
148 geo111 – numerical skills in geoscience

9.1 Catch the ball (Pokemon)

In considering dynamic, time-stepping representations of physical
(/biogeochemical) systems, we’ll start with a simple, ballistics exam-
ple – that of the trajectory of a thrown ball.

Figure 9.1: Schematic of the thrown-ball
system.

The system we’ll consider is shown schematically in Figure 9.1. In
essence: we want to determine d – the horizontal distance (m) that
the ball travels before it hits the ground. The initial conditions are:

1. The ball is thrown from an initial height h (m).
2. The ball is thrown with an initial speed s0 (ms−1).
3. The ball is thrown at an initial angle θ with the horizontal.

We’ll neglect any air desistence or spin imparter with the ball, and
for the purpose of calculating its height, we’ll ignore its diameter, i.e.
we’ll consider that the ball is level with the ground when its centre
is at height zero. Over and above this, you’ll only need to know the
gravitational constant (i.e. gravitational acceleration) – g = 9.81ms−1

(i.e. the ball is being thrown on an Earth-like planet near sealevel).
To simply things and the construction of the code and encapsula-

tion of the physics of the model, we’ll break it down into 4 steps:

Part I Considering only horizontal travel.

Part II Considering only vertical travel.

Part III Considering both horizonal and vertical travel and testing for when
the ball hits the ground.

Part IV Add some graphical output.

Figure 9.2: Schematic of the code for
simulating the horizontal movement of
a ball.

Part I Start with a new m-file. Create a structure along the lines of
Figure 9.2, i.e. you are going to need to define some constants (g),
parameters (the initial height h, initial speed (s0), initial angle (θ) of
the ball).

Because you are going to use a time-stepping approach (rather
than solve the system analytically), you are going to need a loop in
time, starting at time zero. Can you guess the time-step you need?
No? Then we need to make the time-step a parameter that we can
change to ensure that the system is solved well (i.e. accurately and
without numerical instability). You could call this parameter e.g. dt
and set it to an initial (guessed) value1 such as 0.1s. How long should 1 In the parameter section of the code.

you run the simulation for? This is also a sort of unknown at this
point, at least until you have run the simulation a couple of times
to get a feel for what the longest time the ball stays in the air might



dynamic (time-stepping) modelling 149

be. So why not pick 100s to start with. Again, create a parameter to
hold the value of the maximum model simulation time and assign
its value in the parameter definition section of the code. Assuming
a time-step parameter name of dt and a maximum time parameter,
max_t, if your current time is called t, your loop structure will look
like:

for t = 0:dt:max_t

%SOME CODE

end

with time t starting at zero, and progressing to max_t in steps of dt.
What else do you need? You need a variable to represent the hori-

zontal position of the ball (delineated here in the text as p, with units
of m). This will start at zero and be updated within the loop. So also
in the parameter section, why not define your horizontal position
variable p and assign it a (initial) value of zero.

Lastly, you need to know the horizontal component of the balls’
velocity.2 You can calculate the (initial) horizontal component of 2 In the absence of air resistance, hori-

zontal velocity does not actually change
throughout the simulation (i.e. in each
iteration of the loop, it will have the
same value).

velocity from the given initial conditions of initial speed (s0) and
initial angle of trajectory (θ). For now, pick any ’reasonable’ values
for s0

3 and θ 4. In the figure, the velocity component is designated u.

3 On September 24, 2010, against the
San Diego Padres, Chapman was
clocked at 105.1 mph (169.1 km/h) –
the fastest pitch ever recorded in Major
League Baseball. If you convert 169.1
km/h into units of ms−1, this will give
you some reasonable upper limit for
your initial thrown velocity.
4 Obviously, the angle should lie be-
tween zero and 90 °(or else the throw
is going backwards and/or into the
ground). BE CAREFUL as MATLAB
assumes that angles are in units of
radians, so either work in units of
radians throughout, or convert from
degrees into radians when you calculate
the velocity component based on the
angle.

Along with the schematic of the code structure, this should be all
you need to create a basic code (but one at this point that does not
actually ’do’ anything). You should have a constant defined, and then
5 parameters – 3 representing the initial conditions of the model (the
parts Figure 9.1 colored in red), plus 2 parameters for the maximum
time and time step. You have 3 variables in the code so far – time t,
which is part of the loop, (horizontal) position p, which you should
have initialized to zero, and (horizontal) velocity component u, which
you should have initialized calculated from s0 and θ. There should be
nothing in the loop so far.

Check that it runs without error even though it is doing nothing
useful! Maybe add some debug (e.g. a line in the loop using disp)
to check that the loop really does loop from zero to max_t in steps of
dt.5

5 Note that depending on whether or
not max_t is divisible by dt with no
remainder, your loop might not exactly
finish at a value for a of dt.

Now to add some code to the loop. In each time-step, i.e. each
time around the loop, dt time (s) passes. In time dt, if the horizon-
tal velocity of the ball is u, you should be able to calculate how far
it moves, right? You need to add this increment in distance to the
current value of the position variable p6. Do this. 6 i.e. with code like

p = p + delta_p;

which you have seen endless times
before now and should becoming
wearily familiar ...

Re-run the code. Check it works at all (if not: debug). Try adding
debug code within the loop that displays the current time (t) plus
value of p at each time-step, e.g.

for t = 0:dt:max_t

%CODE TO UPDATE POSITION



150 geo111 – numerical skills in geoscience

disp([’current time = ’, num2str(t), ’, position = ’, num2str(p)]);

end

so that you can track what is going on. (You can make a fancier out-
put if you wish and add in the relevant units to the output.)

Strictly, when updating the position of the ball in the first iteration
of the loop, time is dt at this point, not zero, which is what the loop
thinks (you already have a position of zero at time zero – the initial
conditions). So rather than starting the loop at zero, make a minor
modification and start at a value of dt.

You should have a working model at this point, albeit only for the
horizontal position of the ball.

Part II Now for tracking the vertical position (and velocity) of the
ball. Copy your previous m-file and we can use this as a starting
point for the new model.7 7 So for instance we will now interpret

p as the vertical, not horizontal position
of the ball.

Figure 9.3: Schematic of the code for
simulating the horizontal movement of
a ball.

Think about what is different about the physics of the system (Fig-
ure 9.1) from before – this is going to directly inform how you adjust
and add to the code. To start with, you should have noticed that the
initial position (p) of the ball, does not start at zero, but rather at h.
This is one change to make in the code (i.e. having defined h as a pa-
rameter, you subsequently use h to set the initial value of p). Also –
the initial velocity component, v, is different from before (and in fact
is assigned a different letter in Figure 9.1). So change the calculation
of the initial velocity component and change the name of whatever
variable you used for u to something distinct that you’ll remember
stands for v in the equation. Overall, the code structure looks like
Figure 9.3.

You could, and indeed should, test the code so far. It should in fact
do something very similar to before, with position p increasing, lin-
early, as a function of time (i.e. as the loop progresses in the number
of iterations carried out). The only differences you should see are that
p starts from value h and the rate at which p changes will be greater
or less than before, depending on the value of θ you assumed.8 8 What value of θ would result in

an identical change in d with time
(comparing the previous horizontal-
only model with the new vertical (only)
one)?

So far so good. Except balls generally do not continue travelling
vertically for ever. You are missing gravity in this (vertical-only)
model. Your variable for v (vertical velocity) now needs to change
as a function of time and you’ll need to update its value within the
loop9. How are you going to update v? Well, the change in velocity 9 Before or after the updating the

position? Actually, a slightly tricky
question.

with time is called acceleration and in this example the only force
exerting any acceleration on the ball is gravity. Mathematically we
can approximate the change in velocity, Δv as:

Δv = −Δt ∙ g



dynamic (time-stepping) modelling 151

where g is the acceleration due to gravity. Note the appearance of a
minus sign in the equation if we are considering a coordinate system
with distance upwards.

So in the loop10 calculate the change in velocity during the time- 10 HINT: at the end of the loop.

step, and then update the value of v11. 11 Hint:

v(t+1) = v(t) + Δv

where v(t+1) is the new (at the next
time-step) velocity and v(t) the current
velocity

Re-run the model ... what happens? Does this seem ’reasonable’ ...
? At this point you might consider whether you really do need to run
the model for as long as 100s. Play about with the assumed initial
angle and also the velocity and get a feel for what is the longest the
ball lasts in the air (i.e. until its position becomes negative).

Part III You should now have 2 working models (sperate m-files) –
one for the horizontal position of the ball, and one for the vertical po-
sition (and vertical velocity) of the ball. You now want to combine the
2 sperate parts of the model. I suggest basing the combined model on
the vertical model (as it is the more complicated of the 2) and hence
copying-and-renaming the 2nd script.

How to merge? Mostly, the code content of the 2 individual mod-
els was almost identical. What you do need to copy across from the
horizontal model is:

• The calculation of the initial value of u.
• The initialization of the horizontal position.
• The calculation of the change in horizontal position each time-
step.
• The updating of the new horizontal position.

By now, you should have noted a slight problem – in both pre-
vious (sperate) models, the variable h was used to represent both
horizontal AND vertical velocity. D’uh! duh

exclamation informal
used to comment on an action per-

ceived as foolish or stupid, or a state-
ment perceived as obvious. As in:

"I used the same variable name twice
– duh!"

My solution would be ... a vector to store the current position –
just of one row and two columns, i.e. exactly as you might write
a position in (x, y) notation. The horizontal position (x) is hence
assigned the first element (p(1)) and the vertical position, the 2nd
(p(2)). If you do this (i.e. resolve the variable clash this way), you’ll
need to edit how you set the initial conditions in the code, e.g.

p(1) = 0;

p(2) = h;

as well as how the position is updated in the loop. You can leave the
name of the increment in position (Δp) the same if you wish (as this
is a temporary variable whose value is replaced each time around the
loop in any case).

Hopefully this works and runs ... Maybe add some output within
the loop to track its progress, such as:



152 geo111 – numerical skills in geoscience

for t = 0:dt:max_t

%CODE TO UPDATE POSITION

disp([’(’, num2str(p(1)), ’,’, num2str(p(2)), ’) @ t = ’, num2str(t)]);

%CODE TO UPDATE VELOCITY

end

You should end up with output, depending on how you con-
structed the string to be displayed by disp (and what initial condi-
tions you chose ...), like:

» ball_uv

(0.5,1.866) @ time 0.1

(1,2.634) @ time 0.2

(1.5,3.3038) @ time 0.3

(2,3.8755) @ time 0.4

(2.5,4.3491) @ time 0.5

(3,4.7247) @ time 0.6

(3.5,5.0021) @ time 0.7

(4,5.1814) @ time 0.8

(4.5,5.2626) @ time 0.9

(5,5.2458) @ time 1

(5.5,5.1308) @ time 1.1

(6,4.9177) @ time 1.2

(6.5,4.6065) @ time 1.3

(7,4.1973) @ time 1.4

(7.5,3.6899) @ time 1.5

(8,3.0844) @ time 1.6

(8.5,2.3808) @ time 1.7

(9,1.5792) @ time 1.8

(9.5,0.67938) @ time 1.9

(10,-0.31849) @ time 2

(10.5,-1.4145) @ time 2.1

...

...

which is far far far from exciting ... but does at least confirm a con-
stant change in horizontal position with time, and a vertical position
that initially increases above the initial condition (h = 1.0) but subse-
quently drops back and eventually falls below zero. And the point at
which it reaches zero is the value of d of course.

The very least we could do at this point is to detect when the ball
has reached the ground and terminate the loop. I’ll leave this code
for you to devise, but you’ll need:

1. A conditional to test whether the vertical position has dropped
below zero. This would go in the loop just after the position of the
ball has been updated, And ...
2. The MATLAB command to exit a loop, which you have seen
before.

Now you might note that when the ball reaches the ground (tech-
nically: its height falls below zero) and the loop exists, you may al-
ready be way below zero. In fact, if you are even the least little bit
observant, you might note that the change in height per time-step at



dynamic (time-stepping) modelling 153

the end of the simulation is quite large (order meter) and hence it is
unlikely you’ll ever capture the moment that the ball is very close to
the ground. Unless you shorten the time-step, that is. So play about
with a shorter time-step (you only need change the value you as-
signed to the parameter representing Δt in the code). How short does
it have to be in order to catch the moment the ball reaches the ground
(passes zero) to within e.g. 10cm?12 What about 1cm? 12 i.e. to have the loop terminate when

the height is no more than −10.0cm.

Part IV Some graphics fun.
It would be kinda fun (really) to show the ball flying through the

air. There are a variety of ways of doing this. We’ll start with the
simplest first and use scatter.

As a departure from previous plotting, we don’t want to plot at
the very end (after the loop)13 but rather, plot each position as it is 13 Although if you stored the position

of the ball at each time-step, you could
re-play the trajectory afterwards.

calculated, within the loop.
First open a new graphics figure window and set hold on by

adding the lines, before the loop starts:

figure;

hold on;

Within the loop, you want to plot each (x, y) position as it is calcu-
lated (after the position has been updated, that is):

scatter(p(1),p(2));

(feel free to add additional parameters to scatter to make the points
smaller or larger, or filled, or whatever). Comment out any debug
(disp) lines.

Well, not so exciting. The plots sort of appears all at once and
there is no sense of animation or of the ball moving. MATLAB is just
way too fast for its own good14. 14 This is a Trump-ism. In truth, MAT-

LAB is about the slowest piece of *$&%
about.

pause

MATLAB says: "pause(mjs) pauses
the MATLAB job scheduler’s queue so
that jobs waiting in the queued state will
not run."

Garbage.
pause(n) will pause the execution

of the code by n seconds.

You can make the loop proceed slower, by adding a time delay –
i.e. each time around the loop, MATLAB will take whatever time it
needs to carry you the calculation and plot the current position PLUS
whatever additional time you tell it to chill out for. The command is
pause and you might initially try e.g.

pause(0.05);

which should insert a 50ms delay into the loop. Run it.

axis

For once, helpfully, MATLAB says:
"axis([xmin xmax ymin ymax])

sets the limits for the x- and y-axis of the
current axes."
which is about all you need to
know (other than the minimum and
maximum limits along the x-axis
are represented by xmin, xmax, and
the minimum and maximum limits
along the y-axis are ymin, ymax).

Now it has all got really trippy. If you tell it no different, MATLAB
insists on auto-scaling the (x and y limits of the) plot. As the position
of the ball increases (initially) in y-axis direction, and (constantly)
along the x-axis direction, MATLAB periodically re-scales the axes.
Annoying. So before the loop and after you create the figure window,
why not prescribe axes limits(?) Having played with the model you



154 geo111 – numerical skills in geoscience

should have a reasonable idea for what the maximum vertical and
horizontal distances are associated with ’reasonable’ choices for the
initial conditions (s0 and θ). Don’t forget the command for specifying
a scale for the axis limits is axis. (Figure 9.4-esk maybe?)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizontal distance (m)

V
er

tic
al

 d
is

ta
nc

e 
(m

)

Figure 9.4: Trajectory of a ball!!

Your final task is simply to play about with the pause interval,
and the model initial conditions. You can have al the trajectories
appearing on the same plot if you comment out the figure command
in your script, and open a single new figure window at the command
line (» figure). Then each and every time you run the script, the
new trajectory will be added on top. You might also try turning your
script into a function so that you do not need to edit the values of
s0 and θ in the code, but pass them into the program as parameters
instead (the function needs not return anything however).


