
130 geo111 – numerical skills in geoscience

8.1 A zero-D Energy-balance model of the climate system

Box, or zero-D models need not involve the reservoir of a substance
(e.g. trace metal, carbon, or nutrient concentrations) per se – the reser-
voir and fluxes of energy (heat) will do just fine. Which leads us to
the climate system.

In this Section, you are going to create, and then use in a series of
applications, a zero-D equilibrium global ’climate model’ – the sim-
plest representation of the energy-balance of the Earth’s climate that
it is possible to make. The model assumes that the climate system
is in balance, with no net gain or loss of energy, and hence that the
energy absorbed from incoming (short-wave) solar radiation equals
the (long-wave) radiative loss from the Earth’s surface (or top-of-the-
atmosphere). The equations are outlined in the Box and you’ll need
to rearrange them in terms of T (mean global surface temperature).

Energy balance modelling (1)
The surface energy budget at the

Earths surface, to a zero-th order
approximation, can be thought of
as a simple balance between in-
coming, sort-wave radiation that is
absorbed, and out-going, infra-red
radiation.

On average (over the Earths surface
and annually), the energy flux per
unit area received from the sun, can
be written:

Fin = α∙S0
4

(the 1
4 appears because the cross-

sectional area of the Earth is 1
4 of

its total surface area – i.e. you take
energy intercepted by the Earth,
which has an effective area of π ∙ r2,
and spread it out over the entire
surface – an area of 4 ∙ π ∙ r2).

Albedo (α) varies hugely across
surface types (and angle of incom-
ing radiation). A commonly used
mean global approximation is to set:
α = 0.3.

Net outgoing infrared radiation
proceeds according to black body
emissions:

Fout = ε ∙ σ ∙ T4

where ε is the emissivity, σ is the
Stefan-Boltzmann constant (in units
of Wm−2), and T the temperature in
Kelvin (K) (273.15K == 0.0°C).

For a perfect black body radiator,
we would set ε=1.0. However, it
turns out that the Earth is not a
smooth and perfectly matt black
sphere radiating directly from the
surface to space ... there is an atmo-
sphere and water surface over ∼70%
of its surface etc etc. A common
modification is then to reduce the
effective emissivity of the surface to
less than 1.0. A value of 0.62 is given
in Henderson-Sellers [2014], making
the expression for the out-going flux:

Fout = 0.62 ∙ σ ∙ T4

The exercises that follow are structured and you need to pay at-
tention to which m-files you are creating from scratch, which ones,
having been created and coded up, you do not then further edit ...

8.1.1 In this first Subsection (’The basic EBM’), you’ll create a script (#
scr_11) containing the Energy Balance Model (EBM), and test

1 This is not a suggested name of the
m-file, but an ID to help you not get
confused as to which script or function
is being referred to in the text ...

it.

(See Figure 8.1.)

8.1.2 Next, you’ll turn your EBM script (scr_1) into a function (fun_1)2

2 Once the EBM function has been
created, you do not at any point edit it
any further!

– passing in the solar constant and albedo as parameters, and
returning the surface temperature. (And test it.)
(See Figure 8.2.)

8.1.3 In the Subsection ’Parameter sensitivity experiments using the EBM – #1’,
you will create a new script (scr_2) with a single loop in it. Within
the loop, you will make a call to the EBM function (# fun_1) that
you created.3

3 DO NOT put code the loops into the
EBM function – leave the function alone
...

(See Figure 8.3.)

8.1.3 Then, in an extension to the previous Subsection work, you will create
another new script (scr_3), this time with a double (nested) loop
in it. As before – within the loop, you will make a call to the EBM
function. Note that there is going to something of a diversion in
this Subsection that will illustrate nested loops for you.
(See Figure 8.6.)

8.1.4 In the penultimate Subsection (’Calculating the evolution of the solar
constant’), you’ll create a new function (fun_2), which will take
time (counted from the formation of the Sun) in Ga, and return the
value of the solar constant at that time (S(t) (Wm−2)).
(See Figure 8.9.)

zero-d / equilibrium modelling 131

And then ...

8.1.5 ... finally (Subsection ’Evolution of Earth’s surface temperature’), you’ll
create one last script (scr_4), with a loop in time in it, and from
within this loop, you’ll call first the solar constant function (fun_2),
taking time as an input and returning the value of S(t), which you
will then pass into the EBM (# fun_1), returning T.
(See Figure 8.10.)

8.1.1 The basic EBM

To kick off – create a new script (m-file) (’scr_1’ in the summary
notation) and code up the analytical solution to the basic global mean
energy budget at the surface of the Earth (see Box) in a program
structure illustrated schematically in Figure 8.1.4 The equations for

4 Note that the code is relatively simple
and does not involve (yet) loops or
conditionals or anything like that.
Although ... I am sure it will involve
lots of nice juicy comments and sensible
variable names(?)

Simply set up the values of the
various constants and parameters
you need at the start of the code, then
solve for T at the end of the code. The
structure (omitting % comments) of your
code may look like:

% section for constants

(variables you do not expect

ever to change)

...

% section for parameters

(variables you might adjust)

...

% solve for T

T = . . .

in-coming and out-going radiation (energy) were given previously.
You simply need to re-arrange these and write them as code. This
will form the basis of subsequent, more complex (and later, time-
stepping) models. You will need to find (from the Internet?) the
values of the constants you need ... and will need to be careful with
units of these.

Figure 8.1: Form of the basic EBM
model.

For now – prescribe the value of S0 – for which the modern value
is 1368 Wm−2 as well as the value of surface albedo (α = 0.3 by
default) – somewhere near the start of the program. Then run it.

If you found a reasonable value for the solar constant, and did
not screw-up the units on the Stefan-Boltzmann constant, then you
should have an equilibrium (global, annual mean) surface temper-
ature of around 14°C ... If not – debug. Assuming that the code ran
without errors but gave a nutty answer:

1. Check that the units are correct.
2. Check that the equation has been re-arranged correctly – a
common root of errors is incorrect placement of parentheses ...
or not placing parentheses around multiple variables you are
divining something all by.
3. If still ’no’ – maybe take the 2 component equations (for Fin and
Fout), plug S0 into the equation for Fin and then play with different
values of T to find a value for Fout that is approximately equal – is
the value for T sane? If not, double-check the units and values in
both component equations.
4. If still ’no’ – WHAT HAVE YOU DONE?

Once it is working, have a quick play about, changing the value of
S0 and albedo (α) (saving the m-file each time and re-running) to get
a vague feel for how sensitive the surface temperature is to these two
parameters.

Figure 8.2: Form of the basic EBM
model as a function.

132 geo111 – numerical skills in geoscience

8.1.2 The EBM as a function

We’ll now make your model mode flexible so that it can be applied to
the subsequent Examples. So – turn it into a function5 that takes in 2

5 Refer to earlier in the text and also
help on the required structure/syntax
of a function. Recall the basic structure
of a function m-file, has as its VERY
FIRST LINE:

function [OUT] = ...

FUNCTION_NAME(IN)

where OUT represents one (or more)
variables that are passed out (the
’result’ of the function), FUNCTION_NAME
is the name of your function, and
IN is the name (or names, comma-
separated) of one (or more) variables
(parameter values) that are passed into
the function. (The very last line of the
function should have an end.)

For example, to pass in two variables,
IN_1 and IN_2, you’d have:

function [OUT] = ...

FUNCTION_NAME(IN_1,IN_2)

parameters – the solar constant (S0) and the mean global albedo (α).
The function should return the global mean surface temperature, T.6

6 Note that the parameters passed
into, and returned by, the function,
can be called anything you want. As
long as they are useful (and clearly
defined/explained in a comment
somewhere).

(See Figure 8.2)
Try playing with the function in the same way as before, but now

passing the different values of S0 and α (rather than having to edit
the m-file, save, and re-run each time). To use the function (assuming
you called it e.g. fun_1), and assuming the 2 passed parameters are
in the order: S0, α and are given their default values, you’d write (at
the command line):

» fun_1(1368.0,0.3)

(and get a value close to 14°C returned).

8.1.3 Parameter sensitivity experiments using the EBM – #1

Now to utilize your new function (’fun_1’ in the summary notation).
Create a new blank script (’scr_2’) and define 2 parameters near the
start – one for the value of S0 and one for α, then further down the
code, call your function (fun_1), passing it these 2 parameters. So far
so boring, as this is in effect what you had been doing in ’playing’
with the function previously.

Common in numerical modelling is quantifying how sensitive a
system is to the choice of parameter values – called a sensitivity exper-
iment. You may already have gotten a feel for roughly how sensitive
T was to changing S0 on its own, or changing α on its own, but what
about when both parameters vary together?

Lets start with a simple 1-D case, and consider just a change in
the value of S0. To automate generate different values of S0 and call
the function, you are going to need a loop7. There are two ways of 7 You are going to put the loop in the

function (# fun_1), NOT the script (#
scr_2).

An entire plane of Hell is reserved
for anyone coding the loop in the
function.

constructing the loop8:

8 In both cases a for ... loop.

loop option #1 You could loop directly through the range of values of
S0 that you are interested in, e.g.

for S0 = 1000:100:1500

% CODE GOES HERE

end

in which S0 will go from 1000 to 1500 Wm−2 in steps of 100 Wm−2

9. 9 You can pick a different range and
increment ... this is just a quasi-random
example to illustrate ...

Perhaps a little inconveniently, this does not pass through the
modern value (1368 Wm−2), although when you plot as a contin-
uous line (e.g. in plot) or otherwise interpolate the results, maybe

zero-d / equilibrium modelling 133

this does not matter. You could have addressed this by construct-
ing a slightly less convenient form of the loop, e.g.:

for S0 = 1068:100:1568

% CODE GOES HERE

end

which now passes exactly through the modern value of S0.

loop option #2 Alternatively, you could have an integer count for the
loop, and then derive a changing value of S0 from this. For exam-
ple:

S0_modern = 1368.0;

for m=-5:5

S0 = S0_modern + 100*m

% CODE GOES HERE

end

Look carefully through this code and follow what is going – as
m counts from -5 to 5 (in steps of 1), 100 times the value of m is
added to the modern value of S0

10, meaning that S0 ends up going 10 The variable definition S0_modern =

1368.0 at the top of the code fragment.from S0_modern - 500, to S0_modern + 500 Wm−2 (in steps of 100
Wm−2).

Or, alternatively:

S0_modern = 1368.0;

for m=1:11

S0 = S0_modern + 100*(n - 6)

% CODE GOES HERE

end

which does exactly the same (do a mental check on this) but now
counts m starting from a value of 1.

So what does it matter, and/or is one ’better’ than the other? Actu-
ally, both are equivalent and you could make either work out just
fine. The advantage with the second version is that you implicitly
have an integer counter. For the first version, you’d have to add lines,
e.g.:

count = 0;

for S0 = 1068:100:1568

count = count + 1;

% CODE GOES HERE

end

And why might we want some sort of an integer counter in the
first place? Well, you might want to save the data(!), i.e. the calcu-
lated (by your function) value of T vs. the inputted value of S0.

There are also two ways of saving the data (assigning calculated
values to sequential locations in an array):

134 geo111 – numerical skills in geoscience

save option #1 Create the necessary array(s) beforehand, e.g. using the
zeros function. For instance, to create a vector with 11 rows (and 1
column), suitable for saving the value of T calculated by each call
to the EBM function, you could write:

data_T = zeros(11,1);

which would create a (single) column vector with 11 rows. You’d
need an equivalent vector (e.g. data_S0 in this example) for storing
the corresponding value of S0 used in the temperature calculation.
These vectors are created before the loop starts.
Then within the loop (and after the calculation of T), you’d assign
your values of S0 and T by using whichever index you created11: 11 i.e. which of the two OPTIONS you

chose earlier.
data_S0(m) = S_0;

data_T(m) = T;

or:

data_S0(count) = S_0;

data_T(count) = T;

where m and count are integers, starting at a value of one, and
incrementing by a value of one on each successive execution of the
loop. m (or count) represents an index that allows you to store the
result of each successive calculation (as well as the corresponding
input value) in a vector.

save option #2 Or ... MATLAB will allow you to ’grow’ a vector, one
element at a time (but not for matrices).12 The the code within the

12 The vector automatically grows in
length as you add values to it. If you
don’t believe me, try the following:

» A=1;

» A(2) = 2;

» A(3) = 3;

You could instead define at the start f
the code (before the loop) a vector of
zeros of the correct length, the ’correct
length’ being the number of time
around the loop. See function zeros. Or
even NaNs ...

loop actually looks identical – you just omit the 2 lines at the start
of the program creating vectors of appropriate size (and zero in
value).

So pick one (i.e. a way of saving a pair of values each time around
the loop) and code it up. (Or try both!) Then, at the end of your
program, plot (plot or scatter) how T varies as a function of S0.

The structure of your code should look like Figure 8.3. and your
resulting figure (depending on the range you assume for S0), some-
thing like Figure 8.4. Figure 8.3: Schematic structure of the

model configured to carry out a single
parameter sensitivity study.

1100 1200 1300 1400 1500 1600 1700

Solar constant (W m -2)

-5

0

5

10

15

20

25

30

T
em

pe
ra

tu
re

 (
de

gr
ee

 C
)

Figure 8.4: Sensitivity of global mean
surface temperature vs. solar constant
(mean surface albedo held constant at
an albedo value of 0.3).

8.1.4 Parameter sensitivity experiments using the EBM – #2

In this Subsection, we’ll extend the sensitivity experiment to 2D,
assuming that you are interested in how T also varies as a function
of α. So, you’ll need to vary both S0 and α, and in all combinations of
the two. In fact, in a grid pattern, with S0 increasing in steps on one
axis (as before), and α on the other.

Hopefully, you might have guessed that you’ll need a nested loop(?)
– one loop going through all possible values of α, for each and every
possible value of S0??

zero-d / equilibrium modelling 135

Perhaps, as an aside, we’ll go through a simpler example/system
first.

A chess board consists of squares in a 8 × 8 grid. The squares
alternate black and white. To define 8 squares (points) along the
x-axis on the bottom row, you’d write something of the form:

for m=1:8

% SOME CODE GOES HERE

end

Now, if you wanted to define 8 squares along each column (the y-
axis), at each and every x-axis value, you’d need to loop through all
the rows, So you need a loop in e.g. n, inside the loop for m:

for m=1:8

for n=1:8

% SOME CODE GOES HERE

end

end

Follow this through to satisfy yourself that for each and every value
of m from 1 to 8, n loops from 1 to 8, and hence visits every point in
turn of a 8 × 8 (n,m) grid.

Actually, now we have got this far, it is good practice to consider
how we’d define the black and white squares. We’ll assume that
black is represented by ’1’ (true) and white by ’0’ (false) and create a
board (array) of all white squares to start with, i.e.

board = zeros(8);

(Refer to help or earlier for the syntax for help on the function
zeros.13)

13 You could alternatively write this:

board = zeros(8,8);

mod

Not ... the opposite of rocker
(which doesn’t exist in MATLAB
anyway) but short for modulo.
Wikipedia helpfully tells us:

"In computing, the modulo operation
finds the remainder after division of one
number by another (sometimes called
modulus)."

Or in MATLAB-speak:

b = mod(a,m)

"returns the remainder after division of
a by m, where a is the dividend and m is
the divisor".

It turns out that as long as a is pos-
itive, you can use to test for whether
an integer a is even or odd by:

b = mod(a,2)

When the returned value b is 0, a is
even, and when b is 1, a is odd.

If we start with a black square (’1’) at the bottom left, we could
define an algorithm for creating the grid as: odd column number
squares are black, as long as the row number is odd, otherwise they
are white.14 So to implement this in code – as we loop through both

14 Look up a picture of a chess board to
convince yourself that this works.

column (m) and row (n) on the board, we test for the column number
being odd and row number odd, OR, the column number being
even and row number being even. If true, the square is defined as
black. The only tricky bit is to determine whether the row or column
number is even or odd. We do this by testing whether there is any
remainder after dividing by 2, using the function mod.

The complete code looks like:

board = zeros(8);

for m=1:8

for n=1:8

if ((mod(m,2)>0 && mod(n,2)>0) || (mod(m,2)==0 && mod(n,2)==0))

board(n,m) = 1;

end

end

end

136 geo111 – numerical skills in geoscience

Spend a little time decoding the if statement for practice ... If you
want to see that it works – code it in a new m-file, run it, and then
plot up board by e.g. using imagesc (cf. Figure 8.5). Beautiful.

Figure 8.5: Chess board grid pattern.

OK – that was easily the greatest diversion in pedagogical history,
but nested loops should now come almost as second nature to you
:o) So how about coding up the nested loop for the question we were
meant to be addressing – carrying out a 2D sensitivity test of the
parameters S0 and α. See if you can create this.

Start with a new (script) m-file (’scr_3’). For constructing the loop
– you have already seen the 1D example of parameter sensitivity
code, and also an example of creating a nested loop for a 2D grid.
Your chess board columns (m) become S0, and rows (n) become α.
You don’t need to do anything so awful as that if ... statement –
instead just call your function (fun_1) for solving the global surface
temperature (passing it the values of S0 and α generated in the loop).
A schematic of the program structure is shown in Figure 8.6.

Figure 8.6: Schematic structure of the
model configured to carry out a double
(in terms of solar constant AND now
albedo) parameter sensitivity study.

For saving the data (within the loop), you cannot not simply index
the locations you want in a 2D array (matrix) that did not previously
exist and expect it to ’grow’ as before, becasue a matrix must have
all complete rows and columns. Instead, near the start of the code
(before the loop), create a matrix of the size of the parameter grid.
For example, if you were going to loop through 10 different values of
S0 and 10 of α, you could write:

data_output = zeros(10);

(creating a 10 × 10 array of zeros). Or if for example, you had 20
different values of S0, and 10 of α:

data_output = zeros(10,20);

(20 columns times 10 rows).
Within an (n,m) loop you then assign your calculated value of T to

the appropriate location:

data_output(n,m) = T;

Don’t forget that you’ll also need to know the values of S0 and α that
correspond to the column and row numbers. Perhaps save these as 2
individual vector (as per before) or ignore them for now.

2 4 6 8 10

Solar constant (W m -2)

1

2

3

4

5

6

7

8

9

10

11

A
lb

ed
o

-20

-10

0

10

20

30

40

50

Figure 8.7: Global mean surface tem-
perature (°C) as a function of solar
constant and surface albedo grid point
number.

-25

-20
-15

-15

-10

-10

-10

-5

-5

-5

0

0

0

5

5

5

10

10

10

15

15

15

20

20

20

25

25

25

30

30

30

35

35

40

40 45

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

Solar constant (W m -2)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
lb

ed
o

-20

-10

0

10

20

30

40

50

Figure 8.8: Global mean surface temper-
ature (°C) as a function of the value of
solar constant and surface albedo.

One slight complication if you use a pair of counters and incre-
ment their value each time around their respective loops (rather than
having a integer count for the loop itself (i.e. n and m)) – the inner-
most counter must be reset in value each time the outer loops starts:

count_outer = 0;

for ...

count_outer = count_outer + 1;

zero-d / equilibrium modelling 137

count_inner = 0;

for ...

count_inner = count_inner + 1;

% CODE GOES HERE

end

end

(Try it instead by initializing both prior to the outer loop, and see
what happens ...)

When you *think* you have this working and generating a matrix
of T values15, plot the resulting surface of T vs. the two parame-

15 HINT: create a 2D array of the appro-
priate size first, before the loop starts,
using zeros, and then populate it with
the values of T as the loop loops.

ters. Rather than using e.g. imagesc (Figure 8.8)16, try contour17 or

16 Note that the temperature grid points
are plotted as a function of column and
row number and that the plots ends
up ’up-side-down’ compared to the
coutourf version.

17 You’ll need to employ meshgrid based
on the same 2 vectors of values that the
loop creates for S0 and α.

contourf (e.g. Figure 8.7).

8.1.5 Creating a function for the evolution of solar constant through ge-
ological time

In this and the final Subsection, you are going to leave the 2D-ness
aside and consider how Earths surface temperature has changed
through geological time.

So far you only have a function equating solar constant (S) to
temperature (T). What you need is some way of equating time (t) to
the value of the solar constant at that time St (which you can then
turn into temperature). We’ll remedy this toot sweet.

Start by creating a new (blank) m-file and define it as a function
that takes in time (in units of Ga) and spits out S0 (Wm−2) (this will
be ’fun_2’ in the on-going notation).

The background to the equation that will go into your function is
given in the Solar constant Box. In this, you’ll first need to substitute
the modern value of the solar constant into the equation to leave it
in terms of St (the solar constant value at time t) rather than Lt. Your
function, aside from the all-important 1st line (and end at the end)
and appropriate % comments, need have little more in than a defi-
nition for any constant you might want to use, such as the modern
value of S0 and perhaps time now (4.57 Ga) ... and a single line for
the equation giving the value of St. Be careful that in the equation, t
is measured as the age of the Sun (since its formation), meaning that
time ’now’ (modern), is equivalent in the equation to t = −4.57 (Ga).

When you think you have done this – check it – plug in values of
time into your function, i.e.

» fun_S(4.57)

for passing the time now into a function called ’fun_2’ in the on-
going notation (which in this example should return a value of 1368
(Wm−2)).

Solar constant
The long-term evolution of solar

luminosity Lt as a function of time t
can be approximated [Gough [1981];
Feulner [2012]) by:

Lt
L0

= 1
1+ 2

5 ∙(1− t
t0

)

where t0 is the age of the sun –
4.57 Gyr (4.57×109 yr) and L0 is
the present-day solar luminosity
(3.85×1026 W).

The value of L0 is equivalent to
a flux (Wm−2) of 1368 Wm−2 inci-
dent at the top of the atmosphere
at Earth, which is given the symbol
S0. In the equation, L0 can be substi-
tuted for S0 to give the value of S at
ant time, i.e. St (Wm−2).

Note that in the formula, t is
counted (in Gyr) relative to the for-
mation of the Sun (i.e. present-day
would be: t = 4.57).

Figure 8.9: Schematic structure of
code for calculating the solar constant
(output) as a function of time (input).

138 geo111 – numerical skills in geoscience

8.1.6 Using multiple functions and calculating global surface temper-
ature as a function of geological time

Finally ... you are going to bring it all together and calculate and plot
the surface temperature of the Earth, at 100 Myr intervals, from 4.0
Gyr (4 billion years) in the past, to 4.0 Gry in the future – spanning
approximately the age of the Earth and much of its potential long-
term future.

Figure 8.10: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, and solar constant
and EBM functions.

Start by creating one final new (blank m-file) script (’scr_4’).. You
are going to need a loop in time, perhaps looping from 4.0 to -4.0
Ga relative to now (but you can chose what limits you like ... except
remembering the Sun is only 4.57 Ga old ...). Within the loop, you
will:

1. Pass to your solar constant function the current time, and ob-
tain the corresponding value of the St – remember that you must
add 4.57 to the time you pass into your function as the equation
for St is in terms of time since the formation of the Sun, not rela-
tive to now.
2. Call your EBM function to calculate the corresponding surface
temperature, passing it the value of St you have just calculated.
3. Store in an array, or pairs of vectors, time and the correspond-
ing value of T.

Likely bug possibilities include the units of time (Gyr), and that
time in the equation for S0 is counted forwards from the formation of
the Sun. Also be careful with nested parentheses (()). A schematic of
the program structure is shown in Figure 8.10.

-4 -3 -2 -1 0 1 2 3 4

Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

Figure 8.11: Simple EBM projection of
the evolution of Earth surface tempera-
ture with time. Time at the present-day
is highlighted by a vertical line (drawn
using the MATLAB line function).

Assuming that you have managed something like Figure 8.1118

18 Note that a line has been added to
highlight t = 0 (i.e. the present-day) –
see line.

– what strikes you, in light of (hopefully) what you know about the
past history of climate and evolution of life on this planet, about your
model projection (for the past)? What is ’missing’?

line ... quite simply, draws a line.
The basic syntax of the command is:

line(X,Y)

which plots a line between a paid of
(x,y) coordinates. In the MATLAB
usage, for a single straight line seg-
ment: the vector X contains both the
x coordinate values, and Y both the y
coordinate values.

In the specific Example in the text,
the vertical line is drawn by:

line([0 0],[-10 50]);

NOT forgetting to put hold on first
...

zero-d / equilibrium modelling 139

8.2 ’Daisy World’

There is an absolutely classic paper from the early 1980s – Watson
and Lovelock [1983] – that illustrates how simple (biological) feed-
back on climate can lead to a close regulation of global climate over
an appreciable span of the Earths past (and future). The premise
for this model is a planet covered in bare soil (essentially, as per in
the earlier EBM), but on which 2 different species of daisies (could
be any pair of plants with contrasting properties) can grow – one
white (high albedo) and one black (low albedo)19. Because the two 19 As pointed out in Watson and Lovelock

[1983], the actual ’colors’ are immaterial
– just tat the albedos differ.

species modify their local (temperature) environment and their net
growth depends on how close the local temperature is to their op-
timum growth temperature, a powerful climate feedback operates
and as the solar constant increases, the abundance of daisies switches
from black to white – driving an increasing cooling tendency of the
planet surface in the face of increasing solar-driven warming. This
regulation emerges as a property of the dynamics of the population
ecology and interaction with climate and does not require an explicit
regulation of climate to be specified. Just dumb daisies doing their
day-to-day stuff.

We’ll code up this model ... but as before, in discrete stages (aka,
the following Subsections).

8.2.1 This will be the simplest addition to your previous model20. You’ll 20 i.e. the one comprising a loop
through time, and within this loop,
calls to your function to convert time
to solar constant, and take the solar
constant (and albedo0 and solve for
mean global surface temperature. This
was ’# scr_4’ in the previous Section
notation.

create a new ’fixed daisy’ function (fun_3) which will take no(!)
inputs, and return a value for mean global albedo. You’ll also
copy-rename yourself a new script (’scr_5’ – based on scr_4)
and in it, take the albedo value generated by the call to the daisy
function, and pass it into you EBM function (fun_1). (See Figure
8.12.)

8.2.2 Now, in the next stage it gets a little more complicated, because in
a further new function (’fun_4’ – copy-renames-and-edited from
fun_3) you’ll modify the equations such that the relative abun-
dance of each daisy type is now responsive to the value of global
temperature. The situation thus becomes – the relatively fractions
of dark and light colored daisies is a function of global surface
temperature, yet ... global surface temperature, through the mean
(fractional area weighted) albedo of the daisies, is a function of the
relatively fractions of dark and light colored daisies – a circularity
(feedback loop). We’ll resolve this circularity (i.e. come to a steady
state solution) by creating an inner loop that comprises only the
daisy function and EBM function and keeps looping until ... well,
we’ll start by simply prescribing a fixed number of iterations of the
loop.

140 geo111 – numerical skills in geoscience

(See Figure ?? for a schematic of the code setup.)

8.2.3 Finally (almost) – we’ll allow the daisies affect their *local * (temper-
ature) environment. Now it gets more interesting (honest!). Al-
though the code structure is exactly the same as in the last step21, 21 A loop through geological time, as

per in the previous Section. Within this
main loop, you’ll have a sub-loop with
just the daisy function followed by the
EBM function.

you will require a further copy-rename-and-edit of the previous
daisy function (’fun_4’ → ’fun_5’) and one further copy-rename-
and-edit of the previous script (’scr_6’ → ’scr_7’) that calls the
daisy function.

8.2.4 In a minor extension to the previous work, we can modify the loop
involving the daisy function and EBM function such that it will
proceed until an adequately accurate solution (f0r global tem-
perature) has been converged upon (rather than looping a fixed
number of times).

8.2.1 ’fixed daisy’ daisy-world

To start: read Watson and Lovelock [1983]. You should be able to take
away from this some of the essential information that you need to
specify and keep track of. For now, we’ll just concern ourselves with
defining the albedo of bare ground (soil) and the albedo of each daisy
together with how much area is covered by each species of daisy.

Create a new function (fun_3) – configure it so that it returns a
single parameter – albedo. For now it has no inputs.22 How it re-

22 A funny sort of function, although
pretty well much like pi.

lates to your previous program and code for how the Earth’s surface
temperature evolves over geological time, is illustrated in Figure 8.12.

Figure 8.12: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant
and EBM functions, and now the ’daisy’
albedo function.

Now, in the daisy function (fun_3) near the top, define yourself
some parameters for the daisy model:

% define model parameters - daisy albedo

par_a_s = 0.3; % albedo - bare soil

par_a_w = 0.5; % albedo - white daisies

par_a_b = 0.1; % albedo - black daisies

% define model parameters - daisy land fraction

par_f_w = 0.01; % (land) fraction - white daisies

par_f_b = 0.01; % (land) fraction - black daisies

(or using whatever parameter names you prefer). Here, the albedo
values associated with each daisy type are fixed and will be used
regardless of what the model does. The values have been chosen,
assuming equal proportions of black and white daisies, to given an
average of 0.3 – the albedo of bare soil and also the assumed value
in the previous EBM. You’ll modify and play with this value all too
soon enough. The surface area fraction values are just initial values to
start the model off with.23

23 As you’ll come to see subsequently,
these cannot be zero. Or rather, a daisy
species can start with a fractional area
of zero, but you’ll never ever get any
of that species growing, regardless of
the environmental conditions (because
there are none to start with!).

Next, and actually the only line of any note in the function – you
need to calculate an average albedo24 – calculated based on the area

24 Note that it is very easy to accidently
prescribe a total area covered by daisies
of >100%. You should ideally put
a check (if ... end) in the code
before it tries to calculate anything for
whether the total area initially covered
by daisies exceeds what is possible. If
this is the case, your code might spit
out a warning message (a simple disp

command would do). You might also
terminate your program (see exit).

zero-d / equilibrium modelling 141

weighted average of: bare soil, white daisies, black daisies. The cal-
culation is simple and you already have the areas of the two species
of daisy as fractions. You weight the contribution to global albedo by
the albedo of each daisy by its fractional area. You then just need to
calculate the fraction of the Earths surface that is bare soil – the area
fraction not covered by daisies. In maths-speak, the mean albedo is
given be:

α = Fw ∙ αw + Fb ∙ αb + (1.0 − Fw − Fb) ∙ αs

where αw, αb, and αs, are the albedos of white and black daisies,
and bare soil, respectively, and Fw and Fb are the fractional areas
of occupied by white and black daisies, respectively (with bare soil
comprising the remainder). You simply need to translate this into
MATLAB code using the parameters you defined earlier (for αw, αb,
and αs, and Fw and Fb). Write this line of code, which the one and
only calculation the function carries out, just before the end of the
function.

Thats actually it. All the parameter values are specified and fixed
(see above), so nothing particularly exciting is going to happen ...
Regardless – run the the complete model with the value of albedo
now depending on the fraction of white and black daisies – it should
look identical to before in terms of the evolution of surface tempera-
ture with time (it must, because the default parameters above ensure
that the mean albedo is always 0.3 and the daisies don’t even know
anything about growing (or dying) yet). Model (surface temperature)
output, including how the populations of the 2 species of daisy also
vary with time, is shown in Figure 8.13).

You might play briefly with the prescribed daisy fractions and
albedo values and e.g. check that when you specify a configura-
tion with 100% of land area covered by black daisies, the climate is
much warmer throughout the simulation, and when white daisies
are assigned an initial value of 1.0, the climate is always much cooler
compared to in the default simulation.

-4 -3 -2 -1 0 1 2 3 4

Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- fixed daisies

Figure 8.13: Evolution of global surface
temperature and the two populations of
daisies with time ... but with no change
allowed in the daisy populations
(d’uh!). The fractional coverage of
white daisies is shown by large empty
circles, and for black, by small filled
black circles. Data points for mean
surface temperature are color-coded by
temperature (color scale not shown).

8.2.2 ’dumb daisy’ daisy-world

Daisy population dynamics (1)
For an area fraction occupied by

white and black daisies of Fw and Fb,
respectively, the change in occupied
fractional area with time (t) can be
written:

dFw/dt = Fw ∙ (x ∙ βw − γ)
dFb/dt = Fb ∙ (x ∙ βb − γ)

where x is the free (i.e. not occu-
pied by daisies of any color) area of
(fertile) ground, equal to:

x = 1.0 − Fw − Fb

(assuming here, unlike the more
general case in Watson and Lovelock
[1983], that all the land area is po-
tentially fertile), β is a temperature-
dependent growth function (one
for each species of daisy), and γ the
mortality rate (as a proportion of
the area covered by that species of
daisy per unit time). The value of γ
given in Watson and Lovelock [1983]
is 0.3, but this could be a parameter
that you could play about with and
investigate its effects.

To simplify things to start with,
growth is a function only of the
global mean temperature (in °C):

βw = 1.0 − 0.003265 ∙ (22.5 −
T)2

βb = 1.0 − 0.003265 ∙ (22.5 −
T)2

(where the value of 22.5 °C is a ref-
erence temperature and represents
where optimal (maximum) growth
occurs).

OK – step #2 in the evolution of Daisy World, and for the next mod-
ification and one which will actually make something ’happen’ (i.e.
the simulation will be different to that of the default EBM based sim-
ulation of mean global temperature response to increasing S0). In
fact, the daisies are going to grow and die (but unlike Southern Cal-
ifornia, not burn), with their population changing over time until an
equilibrium is reached (for a particular specified value of S0). Watson
and Lovelock [1983] give a simple population model formulation for

142 geo111 – numerical skills in geoscience

the change in area fraction covered by both sorts of daisy with time
(also see Box) that we will implement here.

The unit of population in Daisy World is fractional area covered.
So each time-step, the fractional area or each species will grow or
shrink, depending on whether mortality is higher than growth. Both
growth and mortality are formulated as being dependent on the frac-
tional area (at the previous time-step), i.e. growth in covered area
depends on how much is already covered. Similarly, mortality also
depends on how many daisies are currently there. The growth rate
is further modified by the available fractional area, such as that the
area left shrinks, the growth rate shrinks. (Effectively, this is perhaps
trying to account perhaps for shrinking resources available for fur-
ther growth. It also has the effect of adding numerical stability to the
model and helps presents over-shoots where the total fractional area
covered by daisies far exceeds 1.0 ...).

Figure 8.14: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant,
EBM, and ’daisy’ albedo functions.
Note the creation of an inner loop,
with EBM, and ’daisy’ albedo functions
called from within this, while the solar
constant remains called form the start
of the outer loop as before.

How them to implement this in code?

• In general – start by identifying any constants – i.e. fixed and
invariant, fundamental values, such as π or the Stefan-boltzmann
constant. These values could be hard-coded into the equation as
numbers, but better is to replace them with variables that you’d
define at the top of the m-file as this makes for neater and easier-to
read MATLAB code.
• Next identify any parameters – values that are not fundamental
properties of the universe, but may be considered invariant for
sequential uses of the equation. The characteristic albedos of the
two species of daisies is a good example – these values are ’fixed’,
although, one day you might change them. If the code file is a
script – define MATLAB variables and assign values to them, near
the start of the code file. Otherwise, if a function, you may need to
pass these parameters into the function and so they need to appear
in the function definition on the 1st line of the code.
• Identify any output variables, i.e. result(s) of the calculation.
In a function, these are invariably pass back out and hence need
to appear in the function definition on the 1st line of the code.
Output variable may also be input variables – i.e. a calculation
may take the current value of a variable (as an input), update it,
and then pass it back out. In which case, the variable will need ot
appear as both input and output. Perhaps pick distinction variable
names to avoid confusion, e.g. var_in and var_out.
• You may have local variables (i.e. used only within the script
and out outside of it). If scalars, these need not be defined and
initialized, unless used as e.g. a counting or running-sum vari-
able. If in doubt, maybe also define and initialize e.g. to zero local
variables.

zero-d / equilibrium modelling 143

• Otherwise, it is mostly just a case of writing the maths, in
MATLAB – changing symbols where necessary and replacing
the letters (invariably) used in the equations with your variable
names.

Figure 8.14 gives a schematic of the overall code structure for this
model. DON’T PANIC. There are actually only 2 (or 3-ish), relatively
incremental changes, compared to previously. Start off by noting
what is the same – both the function for the solar constant (fun_2)
and the EBM model (fun_1) are exactly the same as before. The loop
in (geologic time) and hence some of the script (scr_6) is also the
same. What is different and yet to-do?

1. Lets start with the daisy function. You could deal with the in-
puts and outputs first. As as well as T, now the previous values of
the fractional areas of the two daisies are required (Fw, Fb) (which
is different from before where the values were assumed and the
respective parameters set at the start of the function25). This is 25 So if you are copy-pasting the previ-

ous Daisy function, you need to delete
the lines:

par_f_w = 0.01;

par_f_b = 0.01;

because each time the daisy function is called, the fractional areas
are updated (hence why they are inputs). And outputs. Beasue the
daisy function is updating the fraction al areas, these two parame-
ters also need to be outputs too. So the very first thing to do is to
modify the function definition, so that the inputs are:

T, Fw, Fb

and the outputs are:

α, Fw, Fb

(see help of various sorts on functions, but it not at all a fundamen-
tal change as to compared to before).

Then, the only other development in the function, is to imple-
ment the equations for daisy growth/death and update the values
of Fw, Fb (and at the end, calculate the value of α as before). And ...
set the parameter values for β and γ of the two daisy species (near
the start of the function).

2. Secondly, it is going to take a number of iterations for the
daisies to grow/die ... changing their fractional areas and hence
albedo as their fractional areas change ... and hence ultimately,
reaching a new equilibrium with global climate. Each time around
the outer loop – because the value of S0 will change each time,
climate will change and the daisy population will no longer be in
equilibrium (because their fractional areas are carried over from
the previous loop iteration). Hence in the outer loop you will need
an inner loop to determine the new equilibrium and global tem-
perature for that particular value of S0. For now the loop can be

144 geo111 – numerical skills in geoscience

quite simple – we’ll assume 100 iterations (i.e. the loop counter n,
will go from 1 to 100).

3. Lastly, the initialization of the main program (scr_6) will be a
little different from before. Because the daisy function now takes
as input, Fw and Fb – you’ll need to give these variables each an
initial value (near the start of the program) so that first time the
function is called, there is a value for the equations to work with.
Similarly, temperature T now also becomes an input to the daisy
function (and it is not set anywhere else beforehand in the very
first iteration of the loops), so it also needs an initial values to be
assigned.26

26 For completeness, you could also
initialize S0 and α, but it is not strictly
needed, as they are calculated and
defined before they are first used.

If you have set this daisy population dynamics enabled EBM (a
DPDE-EBM!) up correctly, and drive it with your -4.0 to +4.0 Ga solar
constant calculating script, you should get something like Figure 8.15.

-4 -3 -2 -1 0 1 2 3 4
Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- identical daisies

Figure 8.15: Evolution of global surface
temperature and the two populations of
daisies with time ... but now assuming
that the growth of each depends on the
global mean surface temperature.

OK, so actually, this is not different in terms of the global mean
temperature response (to solar evolution), to before. But then again,
you have set both species of daisy with the same temperature growth
response. In other words, as the white daisies with a high albedo
grow, so to the black ones with a low albedo. Equally. And their dif-
ferent albedos balance, meaning that α still never changes. One thing
you could try to liven things up a little is to change on of the value
of β (and/or γ) so that their population dynamics are not identical.
Now, if the relative abundance of white and black daisies changes, so
too with global mean albedo and hence global temperature.

8.2.3 ’clever daisy’ daisy-world

The last step is to give each species of daisy a different environmental
preference for growth (why? because that is how the World works –
different plants and ecosystems tend to inhabit different environmen-
tal regimes as a result of being (evolutionary) adapted to different
environmental parameters). Watson and Lovelock [1983] assume that
both species of daisy have the same temperature preference but mod-
ify their local environment differently – white daisies inducing a local
cooling relative to the global mean temperature, and the presence of
black daisies driving a local heating (see Box). The result is Figure
8.16.

Daisy population dynamics (2)
To make the different species of

daisies interact differently with
the environment, the temperature-
dependent modifiers of growth are
made functions of the local (to the
daisy population or individual),
rather than global, temperature:

βw = 1.0 − 0.003265 ∙ (22.5 −
Tw)2

βb = 1.0 − 0.003265 ∙ (22.5 −
Tb)2

There are all sorts of says of defining
how the local temperature deviates
form the global mean. In Watson
and Lovelock [1983] this is simply
reduced to a simple deviation that
scales linearly with the difference be-
tween mean global and local (daisy)
albedo:

Tw = T + q ∙ (A − Aw)
Tb = T + q ∙ (A − Ab)

(noting that A is albedo here, not
alpha as was the case in the original
(non daisy enabled) EBM). q is a
simple scaling factor that describes
how strongly the local temperature
deviates from the mean (or con-
versely, how efficiently heat energy
is mixed between differen daisy
fractions) and is assigned a default
value of 10.0.

Now the behaviour of the system and the evolution of global mean
surface temperature with time, is very different. Towards the start of
the experiment, and at very low values of S0, the global mean tem-
perature is too cold to support a daisy population (of either type).
As the value of S0 increases, initially global mean temperature fol-
lows the path it did before, in the absence of daisies (or with fixed, or
equal populations). At a certain point, black daisies, because of their

zero-d / equilibrium modelling 145

advantage that they absorb more sunlight and drive a locally warmed
climate, take off in population and rise to dominate 70% of the land
surface. The global mean temperature transitions sharply to a much
higher temperature state. As S0 further increases in value, they in-
crease slightly further in dominance (and global temperature climb a
little further in response) until locally they reach their optimal tem-
perature for growth. Past this (optimal temperature) point, white
daisies start to grow and slowly replace the black ones. Global cli-
mate is almost perfectly stabilized during this interval. Beyond this,
there is a short interval where black daisies die out and white daisies
go on to reach their own (local) temperature optimum. Beyond this
again, everything suddenly goes extinct in a rapid warming feedback
of increasing temperatures, declining white daisy numbers, further
solar radiation absorption and warming, etc etc. How everything is
dead and I how you are feeling happy with yourself.

-4 -3 -2 -1 0 1 2 3 4

Normalized solar constant

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- interactive daisies

Figure 8.16: Evolution of global surface
temperature and the two populations of
daisies with time.

You could code this modification in – adjusting the (local) value
of T that each species of daisy ’sees’ (as per the Box and the refer-
ence). Or ... we could simply give them different temperature optima,
which is what the value of 22.5°C accomplishes in the temperature-
dependent growth modifier equation. For now, this is the way-
simpler approach and involves only a minimal edit to your existing
daisy function. So where in the equation for βw and βb you currently
have values of 22.5 (°C) in each – try making these different. Rea-
sonable would be to assume that the white daisies are more adapted
to hot climates and hence have a higher temperature tolerance, with
black daisies being better adapted to colder climates, using their
higher albedo and presumably local heating to make up for a colder
ambient environment. (You could be able to come up with something
not entirely dissimilar to Figure 8.16.)

