using load – first download the
data file etheridge_etal_1996.txt from the course webpage of
www.seao2.org. You might start by viewing the contents of the file by
opening it in any text viewer. This is always a good place to start as it
enables you to see what you are getting yourself in to (i.e. format of
the file, any potential formatting issues, approximate size and com-
plexity of the dataset, etc). Then import the data into the MATLAB
workspace using the load command. Try simply typing the name of
the variable that was automatically created (or the one you chose, if
you assigned the imported data to a specific variable name – see Box)
to provide a crude view of the data. Then double click on the name
of the variable in the MATLAB Workspace window. This should
open up a spreadsheet-like window in which the data can be viewed,
sorted, and even edited. Finally, plot the data and remember to label
it appropriately32. You should end up with something like Figure 2.5. 32 FYI: the x-axis data is year, and the

y-axis data is the mixing ratio of CO2 in
air in units of ppm.

2.6.3 Saving and exporting data

Arrays of numbers can be saved in a plain text (ASCII format) by
means of the save function in a simple reverse of the use of load (see
Box).

save

Saves variables from the workspace
to a file. There are two main forms
(syntaxes) of the command:

» save(filename)

which saves the entire workspace to
a .mat file (with the filename given
by the string filename (in quotation
marks), and:

» ...

save(filename,A,’-ascii’)

saves the data in the variable A

(which must be given as a string, i.e.
also enclosed in quotation marks) in
plain text (ASCII) format.

2.6.4 Loading and saving the workspace

The entire workspace (including all variables and their values, or
just the values in a single variable if you wish) can be saved to a file
and then later re-opened. The file format is specific to the MATLAB
program and the file-name extension by default is .mat. You might
find this very helpful to use in long lab exercise or large modelling
projects, particularly if you do not come back to work at the exact
same computer each time or wish to use continue the same piece of
work on a laptop elsewhere.

1820 1840 1860 1880 1900 1920 1940 1960 1980
Year

280

290

300

310

320

330

340

C
O

2 m
ix

in
g

ra
tio

Figure 2.5: Spline fit to measured
changes in CO2 concentration in Law
Done ice core, following Etheridge et al.
[1996].

42 geo111 – numerical skills in geoscience

2.7 Basic data processing

As an example to kick-off some data-processing tricks, load in the
Phanerozoic CO2 dataset: paleo_CO2_data.txt. You can just im-
port it into MATLAB using the load function. However, there is a
complication here – unlike the ice core CO2 dataset, you now have 4
columns in the array33. The first column is age (Ma), the second the 33 Remember that you can diagnose

its size with ... size (or refer to the
Workspace window)

mean CO2 value, and the 3d and 4th are the low and high, respec-
tively, uncertainty limits. Remembering (I hope!) how to reference
specific columns of data in a matrix34 – plot the mean paleo CO2

34 HINT: the colon operator (see
earlier).value as a function of age (in Ma). If you closed the previous Figure

window (see earlier), it is not essential to explicitly open one (using
the Figure command) – when you use the plot command, if there
is no open Figure window, MATLAB will kindly open one for you.
How thoughtful. The result should be something like 2.6. O dear ...

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.6: proxy reconstructed past
variability in atmospheric CO2.

So ... that was not so successful. What is happening in the default
behaviour of plot, is that the location defined by each subsequent
row of data is being joined to the previous one with a line. This was
fine for the ice-core CO2 example dataset because time progressed
monotonically in the first column, e.g. the data was ordered as a
function of time. If you view the paleo CO2 data, this is not the case.
(In fact, in the original, full version of the data, ordering is by proxy
type first, and then study citation, and only then age ...).

Your options are then:

1. You could import the data into Excel, then re-order (sort) it,
then export it, then re-load it ...

2. You could sort it in MATLAB using the GUI variable view
window. But lets not cheat for now.

3. You could sort it in MATLAB at the command line. How? Well,
a reasonable gamble, which actually turns out to be a total win, is
to try:

» help sort

Actually ... not quite. Reading the help text carefully (and you can
always try it out and see what exactly it does if you are not sure),
sort will sort all columns independently of each other, whereas
we want the first column sorted and the remaining columns linked
to this order. Under see also, MATLAB lists sortrows as a possi-
bilty. The help text on this looks a little more promising. It is still
slightly opaque, so the best thing to do is to try it (and view the
results)! This looks rather better. The resulting of plot-ting this is
2.7. (This is a good illustration of a guess of a function that was

elements of ... matlab and data visualization 43

not quite what was needed, but following up on the help sug-
gestions leads to a more appropriate function.) At least now the
curve is reminiscent of past changes in global temperature and
the geological Wilson cycle, with high values in the Cretaceous
and Jurassic and then lower again in the Carboniferous (roughly
matching the progression of ice and hot house (and then back to
recent ice ages) climates).

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.7: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

As a second example and to get you familiar with some additional
very basic data processing, we are going to transform a sediment
core δ18O time-series into an estimated history of glacial-interglacial
changes in sea-level. The scientific backstory is ...

Throughout the late Neogene35, sea level has risen and fallen as 35 23.03 millions years ago (end of the
Oligocene) to present is the Neogene
Period in Earth history.

continental ice sheets have waned and waxed. The main cause of
sea-level change has been variation in the total volume of continental
ice and resulting change in the fraction of the Earth surface H2O
contained in the ocean. Today more than 97% of the Earth surface
H2O is in the ocean and less than 2% is stored as ice in continental
glaciers, with groundwater making up the bulk of the remainder. Of
the total continental ice (ice above sea level), 80% is contained in the
east Antarctic ice sheet, 10% in the west Antarctic ice sheet, and the
final 10% in the Greenland ice sheet. (If all present-day continental
ice were to melt, sea level would rise by 70 m.) During the last glacial
maximum (LGM), sea level was about 125 m lower than present,
equivalent to 3% more surface H2O stored as continental ice. Because
of its relationship to continental ice volume, an accurate late Neogene
sea-level curve has been a long-term goal of scientists interested in
ice-age cycles and their causes.

Glacial ice has a lower 18O/16O isotopic ratio than mean seawa-
ter36. When ice volume is high, seawater has relatively high 18O/16O 36 Basically – as moisture derived from

the tropical ocean (and land) surface
moves to high latitudes, condensation
occurs and some of the moisture is lost
as rain. In condensating water vapor,
18O is preferentially incorporated into
the liquid phase, meaning that the
remaining water vapour has lower
18O/16O. Eventually, the residual water
vapour might fall as snow on an ice
sheet. Hence why ice sheets at the LGM
will have a lower 18O/16O than mean
seawater.

ratio. When ice volume is low, seawater has relatively low 18O/16O
ratio. If the average 18O/16O ratio of glacial ice is constant with time,
then changes in the average 18O/16O ratio of seawater will linearly
approximate changes in the total volume of ice and by inference, sea-
level. We (at least, I am) are interested in all this because knowing
how ice volume and sea-level changed over the glacial-interglacial cy-
cles has all sorts of important implications for understanding how cli-
mate change (e.g. via ice sheet albedo) and global carbon cycling and
atmospheric CO2 (e.g. via changes in the area of exposed continental
shelves and carbon stored in soils and above-ground vegetation).

To start with we need to reconstruct past changes in the oxygen
isotopic composition of the ocean. Handily, the 18O/16O ratio of
foraminiferal calcite isolated from marine sediments is primarily a
function of the 18O/16O ratio of the water together with the tempera-

44 geo111 – numerical skills in geoscience

ture of the water37. By measuring the 18O/16O value of calcite down- 37 We we will not concern ourselves
with temperature corrections here (in
any case, it turns out that the tempera-
ture effect has the same sign as and is
closely related to the ice volume effect)
but instead assume that foraminiferal
calcite δ18O only reflect changes in
(global) ice volume and sea-level.

core we are sampling 18O/16O with a progressively older age. In this
way we can reconstruct how ocean 18O/16O has changed over time.
These measurements are reported in units of parts per thousand (‰)
and written as δ18O.

How to turn (scale) changes in δ18O into sea-level change? Ev-
idence from dated coral reef terraces suggest that sea-level was
around 117 m lower at the peak of the last glacial (ca. 19 ka). We
could then assume that the change in δ18O from modern (preindus-
trial) to LGM equates to 117 m sea-level change, and hence create a
continuous past sea-level curve from all the δ18O data by applying a
simple scaling factor38. So: 38 Conceptually, this is no different

from saying that the difference between
the freezing and boiling point of pure
water (at 1 atm pressure) on the Celsius
scale – 100°C, maps onto the equivalent
interval on the Fahrenheit scale – 180°F
(212-32 °F), and hence providing a
means of converting a record of past
changes in Fahrenheit, inot degrees
Celsius (and vice versa).

• You first need the foraminiferal calcite δ18O data. (Unless you
want to go drill a long cylinder of mud from 3000 m down in the
Atlantic Ocean, pick out all the microscopic foraminifera of a sin-
gle species from samples of mud that you have carefully washed,
blah blah blah ...) So, from the course web page; download the file
sediment_core_d18O.txt and save it locally.

• Load this file into MATLAB.

• If you have successfully loaded in the data-file, you should see
a named icon for the array appear in the Workspace window. Try
viewing the file in the two different ways:

1. At the Command line (»), type in the array name.
Because of the length of the data-file we imported, the contents
of the array should have whizzed past you on the screen in a
highly inconvenient fashion. You can use the scroll bar on the
right of the Command Window window to move up and view
the data that you can’t see (the younger age δ18O numbers).
Note that as MATLAB imports data into an array from a file,
it names the array it creates following that of the filename, but
without the extension (the ’.txt’ bit).

2. Double-click on the array’s icon in the Workspace window.
Marvel at the fancy spreadsheet-like things that appear. Note
that you can edit the data, add and delete rows and columns,
and all sorts of stuff in this window, just like you can in Excel.
Amuse yourself by scrolling down to the end of the data-set in
the Array Editor and adding a new piece of data on line 784;
age (column 1); 783 (ka); sea-level (column 2); 0.0 (m).

At the command line, list the contents of the array again to view
the change you have at the end of the data-set. Use the up arrow
to bring up the command you want rather than typing it in again.

elements of ... matlab and data visualization 45

Now delete this new row. Note that it is easy to get confused with
which row number you need to address – although the data starts
from year 0, MATLAB always counts the index (the sequential
integer counting of the row or column number) of a location from
1 (one). (So age 10 ka is on line 11, and age 200 on line 201, etc.)

Reminder: for a n×m array data, the
first row is:
data(1,:).

The last row is:
data(end,:).

To find out the number of rows is:
» length(data).

The total size, in rows×columns, can
be found by:
» size(data)

(and also by referring to the Value
column in the Workspace window)

• So far everything has been in δ18O units and time as kyr. As a
warm-up – try converting the units of time to years by multiplying
the first column of the data array by 1000.0 and assigning it back
into itself (this is not as weird and nonsensical as it sounds).

To estimate past changes in sea-level we need to scale the δ18O
values to reflect the equivalent changes in sea-level rather than
changes in isotopic composition. We know that sea-level is 0 m
(relative to modern) at 0 years ago and -117 m at 19,000 years ago.
Try the following (you are going to have to *think*, but maybe also
use the HINT in the margin):

Scale the δ18O so that it represents changes in sealevel, relative
to modern (0 m)39. 39 HINT – first determine the difference

in δ18O between time zero and 19 ka.
This gives you the range of δ18O that
maps onto a sea-level change of 117 m.
You also might transform the δ18O data
such that it has a value of zero at 0 ka
(but retains the original amplitude of
variability.

• Plot it (changes in sea-level compared to modern, vs. time).
And nicely.

46 geo111 – numerical skills in geoscience

2.8 Yet more graphing

This section covers how to create slightly fancier plots in MATLAB
and combines this with some more data loading practice.

2.8.1 Modifying lines/symbols in plot

The first deviant activity you can engage in with plot, it to graph
the data without the line joining the points. Scrolling a little the way
down » help plot, it turns out that there are a number of options for
color, line style, and marker symbol that you list together as a single
parameter, straight after the parameters for x and y vectors. By de-
fault, MATLAB plots a solid line in blue with no marker points. Ob-
viously, we could forego the sorting and plot a sane graphic (hope-
fully) by plotting just points and having no line between them. Hell,
you could even be radical and use a different color ... Or, you could
specify a symbol and no line. The choice of colors is your oyster, as
they (almost don’t) say. e.g. Figure 2.8.

The main (i.e. not an exhaustive list)
data display options for the plot

function are:
(1) point style

. – point, o – circle, x – x-mark,
+ – plus, * – star, s – square, d –
diamond, v – triangle (down).

(2) line style
- – solid, : – dotted, - – dashed, and
when specifying a point style, not
specifying a line style results in no
line.

(3) color
b – blue, g – green, r – red, y –
yellow, k – black, w – white.

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.8: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

2.8.2 Plotting multiple data-sets

So far, so good. But so boring, although simple marker-only and
joined-by-line plots have their place. For a start, the original data-set
included an estimate of the uncertainty in the CO2 reconstructions
in the form of the min and max plausible value for each ’central’
(best guess?) estimate. Excel can make plots incorporating errors,
including non-symmetric errors, relatively easily. What about in
MATLAB? Actually, I have absolutely no idea. (This would make
such a good exercise for the reader, as they (do) say.)

Personally, I might have been tempted to draw vertical bars along-
side the data (most likely). Or plotted in different symbols, the min
and max values as points. Or plotted min and max lines as a bound-
ing envelope. All of these require sone further little trick in MATLAB,
which involves the command hold. This is nice and simple and can
be on, or off.

» hold on – will enable you to add additional elements to a
graphic,

» hold off – returns to the default in which a new graphic re-
places the current on in a Figure window.

As an example – set » hold on, and then plot the minimum and
maximum CO2 values (columns #3 and #4) in different symbols and
different colors, on top of your existing plot. If you want to then label
what different lines or sets of points are, you can add a legend with
the legend command. For instance you have managed to successfully

elements of ... matlab and data visualization 47

plot the mean CO2 values as discrete black circles, and the minimum
and maximum uncertainty limits as blue and red lines, respectively,
you could call:

» legend(’Mean CO_2’,’Lower uncertainty limit’,’Upper uncertainty

limit’);

and it should end up looking like Figure 2.9.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Mean CO
2

Lower uncertainty limit
Upper uncertainty limit

Figure 2.9: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

2.8.3 Scatter plots

We’ll stay with the Phanerozoic proxy (CO2) data, but put a different
(graphical) spin on it.

Consider ... scatter. In fact, don’t just considered it, help on it.
The simplest possible usage is, apparently:

SCATTER(X,Y) draws the markers in the default size and color.

(where X and Y are vectors). This almost could not be more straight-
forward. Make yourself an X and Y vector out of the loaded-in dataset
(or if you are feeling brave, you can pass in directly the appropriate
parts of the dataset array), close the existing Figure window40, and 40 See earlier.

scatter-plot the (mean) CO2 data.

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.10: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Perhaps a little disappointingly, the default (Figure 2.10) (plus
added labels) looks a little like one of the plots before. However,
scatter can plot color-filled symbols, but more powerfully, can scale
the fill color to a 3rd data value (vector), in a sort of pseudo 3D x-y-z
plot. For instance, it will be duplicating information that is already
presented (y-axis), but you could color-code the points, by the y-
value, i.e. the atmospheric CO2 value. e.g.

SCATTER(data(:,1),data(:,2),20,data(:,2))

draws the markers with an (area) size of 20 (points), in different
colors. Coloring just the outlines of the circles is perhaps not ideal
(difficult to see all of the color differences), so the circles can be filled
in instead (and you could make them a little larger too):

SCATTER(data(:,1),data(:,2),40,data(:,2),’filled’)

resulting in Figure 2.11.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 2.11: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

One final example in this section to introduce some new plotting
functions, but also to quickly go back over some basic array manip-
ulation and processing. The data we will be analysing is s series of
seismic readings from the USGS. The quake data are extracted be-
tween -5 and 20 lat, and between 90 and 105 lon, starting Dec 26,
2004 and ending June 30, 2005. The data file can be found on the

48 geo111 – numerical skills in geoscience

course webpage (data_USGS.txt). The columns are: (1) day, (2) lat-
itude, (3) longitude, (4) depth, and (5) magnitude. Carry out the
following:

1. The first earthquake in the list is the Sumatra earthquake of
December 26, 2004. The magnitude of this earthquake has been
revised upward since the data was downloaded. Actually, most
energy released in large earthquakes is in very low frequency
shaking that most seismometers do not record. The real magni-
tude had to come from a special analysis of "normal modes", or
standing waves on the Earth’s surface with periods of up to 54
minutes! When the media said that the Sumatra earthquake made
the Earth ring like a gong, these are the waves they were talking
about. So since we know that the magnitude was really 9.3, first
off, replace the value of the magnitude of the first earthquake in
the array.

2. Identify the smallest magnitude of recorded earthquake. You
should find that the minimum earthquake size on this list is 3.5.
For an earthquake in California, the minimum magnitude would
be more like 1. This is because this particular seismograph net-
work did not have many instruments around Sumatra. Another
problem is that the earthquakes are offshore. If the nearest seis-
mograph is far from a small earthquake, that earthquakes may not
be detected. This means that the data are artificially truncated.
Since everything below 3.5 is missing, some of the M=3.5 to 4
earthquakes may have been missed, too.

3. Identify the minimum and maximum earthquake depths. The
really deep ones (>40 km) are probably in the subducted slab that
goes beneath Sumatra. The zero depth means that it could not
be resolved - most hypocentres are 4 km or deeper. (hypocentre
= like epicentre, but at depth: the point on the fault where the
earthquake rupture starts)

4. How many earth quakes in total were recorded?41 41 Recall how to find the size of an array.
The number of earthquakes is then
simply the number of rows (assuming
that you have not flipped the array
around ...).

The number of quakes bigger than
each magnitude should go up by
about a factor of 10 for unit decrease
in magnitude (Gutenberg-Richter
relationship, a power law). This fails
for the hugest quakes (>7 in this
case) and where the catalogue is
incomplete (not many between 3 and
4 due to detection threshold in this
part of the world).

There is only just so much looking at and processing raw data
you can do before your eyes start ... to droop and
... ... Zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz. OK – so now to visualize
what is going on. Plot using the scatter function the locations of all
the quakes from day 0 to day 91 (inclusive), and in a second plot the
locations from day 92 onwards. The first area covers the area that
ruptured in the M 9.3 quake (1200 km long and 100 km wide) and
the second, to the South, is smaller. This is important because the
aftershock distribution made people very wary of the (low) early

elements of ... matlab and data visualization 49

magnitude estimates - the area of dense aftershocks often delineates
the part of the fault that ruptured, and scaling laws relate rupture
length to magnitude.

Create a figure with multiple panels, showing:

• In the top LH corner plot the day 0-91 quakes, and color-code
(or size-code) the markers for their magnitude.
• In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their magnitude.
• In the bottom LH corner plot day 0-91 quakes, and color-code
(or size-code) the markers for their depth.
• In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their depth.

2.8.4 Histograms

We could also visually analyse the data as a histogram. Type help

hist in the Command Window for a description of the hist function.
The histogram must be supplied with a vector defining the ’bins’ in
which to sum the data. Here is your chance to use the colon operator
again. O happy day.

1. To plot the frequency distribution of quakes as a function of
their magnitude we need to create a series of bins to define the
different magnitude ranges. How about bins with boundaries at
magnitude; 1.0, 2.0, 3.0, ... 10.0. One complication is that the values
in the vector M define the middle of the bins in the hist function
and not the boundaries. The mid-points of this will be; 1.5, 2.5,
3.5, ... 9.5, and this is the vector you need to create and assign to a
vector M (i.e., a vector array starting at 1.5, ending at 9.5, and with
increments of 1.0).

2. Having created M, plot the histogram of quake frequency vs.
quake magnitude by issuing:

» hist(data_USGS(:,5),M);

Question: what is the most frequent magnitude range of ’quake?

3. Now plot the histogram of quake frequency against time (i.e.,
day number) up to day number 186. You will have to assign a
new vector of values to M, one that starts at 0.5 and ends at 185.5.
Omori’s Law says that the number of aftershocks per day should
decrease following a power law – does this look to be the case
(approximately)? (One problem is that the small earthquakes are
missing which makes it appear not to work so well!)

50 geo111 – numerical skills in geoscience

4. Try this again (i.e., frequency of quakes vs. time), but investi-
gate the effect of changing the bin size – try making the bins about
1 month (30 days) in duration. Note that now M must start at 15.0
(the mid-point of the first monthly bin). Sometimes changing the
bin size can help if the data is noisy, but sometimes you lose im-
portant information. Which was better do you think – can you still
see a power-law decay in quake frequency following each major
event with the data in monthly bins? If you want, experiment with
other bin sizes to see how the data comes out. There is not always
a ’right’ answer in plotting data and sometimes you just have to
experiment a little to see what looks good.

Don’t forget that all the plots you make should be appropriately
labelled ... Save them as a fig file if you think you might want to edit
them again, and/or export as an image.

2.8.5 Simple 2D data and bitmap visualization

There are 2 different simple MATLAB commands for visualizing a
2D dataset (i.e. a matrix) as a bitmap image (and via a 3rd command,
viewing various bitmap photo and image format files too). As some-
thing (2D data) to play with – load in the matrix model_grid.txt.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 2.12: A 2D plot of some random
gridded model data.

First off – as before, view the data in the array viewer, just to get a
feel for what you are dealing with here (although you are unlikely to
be much wiser after doing so). So go ahead and employ the pcolor

function in its simplest possible usage (see Box). You can see (Figure
2.12) that it is ... something. Maybe a little like the continents, but
up-side-down at the very least. What to do?

Well, it is a good job that you remember how to re-orientate arrays,
right?42 If you guess right first time (three different basic transforma-

42 You don’t? See earlier in the Chapter
...

tions of a matrix were described), you get Figure 2.13.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 2.13: A 2D plot of some random
gridded model data ... but with the
underlying data matrix re-orientated
before plotting.

pcolor

MATLAB claims that pcolor(C)
plots; "a rectangular array of cells
with colors determined by C. Ac-
tually, I believe MATLAB on this.
So if you have a matrix, MATLAB
will plot a regular arrays of cells,
with each cell representing one of
the elements in the matrix, and will
color that cell according to the value.
(pcolor will by default, autoscale
how the color scale maps onto the
data in the matrix such that both
extreme ends of the color scale are
used.)

Next try something very similar. but using the image function.
Now the model grid is the correct way around! I have absolutely no
idea why and why it is reading the matrix dimensions differently
from pcolor. I am sure you could Google and find out. But you
would have to actually care first.

image

You can import an image, such as
in .jpg, .tiff, or .png format, using
imread – simply pass it the name
of an image file (as a string, this
variable name needs to be encased
in inverted commas) and assign the
results to a variable name of your
choice. Then plot (using image) that
variable.

What is the point of this? So you have the ability to simply visu-
alise a gridded dataset. Later, we’ll be doing it properly and it gets
rather more involved when you have to create matrixes to describe
the grid dimensions (e.g. lon and lat) for yourself.

As your very last exercise – find an image on the internet that
amuses you, download it, load it into MATLAB (using imread), visu-
alize it using image, and then ... well, that depends on how amusing
it is. Maybe try plotting something on top of it (using hold on) or
simply go home.

3

Elements of ... programming

Nerd. This is what you are now going to become. And lose all your social skills. And sit at home all day in
front of your computer. Which has become your only friend.

You will achieve this higher state of Being by starting to learn to write and use scripts and functions (aka
m-files) in MATLAB. Actually, at this point you are now writing computer programs (of a sort) rather
than endlessly typing stuff at the command line in the forlorn hope that something useful might occur.
You will also be doing a great deal of code debugging ...

52 geo111 – numerical skills in geoscience

3.1 Introduction to scripting (programming!) in MATLAB

Commands in MATLAB can become very lengthy, and you typically
end up with multiple lines of code to get anything even remotely
useful done. And as you have noticed, it can take a lot of time to en-
ter in all these lines. When when you log off and go home ... it is all
gone. 1 ... If only there was some way of storing all these commands

1 MATLAB remembers all the com-
mands used in previous session (al-
though this may not be the case of
shared, lab computers) and lists them
in the Command History window. You
can recover and re-execute a previous
command in this list by double-clicking
it. You can also re-run more than one
line at a time by selecting multiple lines
and pressing F9 (or Evaluate Selection
from the (R-mouse button in Windows)
context menu).

in such a way that they could be worked on and run again with the
press of a button (as a wild guess, how about F5?), without having to
enter them all in, all over again from scratch ...

m-file

... is nothing more than a simple
text file, in which a series of one or
more MATLAB commands are writ-
ten and which via the .m extension,
MATLAB interprets as a program
file (script or function) that can be
edited and executed (or rather, the
list of commands inside, can be
executed in sequential order).

Assume a similar convention to
that for variables in the naming of
m-files.

Your wish is granted. In MATLAB, it is possible to store all of
your commands in a single text file, and then request that they are
all executed (sequentially) at one go. MATLAB gives this text file
a fancy name (because it is a very fancy piece of software, after all)
– a script2, otherwise known as an m-file. To create a new m-file;

2 The conception of a function, will be
introduced later.

from the File menu, select Script (a common type of m-file)3. You

3 In order version of MATLAB:
File/New menu, and select: Blank
M-file.

will see a text editor (more fancy-ness) appear in front of your very
eyes, containing your requested (but currently empty) m-file. Save
the m-file to your directory of choice. Alternatively, simply create a
new (blank) text file and saving it with the extension .m, rather than
e.g. .txt, creates you a (script) m-file. From an m-file, you can issue
all the MATLAB commands you previously would have entered
individually, line-by-tedious-line, at the command line. Furthermore,
having created and saved a MATLAB script, it can be executed again
and as many times as you like.

You can execute an m-file by typing its name into the Command
window (omitting the .m file extension). Ensure that MATLAB is
operating in the same directory as the directory that you have saved
your m-file. You can also run the script (m-file) by hitting the big
bright green Run icon button at the top of the m-file editor4. The 4 In older versions of MATLAB – select:

Debug/Run from the ’debug’ menu of
the Editor window.

short-cut for running it is to whack your paw down on the Function
Key F5.

OK – you are now ready for your very first program ... inevitably
... this has to be to print ’Hello World’ to the screen. No, really.
(Google it.) Create a new m-file, calling it e.g. hello_world.m. You
need to use the function disp (see Box or type » help disp) as al-
ways, for function syntax and usage), which will print to the screen,
either any text you specify (in inverted commas), or the value of a
variable (which could also contain character information). For now,
simply pass the text directly. Your program needs just a single line in
the m-file:

disp(’hello, world’)

Save the file (to your working directory). Run it at the command line
by typing its name (omitting the .m extension). Your first program

elements of ... programming 53

is a success! (Surely you could not screw up a single line program ...
?5) You could extend this to a mighty 2-line program by defining the

5 If MATLAB gives you an error mes-
sage something like
Undefined function or variable

’hello_world’

then it is likely you are simply not
in the same directory as the m-file,
and/or the location of the m-file is not
in one of the directory paths MATLAB
knows about (see previous Tutorials for
comments on changing directory vs.
adding paths.).

string as a variable and displaying the contents of the variable, i.e.,

message = ’hello, world’;

disp(message)

disp

... displays something (the contents
of a variable) to the screen. Actually,
it effect is basically identical to leav-
ing off the semi-colon (;) from the
end of a line. In the example of:

disp(X)

where the contents of X is a string,
you get the text displayed.

Note that the difference between
using disp and simply typing the
variable name:

disp(X)

is ... well, find out for yourself!

For further practice – pick one of any of the previous exercises
in which multiple lines of code were required, place them into a
new m-file (either by re-typing them in or copying them out of the
Command History window), save the file (to the same directory
that you are working from), and run it my typing its name at the
command line (omitting the .m extension).

3.1.1 Programming good practice

A few tips about good practice in (MATLAB) programming before
we go on (and on and on and on):

Creating help text in an m-file

MATLAB allows you to crete a
’help’ section in the m-file – text that
is outputted too the screen if you
type help on that particular script
(or function). The text is defined by
a block of comment lines at the very
top of the script file (or after the
function definition in the case of a
function). The last sequential com-
ment line is taken to be the end of
the help section. Note that the help
section can be a minimum of eon
single line. A typical basic format is:

1. Name of (in capitals), and very
brief summary, of the script
(/function).

2. List and description of the dif-
ferent forms of use (if there are
one or more optional parameters)
including definition of the input
parameters.

3. Examples.
4. A See also section listing similar

or related scripts or functions.

• Choose helpful variable names so that it is clear what each vari-
able represents. Avoid *excessively* short names, except for simple
index and counting variables. At the other extreme – excessively
long names, which the might be wonderfully descriptive, can lead
to even simple calculation stretching over multiple lines of code
(which can make it more difficult to see what is going on in the
code overall).
• Use comments within your m-file to add explanation and
commentary on your program. Anything after a % on the same line
is a considered a comment6, and is ignored by MATLAB.

6 Your % comment can start on a new
line, or follow on from the end of a line
of code, whichever is more helpful.

• Structure the code nicely. You can break the code up into sec-
tions, e.g. by adding a blank line. You might also start each section
with a label summarizing that it is going to do (via the addition of
a comment).
• To start with – program in as a simple step-by-step way as
possible. Breaking a complex calculation into several lines of sim-
pler calculations is much easier to debug and work out what you
were doing later, particularly if comments are also added. For all
practical purposes – at this level, everything will run just as fast
whether as a complex calculation on one line, or simple bite-sized
calculation spread over 4 lines with comment sin between.
• Always save your changes before running your program (or
you may unknowingly be running the previous version).
• If using the script to do some plotting, sometimes (but not
always) it is convenient to add at the top of the m-file,

close all;

This command close all currently open figures, plots, images, etc.

54 geo111 – numerical skills in geoscience

An illustration (and a far from perfect illustration) of a short script
exhibiting at least a few examples of good practice, is:

function [dum_temp] = ch4_ebm_basic(dum_S0)

% 0D case of EBM - analytical solution

% function takes one parameter - the solar constant (units of

W m-2) [NB. modern value: 1370.0]

% define constants

const_0C = 273.15; % (units: K)

const_sigma = 5.67E-8; % Stefan-Boltzmann constant (units: W

m-2 K-1)

% define model parameters

par_emiss = 0.62; % (non-dimensional)

par_albedo = 0.3; % mean albedo

% solve for surface temperature

% equilibrium equation:

% (1.0-par_albedo)*(par_S0/4.0) = par_emiss*const_sigma*loc_temp
∧4.0

% then re-arranged to:

loc_temp = ...

((1.0-par_albedo)*(dum_S0/4.0)/par_emiss/const_sigma)∧0.25;

% convert temperature units (Kelvin to Celsius) and set value

of return variable

dum_temp = loc_temp - const_0C;

end

which also illustrates one possibility for variable naming conven-
tion (’constants’ (variables which never change in value) start with a
const_ and parameters (variables whose values might be changed)
with par_, temporary (’local’) variables with loc_ and variables
passed into and out of the function: dum_). Note use of the semi-
colon at the end of every line to prevent (here unwanted) printing of
results to the screen. In the file, you can create as much ’ASCII art’
as you like if it helps to make the code clearer, e.g. adding separator
comment lines ...

% --------------------------------

... or highlighting certain section headers, e.g.

% *** PLOTTING SECTION ***

If it (a line) starts with a percentage symbol, then MATLAB ignores it
and you can type whatever you like after it (on the same line).

Your Hello World program might look like the following once it
has had a little tune-up (although in this example this is pretty much
over-kill):

% program to print ’Hello World’ to the screen

% *** START ***

elements of ... programming 55

% first - define the text to display and assign it to the

variable message

message = ’hello, world’;

% second - display the contents of variable message

disp(message)

% *** END ***

Finally, and related to the next subsection – code in stages, testing
the (partial) code at each step. Do not try and write all the code in
one go and only try it out at the end7. 7 Because it will not work 99 times out

of 100 ...

3.1.2 Debugging the bugs in buggy code

What programming is mostly about is not writing new code so much
as debugging8 what you have already written. Key then is to reduce 8 The art of fault-finding in computer

code.the incidence of bugs occurring in the first place, and when they do
occur, firstly to have code that lends itself to debugging and secondly,
knowing how to go about the debugging. The first two facets are
at least partly addressed through good programming practice (see
earlier)9. 9 And by the discipline of software

engineering, which is way out of scope
of this course.

Here’s an example to try out to start to see what might be involved
in debugging, loosely based on a previous plotting example – go
create a new m-file called: plot_some_dull_stuff.m10. Then add the 10 Remember – you are advised to name

your m-files as something vaguely
descriptive of what the script actually
does (and you do ont have to go with
this choice, although it might turn out
to be perfectly descriptive ;) (i.e. you do
not have to call it this!)

following lines to the file:

% my dull plotting program

% first, initialize variables and close existing figure

windows

close all;

x = -2*pi:0.1:2*pi;

y1 = sin(x);

y2 = cos[x];

% open a figure window and plot a sine graph

figure;

plot(x,y1,’r’);

% add a cosine graph

hold on;

plot(x,y2,k);

and then run it (refer to above for how).
Pretty dull stuff eh? Wait – maybe you didn’t get a figure appear-

ing on the screen with a pair of sines and cosines on. Has MATLAB
given you an error? If you typed in the above ’correctly’, you should
see:

Error: File: plot_some_dull_stuff.m Line: 6 Column: 9

Unbalanced or unexpected parenthesis or bracket.

Actually ... if this were your program, you should have paid attention
to earlier and not have written it all at once before testing it! But

56 geo111 – numerical skills in geoscience

at least MATLAB is giving you some sort of feedback. The actual
error reported might not always mean that much to you but the line
number at which the problem occurred is gold-dust. The line of code
is does not like is line 611, which is: 11 Note that although MATLAB ignores

comment lines (in the context of exe-
cuting code), it does count them when
telling you which line of the program
code an error occurs at.

y2 = cos[x];

Maybe the mistake is already obvious? If it is – go fix it and re-run
the program. If not, maybe test out the line more simply, passing in a
value directly to the function cos and not bother assigning the result
to a different variable, e.g.

» cos[0.0]

to which you get told:

» cos[0.0]

cos[0.0]

↑
Error: Unbalanced or unexpected parenthesis or bracket.

Now you have reduced the use of the cos command to its simplest,
whilst retaining the usage in your program that seemed to cause an
issue. Hopefully, now the error is apparent. If still not, check out help
on the cos function, or search cos in the MATLAB help (from the
question mark icon in the toolbar).

Is it important to recognise that (1) bugs will not always be flagged by
MATLAB with a line number, and you can have valid code but nonsensical
results, and (2) the mistake is often made earlier in the code than when
MATLAB flags up a problem line.

Other strategies for helping debug include:

1. Checking the what the values of the variables were at the point
at which the program derped – the current (and the point of pro-
gram crash) variable values are listed in the Workspace window.
2. Changing the relevant variable value(s) (here x) and re-typing
the problem line to see if it makes a difference12. 12 This is sort of similar to the example

given of simply testing a specific value
directly.

3. Commenting out (%) lines of code temporarily, or adding in
additional (temporary) lines of code, and re-running. Where cod-
ing in bite-sized chunks is an advantage in this respect, is that if
a program stops working after you have added a new section o
code, you can go comment out the new code (never normally just
delete it all), check that the original section of code still works, and
then line-by-line, un-comment the new code until the problem line
is found.
4. You can also put your program on hold just before the problem
line and explore the state of the variables at that point (see Box),

elements of ... programming 57

although in this particular example of a bug, MATLAB does not
allow this, presumably because if feels that the mistake is simple
and can be easily fixed.

Debugging – breakpoints
Breakpoints are indicators in the

code that tell MATLAB to pause that
that point. This allows for in-depth
testing of variable values and lines
of code without having to exit the
program.

To add a breakpoint in the code –
click in the (grey) margin of the code
editor on the problem line or before,
and MATLAB adds a red circle to
indicate a ’breakpoint’ has been set.
The presence of a breakpoint tells
MATLAB to pause that that line.

To unset a breakpoint, click on the
red circle or you can clear one or
more from the drop-down Break-
points menu in the toolbar.

Once you have fixed this, re-run the program. Ha ha – it still does
not work. (It is far from unusual to have multiple mistakes in the
same piece of code, hence why writing the code in chunks and test-
ing each time is helpful.) Now we have a problem on line 12:

Undefined function or variable ’k’.

Error in tmp2 (line 12)

plot(x,y2,k);?

Now MATLAB does not like function or variable ’k’ because it
cannot find that it has ever been defined. Is k meant to be a function
or variable? Look up help plot to remind yourself of the correct
syntax if the problem is not immediately obvious.

Once you have fixed the second bug; saved, and re-run the script,
you should see Figure 3.1.

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Output from the (bug-fixed
version of) plot_some_dull_stuff
m-file.

58 geo111 – numerical skills in geoscience

3.2 Functions

Functions in MATLAB, are really just fancy scripts. Again – just plain
old lines of code in a text file that is given a .m extension (making
it an m-file). The big difference from a script in MATLAB is that
a function can take variables as input and/or return an output (in
contrast, a script takes no input and returns no outputs, other than
plots or data files that might be saved).

A function is defined (and differentiated from a script) by a special
line at the very start13 of the m-file (see Box). 13 Literally: line 1. Not even a comment

line is allowed to appear before the
function definition line.

Functions
The all-important fancy first line

of a function, as defined in MATLAB
help, looks like:

function [y1,...,yN] =

myfun(x1,...,xM)

Thanks MATLAB (this seems overly
complex to say the least)!

OK – lets break this down. Lets
assume that you call the m-file
calc_stuff. The minimal definition of
a function then looks like:

function [] = calc_stuff()

(The syntax is critical and the defi-
nition line must look like this.) Here
we are saying – pass in not parame-
ters and return no values either. So
exactly like a normal script would
work and you would execute the
function calc_stuff by typing at the
command line:

» calc_stuff()

(Maybe you can get away without
the () bit.)

If you wan to pass in a single
parameter (here: X), then you define
the function:

function [] =

calc_stuff(X)

(To pass in more than 1 variable,
simply comma separated the vari-
able names.)

To pass out a parameter (here: Y)
(and no input):

function [Y] =

calc_stuff()

Lastly, at the end of the function,
you include the line:

end

This is all not as weird as you might think. For example, you have
already used the function sin – this takes a single input (angle in ra-
dians), and returns a single output (the sine of the angle). If you were
to write your own function for sin, the file would start something
like:

function [Y] = sin(X)

You can’t, of course, go re-defining pre-defined MATLAB function
names14. So how about if in your work, you found you frequently

14 Actually you can, but it is best not to.

needed to use the square of the sine of a number. You could keep
writing:

Y = (sin(X))∧2

or, if you were a little more devious, you could create your own func-
tion for returning the square of the sine of a number. Your m-file,
which here we’ll call sin2, the contents of which would look like:

function [Y] = sin2(X)

Y = (sin(X))∧2;

end

but of course with LOTS of comments to remind you what the func-
tion does etc. The new function is used pretty much as you would
expect and have used previously, e.g.

» sin2(0.5)

will return the square of the sine of a value of 0.5 and dump the
answer to the screen, and

» Y = sin2(0.5);

does the same but assigns the answer to the variable Y (and the semi-
colon suppresses output to the screen).

Go create your own function now. Start by creating one that takes
a single input and returns a value equal to the sine of the square of
the value (rather than the square of the sine as above). When you are
happy with this, create one with 2 inputs (see Box), that returns a

elements of ... programming 59

value equal to the sine of the first input, divided by the cosine of the
second input15 (i.e. y = sin(x1)

cos(x2)
). 15 Mathematically, the answer is not

valid for all possible values of the 2
inputs (why?), and later we’ll learn
how to pro-actively deal with such a
situation.

You have used other functions, perhaps without knowing it, and
some of them return values, but because you have not attempted to
assume the returned values to anything, you have not noticed. For
example, plot and scatter are in fact a functions, and return the ID
of the plot graphic. We simply have not been asking for the returned
value so far. As per MATLAB help:

H = SCATTER(...) returns handles to the scatter objects

created.

with the handle, H, being an identifier of the graphic which could
prove to be useful if e.g. you would like to modify one of the proper-
ties of an existing graphic.

Debugging – functions
Functions are a prime example

of the importance of being able to
pause code part the way through
(e.g. by setting a breakpoint) be-
cause when a function terminates,
or crashes, you get to see none of
the values of any variables created
within the function, unless they
have been returned as output (and
assuming here that the code did not
crash and managed to get to the
end). Setting a breakpoint allows
you to interrogate the values of any
internal variables.

Finally, it is important to note that by default, any variables cre-
ated within a function are TOP SECRET, and by that, I mean that
they are not accessible to the main MATLAB workspace and do not
appear listed in the Workspace window. To see that this is a non-
Trump-able true fact, create the following function (basically, the first
example but split into 2 steps):

function [Y] = sin2new(X)

tmp = sin(X);

Y = tmp∧2;

end

Here, a variable tmp is created to hold the value of the partial calcu-
lation. It does not appear in the Workspace window when you use
the function. The advantage of this is that you could create a sec-
ond function that also created a temporary variable internally called
tmp with both instances of tmp treated entirely sperate and isolated
by MATLAB (i.e. setting the value of one instance of tmp does not
affect the value of the other). This also however does lead to some
additional complications in debugging functions (see Box). Try set-
ting a breakpoint at the start of the line where the square of tmp is
calculated – note that tmp now appear in the Workspace window.
Continue the function and when it terminates, note that tmp is now
gone from the list.

60 geo111 – numerical skills in geoscience

3.3 Conditionals ’101’

Conditional Statements
The principal conditional statement

in MATLAB is: if ... end

The basic if structure is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

end

in which the code CODE is executed
if EXPRESSION is evaluated as true.
No code is executed otherwise (and
STATEMENT is false).

A variant addition – else – which
allows for an alternative block of
code (OTHER STATEMENT(S)) to be
executed if EXPRESSION is instead
evaluated as false, is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

else

OTHER STATEMENT(S)

end

Finally, there is 3rd variant including
elseif:

if EXPRESSION (IS TRUE)

STATEMENT(S)

elseif EXPRESSION (IS

TRUE)

OTHER STATEMENT(S)

else

OTHER STATEMENT(S)

end

Now, assuming that the first EX-
PRESSION is not true, a second
EXPRESSION is evaluated, and
only if that second EXPRESSION is
also not true, will the final possible
STATEMENT be evaluated. (Here,
this final variant is shown with an
else ... included at the end, but
this is not a formal requirement to
include.)

3.3.1 if ...

One of the other main programming constructs is the conditional
statement, in which the outcome (one or more statement(s)) is conditional
on the ’truth’ or otherwise of a given (i.e. it being true or false). This
is embodied in MATLAB (and similarly in most languages) by the if

... end construct (see Conditional Statements Box).
In creating an if ... end construct, the statement tested for

truth can be any one of:

1. A variable having a value of true (1) or false (0). e.g.

if happy

...

where happy is a variable.
2. A MATLAB function returning a true or false, e.g.

if isnan(A)

...

where variable A, may or may not be a NaN.
3. A relational operator (see earlier), i.e. one of e.g.:

>, <, <=, >=, ==, ∼=, &&, ||

and applied to a pair of variables, one variable and one value, or
two values, e.g.:

if A > B

...

where A and B are numbers.

An initial and rather computer programming textbook-like
example is as follows: designing a program (a MATLAB script saved
as an m-file) that asks whether or not you like bananas, and if you
answer ’yes’, tells you ’Correct – they are a great fruit!’.

But before we worry about anything else (e.g. how to apply a con-
ditional statement), you’ll need to know about inputting information
into a MATLAB program from the keyboard16. Amazingly, you can 16 All programming languages have

such a facility and man basic pro-
grams, at least in the Old Days prior
to widespread GUIs, make use of
keyboard input

guess (I actually just did) the command for requesting input – it is
input (for ’input’ – a rare occasion when everything is logical and
simple!) (see Box).

With this (how to get MATLAB to ask for input and then receive
and do something with keyboard input) – firstly create a blank m-file
and save with a ’suitable’ filename. Maybe add a header comment to
remind you what this script is going to do.

elements of ... programming 61

Secondly, (and on the next line) – define the text (question) that
you are going to ask and assign this string to the variable my_question.
Then place the input command (on the next, now 3rd line) for string
input, and assign the input string to the variable my_answer. You
should have a program consisting of 3 lines – an initial comment line,
a line defining the question and assigning this string to a handy vari-
able (my_question), and a line taking the results of the input function,
and assigning it to a second variable (my_answer).

input

There are two variants – one for
inputting numerical information and
one for inputting a string (test) (as
1 could be either the value one or a
1-character string ...).

For inputting a numerical value:

x = input(prompt)

will display the text in the string
variable prompt and set the value
of x when a number is entered and
RETURN pressed.

For inputting a string:

str = input(prompt,’s’)

will display the text in the string
variable prompt and set the value
of str when a string is entered and
RETURN pressed. Note that the
second parameter passed to the
function input (’s’), tells MATLAB
that the input is a string rather than
a number.

Run the program thus far. You should see the question displayed,
and when you type in an answer and hit RETURN, the program will
end. Because your m-file is configured as a script and not a function
(see earlier), you can see the variable answer in the variable list and
can check its value – it should contain a string with the answer you
gave to the question. Make sure it all works like this so far.17

17 HINT: When you type the answer,
it appears on the screen immediately
adjacent (and untidily) to the end of the
question. You can make this look nice(r)
by adding a space at the end of the
question string you assigned to prompt,
e.g. prompt = ’Do you like bananas?

’;.

OK – aside from the use of input, there is nothing new here. Yet.
The purpose of the program is to give a reply that depends on the
answer given. This is where we are going to utilize a conditional state-
ment – depending on whether the answer is ’yes’ or not, we are going
to display a different message. This is a fundamental programming
element – different code will execute depending on the value of a
variable – here the ’different code’ is a different message and the
value of the variable is ’yes’ or ’no’ (or other answer).

You are going to add an ’if ...’ statement to the code (starting
on line 4) to test whether the answer, held in the variable answer,
is equal to ’yes’. In the language of MATLAB syntax (see Box), the
EXPRESSION is whether the string contained in my_answer is ’yes’.
How do we ask MATLAB to compare the value of my_answer with
’yes’? Once upon a time, long long ago, MATLAB was simple and
helpful and you could write:

if (my_answer == ’yes’)

[MESSAGE]

end

where [MESSAGE] you will later replace by a message that you will
display using the disp command that you saw before. (In this stupid
example it might be: ’Correct – they are a great fruit!’).

strcmp For once, the MATLAB help
explanation is relatively simple and
straightforward:

tf = strcmp(s1,s2)

compares s1 and s2 and

returns 1 (true) if

the two are identical.

Otherwise, strcmp returns

0 (false).

Which is pretty well much how we
expected asking: s1 == s2 to pan
out.

(In MATLAB help – tf, the vari-
able name used in the example, is
short for ’true-false’.)

However ... life is no longer this simple. MATLAB is going to
make us use the function strcmp (see Box). In using strcmp we might
break things down into 2 steps – the first comparing the 2 strings
(my_answer and ’yes’) and returning to us a value of true or false
that we will store in a new variable. In the second step, we’ll ask the
conditional to act on the value of the variable. The code will now
look like this:

comparison_result = strcmp(my_answer, ’yes’);

62 geo111 – numerical skills in geoscience

if comparison_result

[MESSAGE]

end

Or, we could have made this more compact:

if strcmp(my_answer, ’yes’)

[MESSAGE]

end

Your code should now have the 3 lines from before (comment,
define question, get input) followed by 4 lines of the conditional
structure, comprising: the strcmp function, the if ..., use of disp to
display a message, and last, end.

Re-run (after saving) the program and confirm that it works (ask-
ing whether you like bananas and if you answer ’yes’, tells you ’Cor-
rect – they are a great fruit!’). If not – time to de-bug! Note that if you
tested the code in two stages, any bug at this point is only in the con-
ditional structure. Start by double-checking the syntax required for
the if ... structure. You could also try commenting out the message
line and re-running.

Next, you might display an alternative message is the answer is
not ’yes’. Refer to help / the margin Box on if ... and note that you
can extent the structure with an elseif which would be followed by
a line displaying the alternative message (e.g. ’Then you need to get a
life, apple-lover.’)18. 18 And then the line with end after

that – follow the prescribed structure
exactly.

You could extend this example further and tackle the situation of
their being 3 possible answers – ’yes’, ’no’, and ... ’I don’t know’ (or
any other answer). Now the basic structure becomes

if strcmp(my_answer, ’yes’)

[MESSAGE 1]

elseif strcmp(my_answer, ’no’)

[MESSAGE 2]

else

[MESSAGE 3]

end

Here – we are now adding an elseif ... line (followed by its
specific message) (and see Box/help). Maybe try this and test it fully
– inputting a ’yes’, a ’no’, and some other answer, and confirming
that you get the correct message displayed.

You could also turn this around, and test for any answer except
’no’ (the ∼ is making the test, not ’no’), i.e.

if ∼strcmp(my_answer, ’no’)

[MESSAGE 1]

else

[MESSAGE 3]

end

elements of ... programming 63

Now you are asking whether the answer is something other than
’no’ (which might be ’yes’, but not necessarily so) – in the logical
construct – whether the (string) contents of answer are not equivalent
to ’no’.

Continuing to beat this same tired example to death ... what if
some wise-crack answered ’YES’ rather than ’yes’?19 One could write: 19 This goes to the heart of all software

testing – what if the user does some-
thing you were not expecting? Hence
why all software undergoes extensive
testing by user or people who did
not test it. Sometimes there are pre-
releases (’alpha’ or ’beta’ versions or
simple ’pre-release’) of software to all
or specific parts of the user community,
precisely to provide feedback, find
bugs, and see whether they can break it
...

if strcmp(my_answer, ’yes’)

[MESSAGE 1]

elseif strcmp(my_answer, ’YES’)

[MESSAGE 1]

end

This will work, but you might note that you have had ot exactly du-
plicate the MESSAGE line. If instead of displaying a simple mes-
sage, a complex calculation was carried out – all the lines of the
code following the if ... would have to be exactly duplicated af-
ter the elseif While it might seem trivial to simply copy-paste
the required lines, this is20 dangerous – if the first set of lines are 20 Note quite in the same way that

driving down a mountain highway with
your eyes shut or hungry sharks are
dangerous.

ever changed (due to a bug-fix or simple further development of
the code), the same changes MUST then be exactly duplicated in
each and every instance, or the code will not longer work correctly.
This is *very* easy to forget to do, particularly for extensive code or
code that you have not looked at for ... years. Code duplication also
makes the overall code unnecessarily long (and hence harder to look
through).

Instead, we can nest statements containing relational operators.
What does this mean? Well, in the example of the answer being ’yes’
or ’YES’, logically, what we want is:

(1) the contents of answer is equivalent to ’yes’
OR

(2) the contents of answer is equivalent to ’YES’

In code, this is written:

strcmp(answer, ’yes’) || strcmp(answer, ’YES’)

Make sure you are happy with what this means (it is pretty well
much exactly as it looks == logic).

So – go modify your code to allow for a ’YES’ or a ’yes’. Hell, try
allowing for a ’Y’ or a ’y’ as well.21 (You could extend it to ’no’ also 21 Sort of for this reason and that there

are many different ways of writing
’yes’, software often requires you to
answer ’yes’ in a restricted number of
ways – this restriction is made clear
as part of the message that asks the
question. Common is to restrict the
answer to ’Y’ or ’y’.

but I think you get the point ...)

A non-text and non fruit related example. Almost.

64 geo111 – numerical skills in geoscience

How many bananas could you eat in a day? I bet it is less than ten.
We’ll let the computer ask and if the answer is 10 or more, you (the
computer) shouts: ’lier!’.22 22 This example is even more stupid

than the last one. But no more stupid
than in any computer programming
textbook and it will at least demon-
strate a subtly different usage of if
....

The basic code is very similar to before. Create a new m-file, add
a comment line, define your question (’How many bananas do you
think you could you eat in a single day?’) and then get MATLAB to
ask it and pass back whatever is entered in at the command line. The
only difference at this point – refer to the usage of input (see Box) –
is that we want a number input rather than a string. You can call the
variable into which you assign the result of input, the same as before,
or to make it distinct, e.g. n_bananas, i.e.

n_bananas = input(my_question)

In the if statement, we now want to test whether the value of
n_bananas is greater or equaol to 10 (or equivalently, greater than
9), i.e.

if (my_answer >= 10)

[MESSAGE 1]

else

[MESSAGE 2]

end

or

if (my_answer > 9)

[MESSAGE 1]

else

[MESSAGE 2]

end

Write this code and get it going. Feel free to switch fruit / fruit
consumption threshold, question/answers, or whatever.

3.3.2 switch ...

A less commonly used alternative to if ... is switch ... case

... and is helpful in the case of multiple possible correct answers
and/or multiple different answers.

For instance, and back to the ... fruit ... you might want the same
answer for multiple different kinds of fruit. Trying coding up the
program that would give you ’A great fruit!’ for any of ’banana’,
’kiwi’, ’apple’, ’pineapple’, and ’cucumber’ (yes they are technically
fruit – Google it). You will find either you have many lines of code
and many duplicated lines of the same message, or a very long line
after if ... with loads of strcmp and ORs (||). Using switch ...

case ... the code instead might look like:

elements of ... programming 65

switch my_answer

case {’banana’, ’kiwi’, ’apple’, ’pineapple’, and ’cucumber’}

disp(’A great fruit!’)

otherwise

disp(’yuck!’)

end

where my_answer is the name of a fruit entered in, in response to
input, e.g.

my_answer = input(’What is your favourite fruit?,’s’);

Note that for a list of multiple possible value, MATLAB requires
the list after case to be encased in {}. For a single answer, it would
just be:

case ’banana’

for a string, and for a number:

case 10

Conditional Statements (2)
The other main conditional state-

ment is: switch ... case ...

end

The basic switch structure is:

switch VARIABLE

case VALUE(s)

STATEMENT(s)

end

which deviates rather from how
MATLAB describes it, but this
makes more sense to me (and hope-
fully to you). Here, VARIABLE is a
variable and it is compared with
one or more VALUE(s). If the value
of VARIABLE matches that of the
VALUE(s), then STATEMENT(s) are
executed.

A common variant adds a default
set of STATEMENT(s) to be executed
if the value of VARIABLE does not
match any of the VALUE(s), e.g.

switch VARIABLE

case VALUE(s)

STATEMENT(s)

otherwise

STATEMENT(s)

end

You can also have multiple case
possibilities:

switch VARIABLE

case VALUE(s)

STATEMENT(s)

case VALUE(s)

STATEMENT(s)

otherwise

STATEMENT(s)

end

66 geo111 – numerical skills in geoscience

3.4 Loops ’101’

Loops in MATLAB
for

The basic for ... end structure
is:

for n = VAL1:VAL2

CODE

end

where VAL1 and VAL2 are the limits
that n will count between (start-
ing at VAL1 and ending at VAL2),
meaning that STATEMENT(S) will be
executed (VAL2-VAL1)+1 times in
total. STATEMENT(S) can be one or
more lines of code, that will all be
executed on each and every cycle of
the loop.

The loop need not count in in-
crements of one (1), the default,
e.g.:

for n = VAL1:INC:VAL2

CODE

end

counts with an increment of INC.
It is also possible to count down (a
negative value of INC).
while

The basic structure is similar to
that for for ... end:

while STATEMENT (IS TRUE)

CODE

end

while differs from if in that there
are no alternative branches of code
that can be executed. The while ...

end loop cycles and CODE continued
to be executed (for ever) until the
STATEMENT is evaluated to be false.

The next main program construct that you are going to see is the
loop. There are a number of different forms of this in MATLAB (see
Loops Box) (and also in other programming languages), but the basic
premise is the same – a designated block of code (one of more lines
of code23), is repeated, until some condition is met. That condition

23 It is possible to for the block of code
to be only a fragment of a single line
and hence the entire loop plus code
block, to be written on a single line.

might be something as simple as a count having been reached, e.g.
the block of code is always executed n times, or the condition might
be slightly more complex and involve a conditional statement (see
later). Will explore a very basic loop though an example, almost as
contrived as for conditionals :o)

3.4.1 for ...

In this subsection we’ll start with a very straight-forward and some-
what abstracted usage of for ..., which hopefully will get you
in the mood for loops. Then we’ll go through some slightly more
problem-focused examples.

Loops Ground Zero. Basically – loops cycle through a series of
numbers between specific limits, or if you like, ’count’. As the loop
counts (cycles), it allows you to execute some code, so for each count
(or cycle), the (same) block of code is executed. We’ll worry about
what you might ’do’24 (i.e. the code fragment) in a loop, later.

24 Note intentionally a joke. Actu-
ally, this is only funny if you know
FORTRAN, and even then it is only
marginally funny.

Consider, or rather: create a new m-file25 with the following loop:

25 Comment it!

for n=1:10

end

Save it. Run it. What did it do?
I bet you have absolutely no idea! It actually cycled around ten

times, counting from n=1 through n=10, but you would not know it as
there was no code without the loop to do anything.26

26 You get one clue – if you look in the
variables Workspace window, you’ll
see there is a variable n, with a value
of 10 – the last value it was assigned
before the loop ended.

There are 2 alternative crude debugging strategies you could
take27:

27 Plus, you could add a breakpoint and
view the value of n in the Workspace
window each cycle around the loop.

1. Simply add a line within the loop with the name of the (count-
ing) variable, e.g.

for n=1:10

n

end

and it will spit out the value of n each time around the loop.
2. Print the value of n ’properly’28, e.g.

28 Although you can get away with just
writing:

disp(n)

elements of ... programming 67

for n=1:10

disp(str2num(n))

end

or you can tart this up even nicer by creating a string that provides
more explicit information back to you, e.g.

for n=1:10

my_string = [’The value of n is: ’ str2num(n)]

disp(my_string)

end

or if you are happy with more going on in a single line:

for n=1:10

disp([’The value of n is: ’ str2num(n)])

end

(but they work the same – check it).

Loops in action. So, consider the following (contrived) ’problem’
– you want to be able to enter a series of numbers and return their
sum (although equally one could perform and return all sorts of
statistics).29 The basic code is simple. Using the other (numerical 29 Obviously, one way to do this would

be to enter the numbers into a file first,
use the load function, and calculate the
sum.

input) form of input, for 2 numbers, it might look like (although in
practice, your code is full of helpful comments, right?):

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

B = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B)]);

The first 4 lines you should be A-OK with. Note that in line 5, 2
strings have been concatenated by enclosing ’The sum of the numbers

is: ’ and num2str(A+B) in a pair of brackets []. The string repre-
senting the number sum is itself created by adding A and B, and then
converting the resulting number into a string using num2str (see ear-
lier). As always – if you are happier breaking down the last line into
its component parts, e.g.

answer = A+B;

answer_string = num2str(answer);

disp(answer_string);

then please do!
So far so good. But what if you wanted 4 numbers summed ...

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

68 geo111 – numerical skills in geoscience

B = input(my_question);

my_question = ’Please enter a number: ’;

C = input(my_question);

my_question = ’Please enter a number: ’;

D = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B+C+D)]);

You can see whether this is going – firstly that you are duplicating
more and more lines of code as the number of numbers increases.
Secondly, and we’ll come to that in a moment – what if the program
does not know a priori how many numbers you want to sum?

You can see the code that is being repeated (here for input x):

my_question = ’Please enter a number: ’;

x = input(my_question);

If you bothered to read the margin box earlier, you’d known that
this is exactly what a loop can be used for. We therefore want some-
thing of the form:

for n = VAL1:VAL2

my_question = ’Please enter a number: ’;

x = input(my_question);

end

It should be apparent if you tried it
out, that the value of x at the very end
of the program, is equal to the last
value you entered. In other words,
each time you go around the loop you
are over-writing the previous entered
value and end up with nothing to sum
at the end. There are two (or more)
possibilities to solve this:

1. You could keep a running sum.
This would also avoid having to
explicitly calculate a sum at the end,
but you would not have saved the
numbers as you went an no other
stats would be possible.
You would do this by adding the
inputted value to the existing value,
i.e.

x = x + input(prompt);

where x is the running total. What
this says is: take the current value
of x, add the value if the user input,
and place the total back into the
variable x.
The only problem here ... is that
MATLAB does not know what the
very first value of x is – i.e. the value
before the loop start and that you
then try and add input(prompt) to.
The solution is to initialise the value
of x before the loop starts, e.g.

x = 0;

2. Alternatively, you could add the
newly inputted number to the end
of an existing vector. In this way,
you end up recording all the values
that were inputted. e.g.

y = [y input(prompt)];

which says take the vector y, and
add a further value (input(prompt))
to the end of it. At the end of
the program (after the loop has
terminated), you have to sum the
contents of the vector y.

The easy part is the configuration of the loop – in the previous
example with 4 inputs, we would write:

for n = 1:4

and the loop with go around 4 times as the counter n counts from 1
(VAL1) to 4 (VAL2) in increments of 1 (the default behavior of the colon
operator). Each time around the loop the block of (2 lines of) code is
executed and a number is inputted. But what is still missing? Try it
exactly like this and see if you can see what is going on, or rather,
not going on. If you think it is not working as expected – try some
debugging. See if you can come up with a solution once you see
what the problem is. (Warning: the spoiler is in the margin.)

After having tried your own solutions, try out both of the given
alternatives (assuming that one of them was not also your solution).
Note that you are note given the complete code needed and some
further debugging might be needed (but they do both work!).

Two things to be aware of in doing this:

1. If you set the maximum number of items quite high and then
get bored and need to exit the program – press the key combi-
nation Ctrl-C and MATLAB will exit your program (but leave
MATLAB running).
2. If you run the program a second time and use the vector ap-
proach, something very odd starts to happen to the reported sum.

elements of ... programming 69

You can solve this (first try it out – running the program several
times in a row to see what happens) either by initializing the vec-
tor y, just like you did for x in the 1st solution, i.e.

y = [];

(before the loop starts, of course), or you can clear the workspace
using » clear all (clears *all* variables), or clear just the problem
variable (y) that will end up growing and growing and growing ...
(» clear y).

3.4.2 Other loop configurations and usages

In the previous examples, the loop limits were fixed in the program
itself – you’d have to edit the script code and save the file in order
to be able to input and sum a different number of values. You could
create a more flexible program by making the m-file a function rather
than a script.30 The idea here is to create a function that takes a sin- 30 There are other ways of adding

flexibility to the loop count that we’ll
see shortly.

gle input. This input will be the maximum loop count. If the input
variable was called max_count, then the loop structure would now
look like:

for n = 1:max_count

my_question = ’Please enter a number: ’;

x = input(my_question);

end

Referring to the previous lessons on functions (as well as help if need
be), create a function that when you call it, e.g. like:

» function_sum(5)

will request 5 inputs and display the sum.
Alternatively, your program (as a script), before the loop starts,

could ask for the number of values to be entered, passing this to
the variable max_count, with the loop then looking exactly like the
above. In both cases you are substituting a fixed number (e.g. 4) for
a variable that might contain any number. Equally, not only does the
count not need to start at one, and the lower loop count limit could
also be a variable (min_count?).

Finally, in addition to flexible loop count limits, the value of the
increment in the count each time around the loop need not be one.
For example:

for n = 10:10:100

...

end

is exactly equivalent in terms of the number of iterations carried out
to

70 geo111 – numerical skills in geoscience

for n = 1:1:10

...

end

and which is the same as the default behavior of the colon operator:

for n = 1:10

...

end

The value of the loop counter n simply differs by a factor of 10 at
every iteration between the top and bottom two versions.

3.4.3 Fun(!) worked examples

(Only one example to date. And not necessarily even fun.)

Loops, camera, action! (A more colorful example of loops in ac-
tion.) What we are going to do is (load and) plot a sequence of
monthly data-sets and put them together to create a movie (animated
graphic) to illustrate the seasonality of temperature in global climate.
You will hopefully thereby better appreciate the value of constructs
such as loops in computer programming in saving you a whole bunch
of effort and needless duplication of code. (Equally, you might not
have wanted a movie as the end result, but simply a number of plots,
all identical except in the specific array of data they were plotted
from.)

First download all the monthly global surface temperature data-
files on the course webpage (there are 12 files to download)31. Then 31 In scripting, it is also possible to

automate downloading files from the
internet.

you are going to want to plot them all ... which would get desper-
ately tedious if you had to do this at the command line 12 times.
Think how much more of your life you would be wasting if the data
were weekly. Or monthly data for 1972 through 2003, some 372 sep-
arate data-files ... You would never have time to go get a coffee ever
again(?)

Create a new m-file. Call it ... anything you like32. However, as 32 bob_the_builder.m counts as ’any-
thing you like’, but that looks pretty
lame and it certainly won’t help you
remember what the script does if you
came back to it sometime in the future.

well as appropriately naming your script file, add a comment on the
first line of the file as a reminder to yourself of what it is going to
do. Also, for now, it is helpful to include the command: close all

(which closes all currently open figure windows) although this is far
from essential.

To make an animation, we need to make a series of frames, with
each one being a different monthly temperature plot (in sequence;
Jan through Dec). The files are rather conveniently named: temp1.tsv,
temp2.tsv, ... temp12.tsv33. We should start by loading this little lot 33 Don’t worry about the .tsv file

extension – the file format is plain old
text (ASCII) and could have instead
been .txt.

in. For the first file we could write:

elements of ... programming 71

temp = load(’temp1.tsv’);

or equally:

temp(:,:) = load(’temp1.tsv’);

and hence with a slight-of-hand, we could also write:

temp(:,:,1) = load(’temp1.tsv’);

Can you see that these statements are identical? Run the script with
one, then with the other, just to be sure. The last form is really useful,
because we can now go on and write:

temp(:,:,2) = load(’temp2.tsv’);

What you have done here is to load the January 2D (lon-lat) temper-
ature distribution into the 1st 2D layer of the temp array, and then
we have gone and created a second 2D layer on top of the first with
the February data in it. Look at the Workspace window (or type
size(temp)) – you now have a 3D (94×192×2) array. Fancy! This is
your first 3D array – there is nothing really conceptually different
from the 2D arrays that you have already been using, we simply have
a 3rd index for the third dimension (if it helps, you can think of a 3D
array as being indexed by: row, column, layer).

You could go on and load in the March, April, etc data in a similar
fashion, but you should be able to see a pattern forming here – each
filename differs only in the number at the end of its name and this
number corresponds not only to the number of the month, but will
also correspond to the layer index of the 3D array that you will cre-
ate. This is something that a loop could be used for while you go off
for a coffee.

We first need to construct the loop framework. We’ll call the
month number counter variable, month. Create a loop (with noth-
ing in it yet) with month going from 1 to 12.34 Refer to the course text 34 Don’t forget to suitably comment

what it is that the loop does with a
line (or even 2, but don’t write a whole
essay) beginning with a %.

(this document!), and/or the MATLAB documentation, and/or the
entirety of the internet, if necessary. The syntax (and examples) is
described in full under » help for. Save the script (m-file) and run
it35. What happens? Can you tell? 35 Typing: the m-file filename without

the extension.One way of following what is going on as MATLAB executes the
commands within a script is to explicitly request that it tells you how
it is getting on. You can use the function disp to help you follow
what the program is doing (this is Old School debugging36). Within 36 You can also add a breakpoint within

the loop and thus can cycle through the
loops one-by-one, thereby being able to
check the status of the variables within
the loop and how they change from
iteration to iteration.

the loop, add the following line:

disp(month)

then save and re-run the script. Now you can see how the loop pro-
gresses. This sort of thing can be useful in helping to debug a pro-
gram – it allows you to follow a program’s progress, and if the pro-
gram (or MATLAB script) crashes, then at least you will know at

72 geo111 – numerical skills in geoscience

what loop count this happened at, even if you are not given any more
useful information by MATLAB. Only when you are happy that you
have constructed a loop that goes around and around 12 times with
the variable month counting up from 1 to 12; comment out (%) the
printing (disp) line37 (unless you have grown rather attached to it) 37 Note that by commenting out a line

rather than completely deleting it, if
you want to print out the loop count
in the future, all you have to do is to
un-comment the line, rather than type
in the command all over again. This can
be really useful if your debug command
is long, or particularly if you have a
whole series of lines that are required
to report the information you want to
know.

and move on.
We can construct filenames to load in by:

1. Forming a complete filename by concatenating sperate strings.
For example:

» filename = [’temp’ ’1’ ’.tsv’]

will create the filename for the first dataset out of 3 components
parts – a common elements of all the filenames (’temp’), the num-
ber of the month (’1’), and the file extension (’.tsv’).
2. Converting a number value of a (count) variable to a string (the
num2str function).

This is where the role of the loop counter (stored in the variable
month) comes in. Each time around the loop, the value of variable
month is the number of the month. All you have to do is to convert
this value to a string and thereby automatically generate the correct
month’s filename each time (as per above).

Now add the following within the loop in your script;

filename = [’temp’ num2str(month) ’.tsv’];

and after it some debugging38: 38 Or you can make use of a breakpoint.

disp(filename)

just to confirm that appropriate filenames are being generated. Save
and run the script. Satisfy yourself that you know what it is doing.
Can you see that you are now automatically generating all the 12
filenames in sequence? And this only takes 3 lines of code total (not
including the debugging line), compared with 12 lines if you had to
write down all the 12 file names long-hand.

comment out the disp(filename) line, and add a new line to load
in each dataset from the new filename that is constructed each time
the loop goes around.39 Assign the new 2D data array to the temp ar- 39 Remember that the load line goes

inside the loop. (Why? Try writing it
outside the loop (at the end) and see
what happens if you like.)

ray at the next layer number. Take a look at the Workspace window –
note that you have an array (temp) that has size 94×192×12. If temp
is 94×192×1 then go back a page or so and go through the bit about
loading data into a 3D array. You want to avoid over-writing the in-
formation that is already there, so the line; temp = load(filename);
will not work (and you will only get a 94×92 array after going 12
times around the loop). Why? (Again, look back a page-ish.)40 40 If you are still stuck, then stick up a

paw.

elements of ... programming 73

At the end of (but still within) the loop (i.e., before the loop has
completely finished), create a new figure window on one line, then
plot (using pcolor) the monthly temperature data on the next line,
and add the essential labelling stuff (lines after that). All within the
loop still. This line should look something like:

pcolor(temp(:,:,month));

and should produce extremely exciting graphics as in Figure 3.241. 41 The 2D graphics will get *much*
better later – one thing at a time!(Don’t just type this line in blindly (maybe it doesn’t ’work’ anyway).

Make sure that you understand what you are doing (otherwise why
do GEO111 at all?).)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.2: Extremely unappealing
blocky plot of Earth surface temper-
ature (who cares with month? – the
graphics are too poor to matter ...).

Save and run the script. Do you have 12 different temperature
plots on the computer screen?42 Note that this is where the close all

42 If not, stick you paw up in the air for
help ...

command at the start of your script comes in useful. Because if you
re-run the script, you wont then end up with 24 figure windows.
And then 36 the time after that, and ... (There is actually no need to
create a new figure window each time – comment out the command
that creates a new figure window (figure). Save and re-run and note
the difference.)

movie2avi

The function movie2avi converts
an animation encoded in MATLAB’s
movie format to an avi file, which is
a common film format that can then
be played in Windows (or other op-
erating systems) without having to
use MATLAB to display it. It is also
a format that could e.g. be embed-
ded in a Powerpoint presentation. A
typical basic usage is:

» movie2avi(M,’file.avi’);

where file.avi is the output file-
name and M the input MATLAB
movie name.

Finally ... look up MATLAB help on getframe. Then go back to
your global temperature loading/plotting script and add the follow-
ing line43:

43 Where to put the line? See the
Example given in the help on this
function. It is exactly what you are
doing here.

M(month)=getframe;

Save and run. When MATLAB is all done, at the commend line
type in:

» movie(M,5,2)

and hopefully ... an animation of the progression of monthly surface
air temperatures globally, should appear44.

44 Note that the active Figure window
may have disappeared behind some
other windows so go rescue it to see
what is happening.

If you want to play some more, just type help movie – there are
controls for not only the number of times you loop through the com-
plete animation, but also for the numbers of frames per second. But
we will revisit this later – the 2D plotting you have done so far is
very basic and there is no scale or sane x/y axes. Later we can also
add the continental outlines that will help orient you and improve
the quality of the graphical output.

Before you move – go look at your script – is it well commented?
Would you be able to tell exactly what it does it by the end of GEO111?
What about next year? Are the loop contents indented? It is important
that it is commented and laid out adequately.

74 geo111 – numerical skills in geoscience

3.5 Loops and conditionals ... together(!)

No surprise that you might combine both loops and conditionals in
the same programming structure. In fact, this becomes very powerful
and is an extremely common device in programming.

3.5.1 for ... and conditionals

break

Simply – break terminates the ex-
ecution of a for or while loop’. And
from help a further clarification:
’Statements in the loop after the
break statement do not execute.’

Slightly more complicated (but not
much) in the case of nested loops –
in this case, break exits only the loop
in which it occurs.

Indenting code
Just do it (or let MATLAB do it). Even

for a single loop or conditional, it is
way easier to see what code is within
the loop and what outside it, when the
code inside starts several spaces in from
the margin.

For nested loops and conditionals, it
is even more important to keep (visual)
track on what is going on.

Note that the indention (or lack of)
does not affect the execution of the code
(unlike in e.g. Python).

As an alternative to (or as well as) a fixed loop, or variable and (func-
tion) parameter passed controlled loop, we could specify a near infi-
nite loop, but provide a get out of jail free. For example, within the
loop, we could add a line that asks an additional question: ’Another
input (y/n)?’ We would test the answer and if no (’n’), exit the loop
(and report the sum as before). This would look like:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

for n = 1:1000000

my_number = input(my_question1);

my_string = input(my_question2,’s’);

if strcmp(my_string,’n’)

break

end

end

where 1000000 is simply chosen as a ’very large number’ and one
rather larger than the maximum number of numbers you could ever
imagine entering45.

45 There us a better way of doing this,
with the while construct, that we’ll see
shortly.

The key new command here is break. The way the code works
(hopefully!) is that at the start of a new iteration of the loop, the
’another input’ question is asked – if no further input is required,
the loop exits via the break command. Otherwise (the else), the
user is prompted for another input. Note that now we have loops
and conditionals nested together, it helps even more to indent the
code46. Also note that here – the two different questions (demands) 46 MATLAB will do this for you if you

click on the Indent icon. It will also
indent the code as far as it reasonably
can, as you type.

outputted to the screen – ’Another input (y/n)?’ and ’Please enter a
number’ – are pre-defined before the loop starts. These same lines
could be placed within the loop, but re-defining the variable e.g.
my_question1 as ’Another input (y/n)?’, each and every time, is
redundant (i.e. it could instead simply be defined once at the start of
the program). Also also note that in this code, the number entered
in is assigned to the variable my_number rather than n as was used
before – simply to help distinguish the number input from the string
input (assigned to my_string).

It is up to you to ’do’ (i.e. add or modify the code) something with
the number entered in an stored in the variable my_number, as each

elements of ... programming 75

time around the loop, the previous value is over-written by the new
input.

Currently, the program only exits upon entering ’n’ to the ques-
tion. Instead, we could have it exiting for any answer other than ’y’:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

for n = 1:1000000

my_number = input(my_question1);

my_string = input(my_question2,’s’);

if ∼strcmp(my_string, ’y’)

break

end

end

which compares my_answer and ’y’, if this is not true (that they are
the same), break is executed.

A more practical example would be in saving a data file, to test
for a filename already existing and if so, automatically modifying the
new file name so as not to over-write the file.47 The relevant function 47 Note that while in the m-file Editor,

MATLAB asks you if you want to over-
write an existing file, when saving a
file directly from a program, no such
dialogue box or warning is given.

is exist and in the case of a test for a file, returns either 0 (the file
does not exist in the MATLAB search path, although that does not
rule out it existing somewhere else entirely), or 2 (the file exists).

Clearly(?), in the example of saving the movie file (using the
movie2avi command), you might well want to test whether the file-
name that you have chosen already exists (i.e. the value returned by
exist is 2). If so (i.e. the file exists), you need to modify the filename
by means of a new concatenation, perhaps appending something
like ’_NEW’ to the end of the string48. If not, and the filename has not

48 Recall that in using the movie2avi

command, you pass a filename – simply
modify the filename passed, in a similar
way to in which you modified the
filename for loading the temperature
data.

already been used, you can proceed as before – the equivalent of
’doing nothing’. Go ahead – try it (i.e. modify your code to avoid
over-writing an existing filename).

exist

Tests for whether a specified
variable, function, file, or directory
exists, and in generally, which is
these it is.

The general syntax and usage is:

exist(’A’)

to return what A is.
An extended syntax with a second

passed parameter:

exist(’A’,’file’)

returns value of 2 is returned is A if a
file, and for:

exist(’A’,’dir’)

returns a value of 7 is returned is A if
a directory.

You could start by defining a default filename in the code49 that

49 Either near the very start of the
program (neater), or just before you
need to use the string (to save a file).

you will use if there is no clash with any existing file, e.g.

my_filename = ’GEO111_movie.avi’

Now test whether this filename already exists:

filename_check = exist(my_filename,’file’)

Finally, using an if statement, test whether the value of filename_check
is equal to 2. If so, you are going to need to modify the filename
string (my_filename). If not, you can let the conditional just end and
proceed to saving. Modifying the filename is just as per for the exam-
ple of loading global temperature distributions, e.g.

76 geo111 – numerical skills in geoscience

my_filename = [’NEW_’ my_filename];

where here, we take the string contained in my_filename, we append
a ’NEW_’ to the start50, and assign the new (longer) string back into 50 Note that because the filename

already has its ’.avi’ extension attached,
you’ll have to modify the start of the
string.

the variable my_filename.
The file naming becomes a little awkward, so rather than the entire

filename + extension, you might just store just the filename in the
(my_filename) variable. i.e.

my_filename = ’GEO111_movie’

but the remembering when you test fo rthe existence of a particular
file, you must add the extension, i.e.

filename_check = exist([my_filename ’.avi’],’file’)

(here we create a new string [my_filename ’.avi’] by concatenating
my_filename with the extension ’.avi’). If the filename exists, the new
filename we generate can then be:

my_filename = [my_filename ’_NEW’];

(adding the ’_NEW’ after, rather than before the existing filename
string).

3.5.2 while ...

We can re-frame the earlier example programs using the while con-
struct rather than the for loop. But now ... you need to specify under
what conditions the loop continues as the basic syntax (see earlier or
help) is:

while STATEMENT (IS TRUE)

CODE

end

Here – STATEMENT (IS TRUE) is the conditional. For instance and
rather trivially, create the following as a program and run it51: 51 You ... are going to need a Ctrl-C on

this one ...
while true

disp(’sucker’)

end

What has happened is that true is always ... true. Hence the con-
dition is always met and the while loop loops forever. Conversely,
while false would never loop, not even once. more interesting and
useful is when the statement might change in value as the loop pro-
gresses.

Consider (and type up in a script):

n = 0;

while (n < 10)

disp(’sucker’)

end

elements of ... programming 77

This also will loop for ever as n is initialized to 0 and hence the state-
ment (n < 10) is always true. But if we increment the value of n each
time around the loop:

n = 0;

while (n < 10)

disp(’not a sucker’)

n = n + 1;

end

then the loop will execute exactly 10 times (just as per for n = 1:10).
You could also do this in reverse:

n = 10;

while (n > 0)

disp(’not a sucker’)

n = n - 1;

end

Now, n counts down from 10 and when it reaches a value of 0, it is
no longer greater than zero and the statement (n > 0) is false (and
the loop terminates).

It is not always completely obvious whether even simple while
loops like this execute 9 or 10 (or 11) times particularly when often
you might come across while (n >= 0) that allows the loop to con-
tinue when when n has reached z value of zero (but not below). So –
spend a little while playing about with different while configurations
and loop criteria.

Finally, note that the conditional statement in the while loop need
not test for an integer being larger or smaller than some threshold.
One could equally loop on the basis of a string equality/inequality.
For example, taking the previous example using break could be re-
coded with a while loop:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

my_string = ’y’;

while strcmp(my_string,’y’)

my_number = input(my_question1);

my_string = input(my_question2,’s’);

end

and ends up a slightly shorter and more compact piece of code, omit-
ting the need for a break or a nested structure. However, in this
example, we do need to initialize the value of my_string (to ’y’ – as-
suming that we want at least one number). Try it and then adjust it
so that the loop proceeds as long as the answer is not ’n’ (rather than
as long as it is ’y’)52. Note that as before – it is up to you to ’do’ (i.e. 52 See earlier Example.

add or modify the code) something with the number entered in an

78 geo111 – numerical skills in geoscience

stored in the variable my_number, as each time around the loop, the
previous value is over-written by the new input.

Extending the filename checking example53 to fully integrate 53 Which first time around did not
actually combine loops and conditionals
in the same structure. Rather, a loop
came first in the program (loading in
and plotting the temperature data),
ended, and only then a conditional
checking the filename.

a loop and conditional. The problem with the previous code is that
you checked for the existence only a default filename (and appended
’_NEW’ if a file already existed).

One (partial) solution would have been, rather than append a pre-
defined string (’_NEW’) to the filename, would be to request that the
user provide either a string to append, or a completely new filename.
You have already see the input command in action, so you should be
in a good position to code this modification up.54 54 Effectively, all you have to do, if exist

returns a 2 and the file already exists,
is to ask for an alternative filename,
and use the string entered in as the new
filename (and don’t forget to add the
’.avi’ extension to the end when saving)

A better solution (because even when asking for an alternative
filename – what if that file exists too?) would be to keep checking for
a filename clash and keep asking for a new filename, until a unique
one is found. Who knows how many attempts this might take (to
find an unused filename), so while ... would be a better choice of
loop than for Becasue exist returns a 2 if the file already exists,
a logical condition for while would be while exist is returning 2:

my_question = ’Please enter an alternative filename (without

the extension): ’;

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename ’.avi’],’file’)

end

Within the loop, a new filename is requested and then check
against the directory contents. What is missing is the initial value
of filename_check. In a previuos example, we simpy set a value at
the start. If we did that here, the first line of this code would look
like:

filename_check = 2

In this case, we do not need a default filename as the user provides
the veyr first filename that is tested. Alternatively, we could perform
a single check before the loop starts:

my_question = ’Please enter an alternative filename ...

(without the extension): ’;

my_filename = ’GEO111_movie’;

filename_check = exist([my_filename ’.avi’],’file’)

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename ’.avi’],’file’)

end

elements of ... programming 79

3.6 Even more (and loopier) loops

[Further examples of increasingly extreme loopiness.]

Looping through arrays. In plotting e.g. global temperature distri-
butions, it would be nice to add on the continental outline. Currently
and particularly with the very basic 2D plotting you have seen so far
(pcolor) left to some extent guessing where the land and where the
ocean is.

A pair of files are provided (from the website), comprising a series
of pairs of lon-lat values that delineate the outline of the continents
and all but the smallest of islands:

continental_outline_lat.dat

continental_outline_lon.dat

Download, and load these into the MATLAB workspace (in the
’usual way’). You should now have 2 vectors. Maybe view then in
the Variable Window to get a better idea of what you are dealing
with. Also keep an eye on the entries in the Workspace Window and
perhaps the Min and Max values to give you an idea of the range
(here: of longitude an latitude values). Try plotting these lon/lat lo-
cations. Use the scatter plotting function (which makes it all the
easier as your data is in the form of 2 vectors already). You might
need to reduce the size of the plotted points (refer to the earlier ex-
ercises, or help) and additionally, you might want to fill the points
(up to you). Remember you can set the axis limits, which presumably
should be 0 to 360 or -180 to 180, on the x-axis (longitude), and -90 to
+90 on the y-axis (latitude). Font sizes of labels can also be increased
if necessary. You might end up with something like Figure 3.3.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

Continental outline

la
tit

ud
e

Figure 3.3: Continental outline (of
sorts).

By plotting dots (points), the coastal outline at higher latitudes
gets increasingly pixelated (why?). So, we might instead plot as lines
between the lon-lat pairs. For this, you could simply use plot. Do
this, and see if you get something like Figure 3.4..

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 3.4: Another continental outline
(of sorts).

Well ... interesting. If you think about it, as one continental outline
is completed, the next lon-lat pair will be for the next continent or
island. What plot does is to join up *all* the adjacent points, which is
why you get the straight lines criss-crossing the map with the start of
each successive continent and island in the dataset joined to the end
of the previous one.

The continental outline dataset is not actually that useless. There
are additional files that specify which block of lon-lat pairs belong to
a single shape (i.e. continent or island). Load in the 2 additional files:

continental_outline_start.dat

continental_outline_end.dat

80 geo111 – numerical skills in geoscience

These vectors hold information regarding the start row and end row,
of each shape. Again, view the contents of these vectors to get an
idea of what is going on. For example, you’ll see that the first entry is
that the first shape starts on row 1 (continental_outline_start.dat),
and ends on row 100 (continental_outline_end.dat). The 2nd
shape starts on row 101, and ends on row 200. etc etc The simplest
way too start dealing with all this, is to just plot the very first shape,
defined by rows 1-100 of the lon and lat vectors. By now, you hope-
fully will be able to see that to plot rows 1-100 of lon and lat data,
you are going to do:

plot(lon(1:100),lat(1:100));

(here I have named the arrays lon and lat for added convenience
rather than the long-winded default file-name based versions
(continental_outline_lat, continental_outline_lon)).

Well ... this is probably about as unexciting as it gets – a small
piece of the Antarctic coastline. If you do a hold on and plot the
next block (rows 101-200), you’ll get the next chunk of coastline.
(Try this and see.) You could keep going this – manually adding
additional sections of the global continental outline. This could
get tedious ... and it turns out that there are 283 different frag-
ments to plot, all one after another. (This number comes from ask-
ing MATLAB the length of continental_outline_start.dat or
continental_outline_end.dat.) This is, of course, why we need to
get clever with a loop and automatically go through all 283 fragments,
plotting them on on top of another in the same figure.

length

This function could almost not be
simpler – just pass the name of a
vector, and it returns its length (i.e.
the number of rows, or columns,
depending on the shape of the
vector).

How? First you need to have the plot command in a more gen-
eral form – you do not want to have to read the values out of the
continental_outline_start.dat and continental_outline_end.dat

files manually. Hopefully, it should be apparent that you can re-write
the plot statement for the first fragment, as:

plot(lon(line_start:line_end),lat(line_start:line_end));

where for the first fragment, the values of line_start and line_end

are given by lstart(1) and lend(1), respectively (renaming the
original vectors to shorten the variable name)55. Re-writing again: 55 You cannot use the obvious variable

name end – why not?
plot(lon(lstart(1):lend(1)),lat(lstart(1):lend(1)));

Try this and check you still get the single piece of the Antarctic coast-
line.

Really, you should hopefully be making the mental leap to looking
at (1) and thinking that it could be: (n), where n is a loop counter
which can go from 1 to 28356 and hence loop through all the line 56 This number comes from a 5th file

– continental_outline_k.dat, that
numbers the continents/islands from
1 to 283. You don’t need it, although
downloading it, loading it, and deter-
mining the length f the vector gives you
the loop limit and you would not have
to go trusting me to write down 283
correctly without making a mistake ...

fragments. Yes? For instance, setting n=1, and plot (with n replacing

elements of ... programming 81

1 in the code fragment above) – you should again get that very first
fragment. Try setting n=283 and plot. Do you get the last fragment
(what is it of57)? 57 An island at about 20N and -150E if

you have done it correctly.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 3.5: Another go at the continen-
tal outline!

So ... create yourself an m-file. Load in the lon-lat pairs as vectors
(renaming then to something more manageable if you wish). Load in
the vectors continuing the start and end information. Create a do ...

end loop. Maybe print (disp) the loop count and run the program
(after saving), just to check first that the loop is functioning correctly.
Before the loop, create a Figure window. and set hold on. You now
have a basic shall of a program – loading in the data, initializing a
figure, and appropriate looping, but not yet actually doing anything
within the loop.

In the loop all you need is the plot command, but with the start
and end rows being a function of n (or whatever you call the loop
counter). Set axis dimensions and label nicely (after the loop ends).
Run it. Hopefully ... something like Figure 3.5 appears(?)

4

Further ... Computers and software

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dic-
tum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis in, pretium
quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mol-
lis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi.
Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis
vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan biben-
dum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi
ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante.
Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna.
Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus
mauris.

5

Further ... MATLAB and data visualization

This chapter is something of a potpourri of MATLAB data and visu-
alization methodologies and techniques, generally building on the
basics covered in Chapter 2.

86 geo111 – numerical skills in geoscience

5.1 Further data input

Previously, you imported ASCII data into MATLAB using the load

command1. You might not have realized it at the time, but the use of 1 Or maybe ’cheated’ and used the
MATLAB GUI ...load requires that your data is in a fairly precise format. MATLAB

says "ASCII files must contain a rectangular table of numbers, with an
equal number of elements in each row. The file delimiter (the character
between elements in each row) can be a blank, comma, semicolon, or tab
character. The file can contain MATLAB comments (lines that begin with a
percent sign, %)." Firstly, your data may not be in a simple format and
often may contain both numerical values and string values. Secondly,
your data may not even be in a text/ASCII format. For instance,
you data maybe be in an Excel spreadsheet, or for spatial scientific
data, an increasingly common format is called ’netCDF’ (Network
Common Data Form). In this section, we’ll go through the basics and
some examples of each.

5.1.1 Formatted text (ASCII) input

The general procedure that you need to follow to input formatted
text data is as follows:

opening and closing files
MATLAB has a pair of commands

for opening and closing files for
read/write:

• fopen will open a file. It
needs to be passed the name (and
path if necessary) of the file (as
a string), and will return an ID
for the file (assign (save) this to a
variable – you’ll need it!).
• fclose ... will close the file. It

requires the ID of the file (i.e. the
variable name you assigned the
result of calling fopen to) passed
to it as a parameter.

textscan

According to (actually, para-
phrased from) MATLAB:

C = textscan(ID,format)

" ... reads data from an open text file into
a cell array, C. The text file is indicated
by the file identifier, ID. Use fopen to
open the file and obtain the ID value.
When you finish reading from a file,
close the file by calling fclose(ID)."

The ID part should be straightfor-
ward (if not – follow through the
Example).

The format bit is the complicated
bit ... There is some help in a fol-
lowing Box and via the Example.
Otherwise, there is a great deal of
details and examples in MATLAB
help – you could look at this as a
sort of menu of possibilities, and
given a particular file import prob-
lem, the best thing to do is simply
scan through help, looking for
something that matches (or is close
to) your particular data problem
(and/or ask Google).

1. First, you need to ’open’ the file – the command (function) for
this is called fopen (see Box). You need to assign the results of this
function to a variable for later use.
What is going on and why this all differs so much form using
load, where you only had to use a single command, is that you
first have to open a connection to the file ... before you even read
any of the contents in(!)2.

2 This is very common across all(?)
programming languages.

2. Secondly ... you can read the content in (finally!). The com-
plications here include specifying the format of the data you are
going to read in. You also need to tell MATLAB the ID of the file
that you have opened (so it knows which one to read from). The
function you are going to use to do this is called textscan.
3. Close the file using fclose (see Box). You are going to have to
pass the ID of the open file again when you call this function (so
MATLAB knows which file to close).
4. Lastly, you are going to have to deal with the special data struc-
ture that MATLAB has created for you ...

If you are interested (probably not) – the connection made to an
open file is called a file pipe. Typically, you have have multiple open
file pipes at the same time in programs, and this is why obtaining and
then specifying a unique ID for the pipe you wish to read or write
through, is critical.

further ... matlab and data visualization 87

As an initial Example to illustrate this alternative (and more flexi-
ble) means of importing of data, we are going to return to the paleo
atmospheric CO2 proxy dataset file – paleo_CO2_data.txt3. Assum- 3 The version that you have used before

– not to be confused with a version
ending in .dat that we will look at
shortly ...

ing that you have already (previously) downloaded it, open it up
in a text editor and view it – you should see 4 neatly (ish) aligned
columns of numeric values ... and nothing else4. 4 This ’nothing else’ is important as it

is the reason why you were previously
able just to load the data.

OK – so having seen the format of the data in the ASCII file, you
are going to work through the following steps5: 5 You can start off working at the com-

mand line if you wish, but ultimately,
you are going to need to put everything
into an m-file.

1. First ’open’ the file – you will be using the function command
fopen, and passing it the filename6 (including the path to the file

6 For convenience, you could assign the
filename (+ its path) to a (string) vari-
able and then simply pass the variable
name – remember, no ’ ’ needed for
a variable naming containing a string
(whereas ’ ’ is needed for the string
itself).

if necessary). So that you can easily refer to the file that you have
opened later, assign the output of fopen7 to a variable, e.g.

7 The output is a simple integer index,
whose value is specific to the file that
you have opened.

» openfile_id = fopen(’paleo_CO2_data.txt’);

2. Now ... this is where it gets a trickier – the function you are go-
ing to use now is called textscan. Refer to help on textscan, but
as a useful minimum, you need to pass 3 pieces of information:

(a) The ID of the open file (you have assigned this to a handy
variable (openfile_id) already.)

(b) The format of the file (see margin note). (This is where it

According to MATLAB help:
"the format is a string of conversion

specifiers enclosed in single quotation
marks. The number of specifiers de-
termines the number of cells in the
cell array C." Take this to mean that
you need one format specifier, per
column of data. The specifier will
differ whether the data element is a
number or character (and MATLAB
will further enable you to create
specific numerical types).

The format specifiers are all listed
under help textscan. However,
your Dummies Guide to textscan

(and good for most common appli-
cations) is that the following options
exist:
%d - (signed)integer

%f - floating point number

%s - string

MATLAB will automatically repeat
the format for as many lines as there
are of data. Alternatively you can
specify precisely how many times
you would like the format repeated
(and hence data read in).

gets much less fun, but hang in there!) You simply list, space-
separated, and between a single set of quotation marks, one
format option per element of data.

In this particular Example, there are 4 items of data (per
row) – each of them is an integer or a floating point number8,

8 At least, none of them are clearly
strings, right?

depending on how you want to look at it. Assuming that the
data is a floating point number, the format for the input of each
number item, is %f.

The result of textscan is then assigned to a parameter, e.g.

my_data = textscan(openfile_id,’%f %f %f %f’);

3. So far, so good! And you can now close the file:

» fclose(openfile_id);

4. Actually, it does get worse before the end of the tunnel ... what
textscan actually returns, i.e. your read-in data, is placed into
an odd structure call a cell array. It is not worth our while wor-
rying about just what the heck this is, and if you view it in the
Variables window (i.e. double click on the cell array name in
the Workspace window), it does not display the simple table of 4
columns of data that maybe you were expecting. For now, we can
transform this format into something that we are more familiar
with using the cell2mat function, e.g.

88 geo111 – numerical skills in geoscience

my_data_array = cell2mat(my_data);

And now ... it is done, i.e. there exists a simple array, of 4 columns,
the first being the age (Ma), the second being the CO2 concen-
tration value (units of ppm), and the 3rd and 4th; minimum ad
maximum error estimates in the proxy reconstructed value. :)

MATLAB claims that a cell array

is "A cell array is a data type with in-
dexed data containers called cells. Each
cell can contain any type of data. Cell
arrays commonly contain pieces of text,
combinations of text and numbers from
spreadsheets or text files, or numeric
arrays of different sizes." I am sort of
prepared to believe this.

Basically, in object-oriented speak,
a cell array is an object, or rather, an
array of objects. As MATLAB hints
– the cells can contain *anything*.
Your limitation previously is that
an array had to be all floating point
numbers, all integers, or all strings,
and if strings, all the strings had
to be the same size. For strings in
particular, it is obvious that a more
flexible format where a vector could
contain both ’banana’ and ’kiwi’
is needed (try creating a 2-element
vector with these 2 words and see
what happens). You clearly might
also want to link a number with a
string (e.g. number of bananas) in
the same array, rather than have to
create 2 sperate arrays.

cell2mat

Having created this weird format
(cell array), now MATLAB has
to give you a way of converting the
data inside into something more
usable. The function is cell2mat,
which for a cell array C:

A = cell2mat(C);

will return the corresponding
(’normal’) array A.

Now this is only true if all the
data in C is of the same tpye (e.g.
all floating point numbers). If the
data types are mixed or you only
wish for a sub-set of the data to be
extracted and converted, simply
index the required part of the cell
array (Examples on this later).

As a further example, we are going to process a more complicated
version of the paleo atmospheric CO2 proxy dataset. The file is called
paleo_CO2_data.dat and is available from the course webpage. An
initial problem here is even opening up the file to view it – if you
use standard Windows editors such as Notepad it fails to format it
properly when displaying its contents9. The first lesson then in sci-

9 If you use a Mac (or linux) however,
all text editors should display the
content jus fine.

entific computing then is to have access to a more powerful/flexible
editor than default/built-in programs such as Notepad. One good
(Windows) alternative is Notepad++10. So go open the file with this

10 Conveniently installed on the Watkins
computer lab computers.

instead11. Note the format – there are a bunch of header lines and

11 Right-mouse-button-click over the file,
then select Open with and then click on
Notepadd++.

moreover, some of the columns are not numbers (but rather strings).
So even if you were to edit out the headers with comments (%)12, you

12 Recall that MATLAB ignore lines
starting with a % and this includes
loading in data lines using load.

are still left with the problem of mis-matched columns. You could
edit the file in Excel to remove the problematic columns ... but now
this seems like a real waste of time to be editing data formats with
one software package just to get it into a second! (Again, you could
use the MATLAB GUI import functionality ... but it will be a healthy
life experience for you to do it at the command line :o))

OK – so having gotten an idea of the format of the ASCII data file,
you are going to work again through the 4 steps:

1. First ’open’ the file as before (fopen) and assigned the ID re-
turned by the function to a variable openfile_id2.
2. Call textscan. However, we now want to pass 3 pieces of infor-
mation (compared to 2 before):

(a) The ID of the open file.
(b) The format of the data.
(c) And now – a parameter, together with an (integer) value, to
specify how many rows of the file, assumed to be the header
information, to skip.

(Again – the result of textscan is then assigned to a variable
which will represent a cell array.)
Lets do the easy bit first – to tell MATLAB to skip n lines of a file,
you add the parameter ’HeaderLines’ to the list of parameters
passed to textscan, and then simply tell it how many lines to skip.
In this Example, you’d add:

further ... matlab and data visualization 89

my_data = textscan(openfile_id2, ... ,’HeaderLines’,3);

OK – now to dive back into the MATLAB syntax mire ... Lets
just load in just the first 2 columns of data, and assume that they
are both integers (and skipping the first 3 lines of the file as per
above). We might guess that we could simply write:

my_data = textscan(openfile_id2,’%d %d’,’HeaderLines’,3);

Try it (including closing the file, and a call to cell2mat, as before).
What has happened?
It seems that MATLAB translates your format (’%d,%d’) into: ’read
in a pair of integers, and keep automatically repeating this, until
something else is encountered’. That something else is sequence
of characters at the end of the first data line (line #4, because we
skipped the first 3), that makes MATLAB think that it has finished
(or rather, that it cannot reading in 2 pairs of integers any longer).
This leaves you with 2 pairs of integers – i.e. a 2×2 matrix (as
you’ll see if you look at my_data_array).
Here is a solution – we could omit all the information following
the first 2 elements (something for Google to help with).13: 13 This turns out to be specifying

’%*[
∧\n]’, which in effects sort of

says:
’skip everything (all the fields) (%*)

up until the end of the line is found
([∧\n]).

my_data = ...

textscan(openfile_id2,’%d %d %*[
∧\n]’,’Headerlines’,3)

3. Now close the file:

fclose(openfile_id);

4. And now convert the results to something more human-
readable:

my_data_array = cell2mat(my_data);

This should do it – a simple array, of 2 columns, the first being the
age (Ma) and the second the CO2 concentration value (units of ppm).
:)

There must be some sort of important life lesson hidden here.
Perhaps about only working with well-behaved data files, or using
the GUI import functionality? But hopefully it does illustrate that
messy files can be dealt with, without the need for laborious editing
or processing in Excel.

5.1.2 Importing ... Excel spreadsheets

If your data is contained in an Excel spreadsheet, and you want it in
MATLAB, your options are:

1. Select some, or all, of the columns and rows in a specific work-
sheet, and either copy-paste this into a text file (but taking care
that the worksheet column widths are formatted such that they

90 geo111 – numerical skills in geoscience

are wider than the widest data element), or save in an ASCII for-
mat, with comma or tab delineations between columns. In either
case, then load in the data using load, or if consisting of mixed
numbers/text, go through the Hell that is textscan
2. Use MATLAB function xlsread.

xlsread

There are various uses (i.e. alterna-
tive allowed syntax) for xlsread for
an Excel file with name filename.
The 2 relevant and more useful ones
look to be:

1. num = xlsread(filename)

which will return the *numeric*
data in the Excel file filename in
the form of a matrix, num. Note
that non-numeric (e.g. string)
headers and/or columns, are
ignored. Also note that num is a
’normal’ numeric array and does
not require any conversion.
2. [num,txt,raw] = ...

xlsread(filename) will
additionally return text data in a
cell array txt, and *everything* in
a cell array raw.

You can also specify a particular
worksheet out of an Excel file to load
in:

num = ...

xlsread(filename,sheet)

(and there are further refinements
and options listed under help).

So ... option #2 looks ... is looking the easiest ... :)

As an example, lets return to the paleo proxy CO2 data again, but
this time, as an Excel sheet. The data file you need is:
paleo_CO2_data.xlsx
(You may as well go load this into Excel just to take a look at the
format and so subsequently, you’ll know if you have imported it
faithfully or not.)

From the help box on xlsread, it should be pretty apparent what
you do. And in fact, I am going to leave you to work it out – try and
import the age and CO2 data (the numeric part of the data) from
paleo_CO2_data.xlsx.

If you need to, you index a cell array, pretty well much like a nor-
mal array, except it has an alternative syntax. For a normal, numeric
array A, you might write:

» A(4,3)

to reference the value in the 4th row, 3rd column. For a cell array C, to
index the cell in the 4th row, 3rd column, you’d also write:

» C(4,3)

but you’d get a cell returned, not the value in the cell. If you want
the value in the cell located at (4,3), you’d put the index in curly
brackets:

» C{4,3}

and you’d get a value of 3000 returned in the example of raw.

5.1.3 Importing ... netCDF format data

Much of spatial, and particularly model-generated, scientific output,
is in the form of netCDF files. This is a format designed as a com-
mon standard to facilitate sharing and transfer of spatial data, but in
a way that enables e.g. a ’complete’ description of dimensions and
various types of meta-data to be incorporated along with the data.
The format is platform independent and a variety of graphical view-
ers exist for viewing and interrogating the data. Most programming
languages support the reading and writing of netCDf format data.
MATLAB is no exception here.

further ... matlab and data visualization 91

As per the previous subsection on data import, and indeed file
read/write in programming languages in general – one opens a file
and receives an ID for that file. The file can then be written to or
read (including just interrogating its properties rather than neces-
sarily extracting spatial data) using this ID. And of course, closed
(using the ID). However, the netCDF standard is a little odd in how
reading/writing is implemented and everything has to be done by
determining the ID of a particular data variable or property of the
file. As you’ll see ...

The general approach for reading netCDF data is as follows:

1. Open the netCDF file by

ncid = netcdf.open(filename,’nowrite’);

where filename is the name of the netCDF file (which generally
will end in .nc). ’nowrite’ simply tells MATLAB that this file
is being open as read-only (this is the ’safe’ option and prevents
accidental deletion of over-writing of data).
2. This is the weird bit, as we cannot ask for the data we want
automatically :o) Instead, given that we know14 the name of the 14 There are ways of listing the variables

if not.variable we want to access, we ask for its ID ...

varid = netcdf.inqVarID(ncid,NAME);

where NAME is the name of the variable (as a string), allowing us
to then request the data:

data = netcdf.getVar(ncid,varid);

that says – assign the data represented by the variable varid, in
the netCDF file with ID ncid, to the variable data.

So actually, not totally weird – you request the ID of the vari-
able, then use that to get access to the data itself. The names of
the MATLAB commands vaguely make sense in this respect –
inqVarID for inquiring about the ID of a variable, and getVar for
getting the variable (data) itself15. 15 It is beyond the scope of this course to

worry about why in the case of netCDF,
the function are all netcdf. something.
Just to say, it involves objects and
methods and is a common notation
in object orientated languages (that
nominally, MATLAB isn’t).

3. Finally – close the file, by passing the ID variable into the func-
tion netcdf.close, i.e.

netcdf.close(ncid);

Note that you need to pass the ID of the netCDF file for each
and every command (after netcdf.open) so MATLAB knows which
netCDF object you are referring to.

For a netCDF Example, we’ll take the output of a low resolution
Earth system model (GENIE). To start off, download the ’2D marine
sediment results’ netCDF file – fields_sedgem_2d.nc. The data here

http://www.seao2.info/mycgenie.html

92 geo111 – numerical skills in geoscience

is relatively simple – a 2D distribution of bottom-water and surface
sediment properties, saved at a single point in time. In other words,
there are only 2 (spatial) dimensions to the data16. 16 Adding time would make it 3 dimen-

sions (2 spatial + 1 of time). Adding
height or depth in the ocean would also
make it 3 (3 spatial). 3 spatial + time
would make for a 4-dimensional dataset
...

OK – we’ll start by opening the file (assuming that you have
downloaded it!), remembering to assign its unique ID to some vari-
able. Then, you’ll want to get hold of (and assign to another vari-
able), the ID of the variable we want to get hold of and plot – in this
Example, it is called ’grid_topo’. Having obtained the ID for this
variable, you can then fetch it – assign it to a variable data. Then
close the file.17 17 You should be able to do all of this

without further hints – the sequence
of commands and how they are used,
is given in the introduction to this
subsection.

You should now have an array called data. It should be 36×36 in
size. Why not plot it18. Can you guess what it might be? Is it in the

18 Your choice of 2D plotting function.
correct orientation? (If not – correct it.)

Clearly what is missing are the x and y axis values, which you
should have correctly deduced are longitude and latitude, respec-
tively, with latitude presumably going from -90 to 90N, and longitude
... well, maybe it is not completely obvious exactly what the value of
longitude is at the original.

A great strength of netCDF its the ability of this file format to also
contain the grid (axis) details that the data is on. There are ways of
finding out the names of the axis variables (dimensions), but for now,
I’ll give you them:

• ’lat’ – is the latitude axis. (Technically, the axis values are the
mid-points of the grid cells.)
• ’lon’ – is the longitude axis.

The axes are held in the netCDF file as vectors and we can retrieve
this (1D) data in a similar way to the 2D data:

varid = netcdf.inqVarID(ncid,’lat’);

lat = netcdf.getVar(ncid,varid);

varid = netcdf.inqVarID(ncid,’lon’);

lon = netcdf.getVar(ncid,varid);

in which we obtain the ID of the axis variable ’lat’, then retrieve the
axis data and assign it to a vector lat (and then likewise for longi-
tude). Do this, and confirm that you get plausible vectors represent-
ing positions along a longitude and latitude axis.

The final task would then be to take the 2 axis vectors, and create
a pair of matrices – one containing longitude values associated with
the 2D data points, and one containing latitude values associated
with the 2D data points. For this, you need to use meshgrid19. See 19 See subsequent section.

if you can create the necessary lon/lat matrices and then plot the
model topo data on its correct axes.20 20 If you have flipped the data matrix

around earlier when plotting, un-do
this, or re-load the 2D data, or else the
axes will no long correspond to the data
matrix orientation ...

The variable names of other data-sets that you might load and
experiment with in terms of plotting function, color scale, and any

further ... matlab and data visualization 93

other refinements that help visualise the data, include:

• ’ocn_sal’ – deep ocean salinity (units of per mil).
• ’ocn_O2’ – concentration of oxygen in bottom waters (units of
mol kg−1).
• ’sed_CaCO3’ – % of calcium carbonate in surface sediments.

In a related netCDF Example, we’ll extend the problem to 3D –
2 spatial dimensions (longitude and latitude) and one of time. The
file you need is called fields_biogem_2d.nc21. You are going to go 21 The back-story is that this contains

the 2D surface ocean and atmosphere
fields form a model experiment in
which the climate system was spun-
up from rest and uniform values of
everything, so as time progresses, the
spatial patterns of the climate system
start to evolve and stabilize.

through the same basic procedures of: opening the file, obtaining the
variable ID, accessing the data using that ID, and closing the file. The
name of the variable is called ’atm_temp’. Create a script to do this
all, calling the data array that you obtain by calling

netcdf.getVar(ncid,varid);

data3. How many dimensions does this array have? What are the
lengths along each dimension? Can you guess which dimension of
the 3 time is?

The name of the time axis variable is ’time’, and you can access
the times along this axis (i.e. the times at which the model saved a 2D
spatial state) by:

varid = netcdf.inqVarID(ncid,’time’);

times = netcdf.getVar(ncid,varid);

Ideally, you should be able, given the 3D array that you have ob-
tained (from the data variable atm_temp), to specify and plot, the
1st model-projected surface air temperature distribution, as well as
the last distribution. And given that the variables for latitude and
longitude are also ’lat’ and ’lon’, you should be able to plot the
temperature distribution with appropriate axes (and contoured).

You should also ... using find, be able to determine (and plot) the
2D data slice corresponding to the year (mid point) 1999.5.

Finally, test yourself and understanding to date, by creating an
animation of how the surface air temperature in the model evolves
over time.22 22 You have everything you need – the

vector of times, and from this you can
determine how many times there are
and hence the number of iterations of a
loop.

94 geo111 – numerical skills in geoscience

5.2 Further data processing

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dic-
tum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis in, pretium
quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mol-
lis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

further ... matlab and data visualization 95

5.2.1 Data interpolation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dic-
tum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis in, pretium
quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mol-
lis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

96 geo111 – numerical skills in geoscience

5.3 Further (spatial / (x,y,z)) plotting

As you have seen earlier – the simplest possible way of taking a ma-
trix of data values and plotting them spatially, as a function of (x,y)
location, is the function image. In effect, this is treating your data as
if it were an image – the data values being the ’color’ of each pixel
and the location in the matrix defining where in the image (row,
column) the pixel is. The problem with this is that information re-
grading what is on the x and y axes is lost, be this distance, lat/lon,
or some set of observed/experimental variables, or whatever. instead,
the points are evenly spaced on both axes. Moreover, the raw values
are plotted and there is no possibility of interpolation/contouring
or smoothing. One could regard scatter plotting as an improvement
over this and a sort of x,y,z plotting, in as much as a 3rd dimension (z
data value) can be represented through color and/or symbol shape
and at time this can be quite effective. However, again, no interpola-
tion/contouring or smoothing is possible with scatter.

For plotting true (x,y,z)/’3D’ plots (i.e. data values in 2 spatial
dimension), MATLAB provides a wide variety of more formal ways
of plotting data spatially, including even the possibility of adding a
4th dimension representing the data value (x,y,z,zz) (see Box).

x,y,z PLOTTING
MATLAB calls plots of a (z) value

as a function of both x and y, ’3D’.
Strictly, one could look at some of
these functions as 2D, as scatter can
plot a 3rd data (z) value as different
colors/shapes/sizes as a function of
both x and y ... Anyway, the most
commonly used/useful and fortu-
nately simple, functions which create
a 2D (x, y) plot but with contours in
the value of (z), are:

1. contour – Plots a figure with the
data contoured, with a range and
increment between contours that
is fully specifiable, color-coded or
not, and labelled or not. Options
are also provided for specifying
how the contouring is done (and
the data interpolated).

2. contourf – Similar to contour,
except in between the (now sim-
ple black, by default) contours, a
fill color is plotted and scaled to
the data value.

For a genuine 3D plot, with surface
height determined by the data in
the 3rd dimension of the array, col-
ors and/or contours in the data in
the 4th array dimension, suitable
functions include:
surf, surfc, mesh
(but are not considered further here).

For a feel of what you should be able to learn to achieve using
MATLAB – go to the following webpage. In this data repository you
can do things like re-plot with different longitude, latitude, and tem-
perature ranges. Overlay the coastlines, and other useful things like
that. You can also click through the different months of the year to
get a feel for how the surface temperatures on Earth change with the
seasons. Note that the graphic produced from this particular website
is not particularly great, and you can all do better than this using
MATLAB already. Presumably there are some lazy PhD students
out there lacking the skills that you are (hopefully) learning. Perhaps
they should take GEO111 (or maybe you are ...)?

imagesc For a data array (matrix) A,

imagsc(A)

displays the data array as if a
bitmap, but unlike image (see ear-
lier), "uses the full range of colors in the
colormap".

As an example, load in the global topographic data file (etopo1deg.dat)
from the course webpage. This is the height of the (solid) surface of
the Earth relative to mean sealevel in meters, with the continents
having a positive value and the ocean floor, negative. The data is
conveniently on a 1° (longitude and latitude) grid. You could view
the resulting elements of the 2D array in the Variable window if you
like ... but at 360×180 in size, there may not be much of use you can
glean by visually inspecting the matrix23. 23 More useful then are the summary

details in the Workspace window, such
as the apparent absence of NaNs and
that the Min and Max Earth surface
heights seem plausible.

Try throwing the array into the image function see what happens
(hopefully something like Figure 5.1). It it had happened to come out

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.MONTHLY/.temp/#nameddest=views

further ... matlab and data visualization 97

displayed upsidedown24, then you’d need to flip the matrix upside- 24 It doesn’t in this particular case.

down using the command:

etopo1deg=flipud(etopo1deg);

and if the Earth instead appeared on its side25, you need to swap the

25 Actually, in this example, it is OK in
this respect too. Boring!

rows and columns (x for y axis):

etopo1deg=etopo1deg’;

It is not unusual for a first plotting attempt of spatial data to be in-
correctly orientated and a little trial-and-error to get it straight is
perfectly acceptable!

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.1: Very basic imaging (image)
of an array (2D) of data – here, global
bathymetry.

This is not exactly the prettiest of images. You can distinguish
ocean (blue) from land (mostly brown, but other color pixels in
places). Fortunately, MALTAB provides a variant of this plotting
function, imagesc, that calculates the color scale to exactly span the
min/max values in the data. Try it (and get something like Figure 5.2
hopefully).

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.2: Slightly improved very basic
imaging (imagesc) of bathymetry data.

The function imagesc also enables the range of data values the
colo9r range corresponds to, to be set. Refer to help on this func-
tion and see if you can plot just the above-sealevel, i.e. land surface
heights, spanning zero (sealevel) to the maximum height26.

26 Don’t forget the function max.

Which sort of in a round-about sort of way also brings us to how
to set the color scale, which can be changed using the colormap com-
mand (see Box). Try out some different colormaps and re-plot the
global topography data.What scales work well and what do not?
Which scales help pick out details of e.g. ocean floor depth variation
and which help pick out simple land-sea contrasts. Think about what
one might want to highlight about global topography and what color
scale might be best for this purpose? colormap MATLAB has a number of

’colormaps’ built in – color scale that
determine the colors that correspond
to the data. The command to change
the colormap from the default is:

» colormap NAME

where NAME is the name of the col-
ormap. You can find a list of possible
colormaps in help on colormap (in
a table towards the bottom). But a
brief summary is:

• parula – the current MAT-
LAB default – chosen to provide
a wide range of color and color
intensity.
• jet – the old MATLAB de-

fault, but one which uses red and
green in the same color, which
should be avoided (why?).
• hot, cool – relatively simple

color transitions but useful – hot
is something like you’ll see in
publication figures.
• pink – another simple and at

times useful transition and from
dark (almost black) to white.

To return to the default colormap:

» colormap default

Sticking with global Earth surface topography, how else can we
display the spatial data? For instance we might want to interpolate
it, contour it, or simple get the longitude and latitude exes correct.
Note that only by luck, because this particular dataset is 1 degree
by 1 degree, the default axis scale in MATLAB when using image is
approximately correct, although note that ’latitude’ has been ordered
in reverse and it goes from 1 to 180 rather than -90 to 90 ... We’ll
explicitly address this shortly.

To start with, you can simply use the contour function (see Box),
passing only the matrix (of global topography values). Try this. Now
you might want to think about flipping the matrix up-down, and/or
left-right, as your plot should have come out looking like Figure 5.3.

Once you have fixed the orientation of the topography map, you
might play about with the color scale (colormap) as before. You

98 geo111 – numerical skills in geoscience

might also try the companion to contour – contourf. Re-orientating
the matrix, switching to a different colormap, and plotting using
contourf, might give you something like Figure 5.4.

OK, so a next refinement in plotting esp. maps and contour plots,
is firstly to specify the range of the color scale, as we may not want
the min-to-max range chosen by default by MATLAB, and the num-
ber of contours (e.g. in the topography example, they are pretty far
apart and it is difficult to make out much detail). Both of these fac-
tors can be addressed simultaneously, by giving MATLAB a vector
containing the value at which you want the contours drawn27. 27 By default: MATLAB determines the

minimum and maximum data values,
and draws 10 equally spaced contours
between these limits.

Taking the global topography data – lets say you were interested
only in low lying and shallow bathymetry, and wanted 20 con-
tours intervals. Assuming a range in topographic height (relative
to sealevel) of -1000 m to +1000 m, you should be able to deduce how
to create the vector(?)28 28 If not, it is:

» v = [-1000:100:1000];

contour There are various uses of
contour. The simplest is:

contour(Z)

where Z is a matrix. Thsi ends up
similar to image except with the data
contoured rather than plotted as
pixels (the ’simularity’ here is that
the x and y axis values simple are
the number of the rows and columns
of the data).

You can specify the values at which
the contours are drawn, by passing a
vector (v) of these values, e.g.

contour(X,v)

More involved and practical, is:

contour(X,Y,Z)

where X, Y, and Z, are all matrices
of the *same* size (there is impor-
tant). X and Y contain the x and y
coordinate locations of y data values
(contained in matrix Z). In the exam-
ple of a map – X and Y contain the
longitude and latitude values of the
data values in Z.

Similarly, you can add a vector v

containing the contours to be drawn,
by:

contour(X,Y,Z,v)

Do this and check e.g. by opening up the vector in the Variables
window. You should see the numbers from -1000 to 1000 in intervals
of 100. Why, for instance, can you not simply write:

» v = [-1000:1000];

??? (Or rather: why might this not be a good idea ... ?)
Having created a specific vector of contours to plot, try it out. OK

– so this is a little weird and maybe not so useful, but you get the
point hopefully. So try plotting the following:

1. Just above sealevel topography, up to 10,000 m, in increments
of 100 m.
2. Just the sealevel (coastline) contour ... trickier – create a vector
with a value at zero, and a value either side – one very high and
one very low. Use contour rather than contourf, although the
latter produces a lovely land-sea mask!
3. Convert the data matrix of value in units of m, to ft, and plot
the ocean floor (values equal to or below sealevel) in intervals of
1000 ft.
4. Finally – try some different color scales for the above. Think
about which color scales best help illustrate the data, and whether
contour or contourf is clearer. Also: how many contour intervals
is ’best’? You key is to make features clear, within the plot becom-
ing cluttered or overly detailed.

The final refinement in contour plotting we’ll look at is adding la-
bels to the contours. The command to do this is clabel (for ’contour
label’) (see Box). Now, before anything, there is a slightly complica-
tion. clabel needs to know details of the contours and graphics ob-
ject with which to do anything with. For the purposes of this course,

further ... matlab and data visualization 99

you don’t have to worry about the details of this, but simply need to
know the following:

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.3: Example result of basic
usage of the contour function.

Figure 5.4: Example usage of contourf,
with the hot colormap (giving dark-
/brown colors as deep ocean, and
light/white as high altitude).

0

0

0
0

0

0

0

0

0

0

00

0

0

0

0

0

00

0

0

0
0

00
0

0

0

0

0
0

0

0

0

0

0

0
0

00

0

0

0

0 0
0

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.5: Example usage of contour,
contouring only the zero height isoline,
and providing a label.

1. When you call contour (or contourf), 2 parameters are re-
turned, which so far you have not cared about or even noticed. We
now need them. SO when you call either potting function, using
the syntax:

[C,h] = contour(...)

which saves a matrix of data to C, and a ID (technically: graphics
object ’handle’)to h.
2. When you call clabel, pass these parameters back in, e.g.

clabel(C,h)

(in its most basic usage).

If you do this, in an earlier example of plotting just the zero height
contour, and now using the most basic default usage of clabel (as
above), you get, for good or for bad, Figure 5.5.

In the default usage of clabel, you’ll get a label added on every
contour that you plot. This ... can get kinda messy if you have lots
and lots of contours plotted. You may well not need every single
contour labelled, particularly if you also provide a color scale (see
below). So you can also pass in a vector to tell MATLAB which con-
tours to label. For example, if you have a contour interval vector:

v = [-1000:100:1000];

maybe you onyl want labels every 500m, so you’d use a vector:

w = [-1000:500:1000];

to specific the labelling intervals. The complete set of commands
becomes:

» v = [-1000:100:1000];

» w = [-1000:500:1000];

» [C,h] = contour(etopo1deg,v);

» clabel(C,h,w);

clabel

» clabel(C,h)

labels every contour plotted from

[C,h] = contour(...);

(or from contourf).
By prescribing and passing a vec-

tor v of contour intervals, you can
label fewer/specific intervals rather
than all of them (the default), e.g.

» clabel(C,h,v)

Finally – missing from our color-coded plots so far, is a color scale
to relate values to colors (although labelling the contours works as an
OK substitute). The MATLAB command is simple:

» colorbar

(and see Box for further usage). Try adding a colorbar, and in different
places in the plot. Refer to the Box to try and add a caption to it ...

100 geo111 – numerical skills in geoscience

colorbar

This almost could not be simpler:

» colorbar

plots the color scale! By default, is
places it to the RH sice of the plot. If
you wish for it to appear anywhere
else, use the modified syntax:

» colorbar(PLACEMENT)

where PLACEMENT is one of:
’northoutside’, ’southoutside’,
’eastoutside’, ’westoutside’. Note
that these are strings and so need
to be in quotation marks. (More
options are summarized in a table in
help.)

Finally, you can also add a label to
the colorbar, but only if you get hold
of its ID (’graphics handle’) when
you call colorbar, e.g.

» h = colorbar

will save the graphics handle in
variable h, which you can then muck
about with via:

c.Label.String = ’The

units of my lovely

colorbar’;

(Don’t fight this – use this syn-
tax to set a label for the colorbar –
don’t worry about what it means.
MATLAB keeps rather annoy-
ingly changing the way it does this
anyway :()

In this next Example, we’ll address the issue with missing/incorrect
lon/lat axis labels on the plots.

Each data point in the etopo1deg matrix should have one longi-
tude value (x-axis) and one latitude (y-axis) value associated with
it. It should hopefully be intuitive to you now ... that what we need
is a pair of matrices, of exactly the same size as the etopo1deg data
matrix – one holding longitude values and one latitude values. There
are various ways of creating the required matrices ’by hand’ (or in-
volving writing a program including a loop). All of them are tedious.
There is a MATLAB function to help. But it is not entirely intuitive29

29 DON’T PANIC!

... meshgrid.
Spend a few minutes reading about it in help. In particular, look

at the examples given to help you translate the MATLAB-speak
gobbledegook of the function Description. You should be able to
glean from all this that this function allows us to create two a × b
arrays; one with the columns all having the same values, and one
with the rows all having the same values (exactly what we need
for defining the (lon,lat) of all the global data points). If not, and
probably not – see Box. And then lets do a simple example (adapted
from help):

» [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Y =

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

Here, we are taking 2 vectors – [1:3] and [10:14], and asking MAT-
LAB (very nicely) to create 2 matrixes, one in which [1:3] is repli-
cated down, until it has the same number of rows as the length of
[10:14], and one in which [10:14] is replicated across until it has
the same number of columns as the length of [1:3]. (Try it.)

It’ll become apparent *why* bother shortly. Honest.

meshgrid

The unholy syntax is:

[X,Y] = meshgrid(xv,yv)

Pause, and take a deep breath. On
the left – the results of meshgrid are
being returned to 2 matrixes, X and
Y. These are going to be our matrixes
of the longitude and latitude values
(in the particular example in the
text). So far so good(?)

On the right, passed into the func-
tion meshgrid, are two vectors – xv

and yv. Pause again.
What MATLAB is going to do,

is to take the (row) vector xv, and
it is going to replicate it down so
that there are as many rows as in
the vector yv. This becomes the
returned output matrix X. MATLAB
then takes the column vector yv, and
replicates it across so that there are
as many columns as in the vector xv.
This becomes the returned output
matrix Y.

In our Example – start my noting that the topography data is on a
regular 1 degree grid starting at 0° longitude. Latitude starts (at the
bottom) at -90° and goes up to +90°). We need a matrix containing
all the longitude values from 0° to 359° and latitude from -90° to 89°

further ... matlab and data visualization 101

.30 These matrices need to be the same size as the data matrix. 30 There is a slight complication with
this, which we’ll get to shortly, but note
that the data array is 360 elements (x-
direction) by 180 elements (y-direction).

Maybe just ’do’ it and then understand what has happebned after.
Create the longitude and latitude grids by:

» [lon lat] = meshgrid([0:359],[-90:89]);

View (in the Variables window) the lon matrix first. Scan through
it. Hopefully ... you’ll note that it is 360 columns across, and in each
column has the same value – the longitude. The matrix is 180 rows
’high’, so that there is a longitude value for each latitude. Similarly,
view lat. This also should make a little sense if you pause and think
about it, with the one exception that the South Pole latitude is at the
’top’ of the matrix – don’t worry about this for now ...

The only way to fuly make sense of things now, is to use it. Re-
member that use of contour (and contourf) can take matrices of x
and y (here: longitude and latitude) values that correspond to the
data entries in the data matrix (etopo1deg). Re-load the topography
data in case you have flipped it about in all sotes of odd ways, and
then do:

» [lon lat] = meshgrid([0:359],[-90:89]);

» contour(lon,lat,etopo1deg);

Almost! Note that the x and y axis labelling is ’correct’ and parti-
caulrly the y-axis, where latitude gos from -90 to 90 (although by
default MATLAB labels in intervals of 20 starting at -80 it seems).
But it also turns out that we do need to flip the data op-side-down.
We can actually do this in the same line as we plot:

» contour(lon,lat,flipud(etopo1deg));

Phew! (Figure Figure 5.6.)
0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

Figure 5.6: Usage of contour but with
lon/lat values created by meshgrid

function and passed in (and with the
hot colormap (giving dark/brown colors
as deep ocean, and light/white as high
altitude).

The final complication is that the data points in the gridded
dataset (matrix etopo1deg), technically correspond to the mid-points
of a 1 degree grid, not the corners. So if we were going to try and be
formally correct31, our vectors that we’d pass into meshgrid, would

31 Don’t worry about this for now –
grids will be covered more in subse-
quence chapters surrounding numerical
(environmental) models.

be:

» xv = [0.5:359.5];

» yv = [-89.5:89.5];

OK – another Example on this. Previously, you downloaded and
plotted monthly global distributions of surface air temperature. You
plotted these simply using pcolor (or image) and the results were
... variable. Certainly not publication-quality graphics and missing
appropriate longitude and latitude axes for the plots.

102 geo111 – numerical skills in geoscience

Make a copy of your original script (m-file) in which you cre-
ated the animation, and give it a new name. Edit your program,
and in place of pcolor, use contour or contourf (your choice!). Pass
in just the data matrix (of monthly temperature) when calling the
contour(f) function and don’t yet worry about the lon/lat values.
Get this working (i.e. debug it if not). You should end up with a
contoured animation (rather than a bit-map animation).

The problem with the axis labelling should be much more appar-
ent (than compared to the topography data, which was on a handy 1
degree grid already). So you need to make a matrix of longitude val-
ues, and one of latitude. using meshgrid. The grid is a little awkward:

1. The longitude grid runs from 0°E (column #1) with an incre-
ment of 1.875°; i.e., 0.000°E, 1.875°E, 3.750°E, ... up to 358.125°E
(column #192).
2. Latitude runs from 88.54196°S (-88.54196°N) at row #1, to
88.54196°N (row #94) with an increment of about 1.904.

so I’ll give you the answer up-front:

» lonv = [(1.875/2):1.875:360-(1.875/2)];

» latv = [-90+(1.904/2):1.904:90-1.904];

» [lon lat] = meshgrid(lonv,latv);

Now use the longitude and latitude values matrices, in conjunction
with contour(f), to plot the global temperature distributions ’prop-
erly’. Try plotting just one plot first, before looping through all 12
months.

At this point (before creating an animation), you might also ex-
plore some of the plotting refinements we saw earlier. For example,
as per Figure 5.7. Firstly – get the units of the temperature data array
into units of °C or °F rather than °K. Either: assign the temp array
data to a new array and make the appropriate conversion from °K
(all within the loop), or you can do this subtraction on the line that
you actually plot the data (i.e., within the contour/contourf func-
tion), for example:

contourf(lon(:,:),lat(:,:),temp(:,:,month)-273.15);

would convert to °C as it plotted the data.
You can also get the plotting temperature limits and contouring

consistent between months and with greater resolution by adding the
following line (before the loop starts):

v=[-40:2:40];

and then to the contour(...) (or contourf(...)) function, add ,v to
the end of the list of passed parameters. This particular choice for the
vector v tells MATLAB to do the contouring from -40 to 40 (°C), and

further ... matlab and data visualization 103

at a contour interval of 2 (°C).. Play around with the min and max
limits of the range, and also with the contour interval to see what
gives the clearest and least cluttered plot. For instance, maybe you
don’t want the low temperatures to go ’off’ the scale (the white color
in the filled contour plot).

Longitude

La
tit

ud
e

Climatological July surface air temperature

0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50

Figure 5.7: Example con-
tour plot including meshgrid-
generated lon/lat values. Result of
contourf(lon,lat,temp7,30), where
the data file was temp7.tsv, with some
embellishments.

5.3.1 Plotting maps

You can do some nice spatial plotting with this data using the MAT-
LAB Mapping Toolbox. This should be available as part of the MAT-
LAB installation in the Lab (and also if you have downloaded and
installed an academic version on a personal laptop). Refer to the on-
line documentation for the Mapping Toolbox to get you started. The
key function appears to be geoshow. Try plotting the region encom-
passing the ’quake data, with a coastal outline (of land masses), and
the ’quake data overlain. Explore different map projections. Remem-
ber to always ensure appropriate labelling of plots.

6

Further ... Programming

In this chapter we’ll get some (more) practice building programs
and crafting (often) bite-sized chunks of code that solve a specific,
normally computational or numerical (rather than scientific) problem
(algorithms) 1. 1 According to the all-mighty Wikipdeia

(and who am I to argue?) – an "algo-
rithm ... is a self-contained step-by-step
set of operations to be performed.
Algorithms perform calculation, data
processing, and/or automated reason-
ing tasks."

106 geo111 – numerical skills in geoscience

6.1 find!

So – a single MATLAB function gets a high-level section, all to itself.
Either it’s really powerful and useful, or I am running out of ideas for
the text2. 2 It is really powerful and useful.

find

MATLAB defines find, with a basic
syntax of:

k = find(X)

as ’return[ing] a vector containing
the linear indices of each nonzero
element in array X’. That means ...
nothing to me. This is going to have
to be a job for some Examples ... (in
order to see what find is all about).

find ... finds where-ever in an array, a specific condition is met. If
the specific condition occurs once, a single array location is returned.
The specific condition could occur multiple times, in which case find

will report back multiple positions in the array.
What do I mean by a ’specific condition’? Basically – exactly as per

in the if ... construction – a conditional statement being evaluated
to true.

OK – some initial Examples.
Lets say that you have a vector of numbers, e.g.:

A = [3 7 5 1 9 7 4 2];

and you want to find the maximum value in the vector – easy3 3 I hope so ... check back earlier in the
course on max.But ... you want to find *where* in the vector the maximum value

occurs. Why might you want to do this? Rarely do you have a single
vector of data on its own – generally it is always linked to at least one
other vector (often time or length in scientific examples). Trivially,
our second vector might be:

B = [0:7];

and is time in ms. The question then becomes: at what time did the
maximum value occur? Obviously, this is easy by eye with just 8
numbers, but if you had 1000s ...

We can start by determining the maximum value.

c = max(A);

Now, we use find to evaluate where in the array A (here: a vector)
the element with a value of max(A) occurs, or where the condition d

== c is true,where d is the element in question (the maximum value).
So:

find(A(:) == c);

should do it. Here, what we are saying is: take all of the elements in
A and find where an element occurs that is equal to c (the maximum
value which we already determined). Try it, and MATLAB should
return 5 – the 5th element in the vector.

Finally, if we assign the result of find to d, we can then use d to
determine the time at which the value of 9 occurred, i.e. B(d) which
evaluates to 4 (ms):

In this example, find returned just a single element, but if we
instead had:

further ... programming 107

A = [3 9 5 1 9 7 4 2];

The maximum value is still the same (9) but now ...

» find(A(:) == c)

ans =

2

5

What has happened is that find has determined that there are 2
elements in vector A that satisfy the condition of being equal to c (9)
and these lie at positions (index) 2 and 5. The result vector, if you
assigned it to the variable d again, can be used just as before to access
the corresponding times in vector B;

» d = find(A(:) == c); » B(d)

ans =

1 4

i.e. that the times at which the values of 9 occur are 1 and 4 (ms).
Any of the relational operators (that evaluate to true or false) can

be used. In fact – looking at it this way leads us to maybe understand
the MATLAB help text, because true and falsea are equivalent to
1 and 0, and find is defined as a function that returns the indices
of the non-zero elements in a vector. By writing A(:) == c we are
in effect creating a vector of 1s and 0s depending on whether the
equality is true or not for each element. You can pick apart what is
going on and see that this is the case, by typing:

» A(:) == c

ans =

0

1

0

0

1

0

0

0

(the statement being true at positions (index) 2 and 5, which is exactly
what find told you).

For instance, we could ask find to tell us which elements of A
have a value greater than 5:

» find(A(:) > 5)

ans =

2

5

6

108 geo111 – numerical skills in geoscience

(Inspect the contents of vector A and satisfy yourself that this is the
case.)

We can also use find to filter data. Perhaps you do not want val-
ues over 5 in the dataset. Perhaps this is above the maximum reliable
range of the instrument that generated them. Having obtained a
vector of locations of these values, e.g.

d = find(A(:) > 5);

we can plug this vector back into A and assign arrays of zero size to
these locations – effectively, deleting the locations in the array, i.e.

A(d) = [];

They it, and note that the size4 of A has shrunk to 5 – all the other 4 Use the command length or view in
the Workspace Window.elements remain, and in order, but the elements with a value greater

than 5 have gone. You could apply an identical deletion (filtering) to
the time array (B(d) = []).

Play about with some other relational operators and criteria, and
make up some vectors of your own until you are comfortable with
using find.

Back to the ’quake Example: Find5 how may earth quakes there 5 Intentional joke *and* clue.

were bigger than M = 8? Also determine how many quakes occurred
bigger than M = 7, 6, 5, 4, and 3. Determine the day on which the
magnitude 8.7 shock occurred.

In the first problem (number of quakes greater than a specified
limit) – you need ask find to return the row numbers for all quakes
satisfying the condition: magnitude > 8.0. find will return you a
column vector. You don’t actually need to worry about or access the
contents of the vector, you just need to know how many elements
there are in the vector (because there will be one element for each
occurrence of magnitude > 8.0). This is the same as its length (see
earlier and/or help).

In the second problem – you need to find the row number of the
quake magnitude data which satisfies the condition: magnitude >

8.7. Knowing the row number, you can then access the data column
containing the sate information, and hence extract the day and solve
the problem.

All these problems can actually be solved in a single line of MAT-
LAB, but feel free to break it down into multiple steps.

In the sealevel (oxygen isotope) Example, you could start by de-
termining the maximum and minimum sea-levels that have occurred

further ... programming 109

over the last 782,000 years. Then ... because it would be helpful to
know *when* the minimum and maximum sea-level heights oc-
curred, use the find function to find the data row in which the mini-
mum and maximum values occurred. Once you know the respective
data rows, you can then easily pull out the ages.6 Find the ages of 6 HINT – if your maximum value was

stored in the variable max_value, you
found find the corresponding row by:
find(data(:,2) == max_value)

What this is saying, is search the 2nd
column (the sea-level values) of the
array data, and look for a match to
the value of max_value. The equality
operator (==) is used in this context.

both minimum and maximum values.
Also find all the occasions (times) on which sealevel was higher

than today (modern). (Or equivalently, when the oxygen isotope
value, that we are assuming directly reflects changes in level, was
lower than modern7.)

7 Lower d18O => less ice volume =>
higher sealevel.

You can also ask questions based in time, such as what was the
sealevel (or oxygen isotope value) at 21 ka (i.e. without having to
look through the data manually and determine on which row 21 ka
occurs, because this is exactly what find can do this for you)? This
can be particularly useful if the value of time is calculated or passed
in from elsewhere, rather than specified as e.g. 21 ka, because you
may not a priori know what the value will be, hence automating the
script with find is super useful. Effectively then you are creating an
algorithm for taking a time input and determining sealevel.

For an Example of data-filtering – dig out the paleo-proxy (not
ice-core) atmospheric CO2 data you downloaded. One further way
of plotting with scatter is to scale the point size by a data value. We
could do with by:

SCATTER(data(:,1),data(:,2),data(:,2))

... except ... it turns out that there are atmospheric CO2 values of zero
or less and you cannot have an area (size) value of zero or less ...

NaN

... is Not-a-Number and is a
representation for something that
cannot be represented as a number,
although if you try and divide some-
thing by zero MATLAB reports Inf

rather than a NaN.
NaN can also be used as a function

to generate arrays of NaNs. The most
common/usage in this context is:

N = NaN(sz1,...,szN)

which will (according to help) "gen-
erate a a sz1-by-...-by-szN array of
NaN values where sz1,...,szN indi-
cates the size of each dimension. For
example, NaN(3,4) returns a 3-by-4
array of NaN values."

This leads us to a new use for find and some basic data filtering.
The simplest thing you could do to ensure no zero values, would be
to add a very small number to all the values. This would defeat the
’no zero’ parameter restriction, but would not help if there were neg-
ative values and you have now slightly modified and distorted the
data which is not very scientific. Substituting a NaN for problem val-
ues is a useful trick, as MATLAB will simply ignore and not attempt
to plot such values.

So first, lets replace any zero in the CO2 column of the data with a
NaN. The compact version of the command you need is:

data(find(data(:,2)==0),2)=NaN;

But as ever – perhaps break this down into separate steps and use
additional arrays to store the results of intermediate steps, if it makes
it easier to understand, e.g.

110 geo111 – numerical skills in geoscience

list_of_zero_locations = find(data(:,2)==0);

data(list_of_zero_locations,2) = NaN;

What this is saying is: first find all the locations (rows) in the 2nd
column of data which are equivalent (==) to zero. Set the CO2 value
in all these rows, to a NaN (technically speaking: assign a value of NaN
to these locations). You have now filtered out zeros, and replaced the
offending values with a NaN and when MATLAB encounters NaNs in
plotting – it ignores them and omits that row of data from the plot.

Alternatively, we could have simply deleted the entire row con-
taining each offending zero. Breaking it down, this is similar to be-
fore in that you start by identifying the row numbers of were ze-
ros appear in the 2nd column, but now we set the entire row to be
’empty’, represented by []:

list_of_zero_locations = find(data(:,2)==0);

data(list_of_zero_locations,:) = [];

If you check the Workspace window8, you should notice that the size 8 Or:
» size(data)of the array data has been reduced (by 4 rows, which was the number

of times a zero appeared in the 2nd column).
We are almost there with this example except it turns out that

there is a CO2 proxy data value less than zero(!!!) We can filter this
out, just as for zeros. I’ll leave this as an exercise for you9 ... The plot 9 But you might e.g. use <=.

should end up looking like Figure 6.1. As another lesson-ette, given
that the circles are insanely large ... try plotting this with proportion-
ally smaller circles10. 10 HINT: you are going to want to apply

a scaling factor to the vector you passed
as the point size data.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 6.1: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

As a last (optional) exercise on this ... In the CO2 data, there are
min and max uncertainty limit values. One could color-code the
points in a scatter-plot to represent either the min or the max (per-
haps try this first), but one on its own is not necessarily much use.
One could color-code by the difference, but this is a function of the
absolute value and one would expect large uncertainty bars if the
mean (central) estimate was high, and lower if it were low. Per-
haps we need the relative range in uncertainty? Can you do this?
i.e., scatter-plot the mean CO2 estimate (as a function of time),
but color-coding for the range in uncertainty as a proportion of the
value?

It turns out this is not entirely trivial because as you have seen,
the data is not as well behaved as you might have hoped. In fact, it
is just like real data you might encounter all the time! Before you do
anything – break down into small steps what you need to do with
the data, as this will inform what (if any) additional processing you
might have to carry out on the data. It should be obvious, that to
create a CO2 difference, relative to the mean, you are going to have
to divide by the mean value (column #2 in the array). So first off –

further ... programming 111

if any of the mean values are zero, it is all going to go pear-shaped.
Actually, equally unhelpful, or at least, lacking in any meaning, may
be negative values. If you inspect the data (in the Variable window),
there are both zeros and negative values for mean CO2 proxy esti-
mates. We need to get rid of these. Follow the steps as before. You
may also have to process the min and max values should they turn
out to be the same. Likely you are going to have to delete all the rows
in which (1) column #2 values are zero or below, and (2) column #3
and #4 values are equal (you could also try the NaN substitution and
see if it works out). (If you need a slight hint ... one possible answer
is here11 , but try and work it out for yourself.) 11 In this possible solution – all rows

in the array data, with mean CO2
values less than or equal to zero, are
deleted. Also, all rows for which the
max and min values are the same, are
also deleted.
» data=load(’paleo_CO2_data.txt’,
...’-ascii’);
» data(find(data(:,2)<=0),:)=[];
» data(find(data(:,3)==data(:,4)),:)
...=[];
» scatter(data(:,1),data(:,2),40,
...100*(data(:,4)-data(:,3))./data(:,2),
...’filled’);
» xlabel(’Time (Ma)’)
» ylabel(’Atmospheric CO_2 (ppm)’)

» title(’Proxy atmospheric CO_2’)

All that is missing now, is any indication of what the color scale
actually means in terms of values (and of what). MATLAB will add a
colorbar to a plot with the command ... colorbar. Although the color
scale gets automatically plotted with labels for the values, looking
at the plot, we still don’t know what the values are of (e.g. units).
We can label the colorbar, but MATLAB needs to know what we
are labelling. Each graphic object is assigned a unique ID when you
create them and which normally you know nothing about. We can
create a variable to store the ID, and then pass this ID to MATLAB to
tell it to create a title for the colorbar. To cut a long story short:

colorbar_id=colorbar;

title(colorbar_id,’Relative error (%)’;

It should end up looking something like Figure 6.2 in which you
can see the high relative uncertainty (bight colors) prevail at low CO2

values and ’deeper time’ (ca. 200-300 Ma). The colorbar title (label)
is maybe not ideal, nicer would be one aligned vertically rather than
horizontally. We’ll worry about that sort of refinement another time.

0 100 200 300 400 500

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

50

100

150

200

250

300

350

400

450

500
Relative error (%)

Figure 6.2: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Bibliography

Stormy Attaway. Matlab (Third Edition): A Practical Introduction to
Programming and Problem Solving. Butterworth-Heinemann, 2013.

Index

.mat environment, 41
; environment, 26
= environment, 25, 26

addition environment, 26
addpath environment, 40
and environment, 27
assignment operator environment,

27
axis environment, 34

break environment, 74

cell array environment, 88
cell2mat environment, 87, 88
clabel environment, 98, 99
clear all environment, 28
clear environment, 28
close environment, 28
colon operator environment, 30–32,

37
colorbar environment, 100, 111
colormap environment, 97
Command Window, 22
comments environment, 88
contour environment, 96, 98
contourf environment, 96

disp environment, 52, 53, 71
division environment, 26

else environment, 60
elseif environment, 60
end environment, 31, 32
environments
.mat, 41
;, 26
=, 25, 26
addition, 26

addpath, 40
and, 27
assignment operator, 27
axis, 34
break, 74
cell array, 88
cell2mat, 87, 88
clabel, 98, 99
clear, 28
clear all, 28
close, 28
colon operator, 30–32, 37
colorbar, 100, 111
colormap, 97
comments, 88
contour, 96, 98
contourf, 96
disp, 52, 53, 71
division, 26
else, 60
elseif, 60
end, 31, 32
equality, 27
exist, 75, 78
exit, 28
exponentiation, 26
fclose, 86
figure, 33
find, 106, 107, 109
fliplr, 31, 38
flipud, 31
flipup, 38
fopen, 86–88
for, 66
fprintf, 41
functions, 28
geoshow, 103
getframe, 73
greater than, 27

greater than or equal to, 27
hist, 49
hold, 46
if ... end, 60
image, 50, 96
imagesc, 96
imread, 50
inequality, 27
input, 60, 61, 78
legend, 46
length, 31, 80
less than, 27
less than or equal to, 27
load, 40–42
ls, 40
m-file, 52
m-files, 34
meshgrid, 100
movie2avi, 73
multiplication, 26
NaN, 109
not, 27
num2str, 72
or, 27
pcolor, 50, 79
pi, 28
plot, 33
print, 35
rotate, 38
save, 41
scatter, 33, 47
sin, 34
size, 31, 37
sort, 42
sortrows, 42
strcmp, 61
subplot, 35
subtraction, 26
sum, 38

116 geo111 – numerical skills in geoscience

switch ... case ... end, 65
textscan, 86–88
title, 34
transpose, 38
transpose operator, 31
while, 66
xlabel, 34
xlsread, 90
ylabel, 34

equality environment, 27
exist environment, 75, 78
exit environment, 28
exponentiation environment, 26

fclose environment, 86
figure environment, 33
find environment, 106, 107, 109
fliplr environment, 31, 38
flipud environment, 31
flipup environment, 38
fopen environment, 86–88
for environment, 66
fprintf environment, 41
functions environment, 28

geoshow environment, 103
getframe environment, 73
greater than environment, 27
greater than or equal to environ-

ment, 27

hist environment, 49

hold environment, 46

if ... end environment, 60
image environment, 50, 96
imagesc environment, 96
imread environment, 50
inequality environment, 27
input environment, 60, 61, 78

legend environment, 46
length environment, 31, 80
less than environment, 27
less than or equal to environment,

27
license, 2
load environment, 40–42
ls environment, 40

m-file environment, 52
m-files environment, 34
meshgrid environment, 100
movie2avi environment, 73
multiplication environment, 26

NaN environment, 109
not environment, 27
num2str environment, 72

or environment, 27

pcolor environment, 50, 79
pi environment, 28

plot environment, 33
print environment, 35

rotate environment, 38

save environment, 41
scatter environment, 33, 47
sin environment, 34
size environment, 31, 37
sort environment, 42
sortrows environment, 42
strcmp environment, 61
subplot environment, 35
subtraction environment, 26
sum environment, 38
switch ... case ... end environ-

ment, 65

textscan environment, 86–88
The command line, 22
title environment, 34
transpose environment, 38
transpose operator environment, 31

variable, 24

while environment, 66

xlabel environment, 34
xlsread environment, 90

ylabel environment, 34

	Elements of ... Computers and software
	Elements of ... MATLAB and data visualization
	Using the MATLAB software
	Basic concepts
	Vectors and arrays #1
	Basic graphing (aka. 'data visualization')
	Vectors and arrays #2
	Loading and saving data
	Basic data processing
	Yet more graphing

	Elements of ... programming
	Introduction to scripting (programming!) in MATLAB
	Functions
	Conditionals '101'
	Loops '101'
	Loops and conditionals ... together(!)
	Even more (and loopier) loops

	Further ... Computers and software
	Further ... MATLAB and data visualization
	Further data input
	Further data processing
	Further (spatial / (x,y,z)) plotting

	Further ... Programming
	find!

	Bibliography
	Index

