
128 geo111 – numerical skills in geoscience

7.2 GUI Pokemon game

Now we’ll build on your excellent GUI skills and create a GUI inter-
face for the ballistics (ball trajectory) model.

The idea of the ’game’ is that you are going to launch a ball, the
behaviour of which will be calculated as per your time-stepping
ballistics model. Rather than simply detect whether or not the ball
falls below zero (height), there will be a graphic (Pokemon) displayed
and a ’hit’ will be recorded if the position of the ball falls within the
boundary of the graphic. The key initial conditions – initial speed
and angle of the launched ball, will be set by controls in the GUI
rather than set in code. Finally, there will be a series of refinements
to improve the look and feel (and game-play) of the game that will
introduce a few further concepts in creating good MATLAB GUIs
and also new MATLAB functions. Ultimately, the GUI (app) might
look something like Figure 7.7, but how the controls are positioned
in the window and their relative size and shape, is pretty well much
up to you. You could also control how the initial parameter values
are set in a different way (e.g. using an Edit Text box rather than a
Slider). Quite what buttons you want and how they are used is also a
matter of personal aesthetics.

Figure 7.7: Screen-shot of he Pokemon
game App.

There is quite a lot of coding to be done and the risk of a huge
mess ensuing. So we’ll go through this all in a number of discrete
steps:

Part I Create a basic GUI interface using MATLAB guide.

Part II Load in and display the graphics needed for the game.

Part III Add in the ballistics model.

Part IV Utilizing the sliders.

Part V Create the detection (logic) needed for a successful ’catch’ and associ-
ated outcomes.

Part VI Refinements to improve the look and feel of the game.

Because of the complexity of the project, the complete code (m-
file) as well as associated .fig GUI file, are provided (on the course
webpage). These are provided if needed for guidance (e.g. what code
goes where?), only. Try your best to work through the creation of the
App without this.

Example images are provided (download via the course webpage)
and you can substitute your own if you prefer.

If you run into unexpected and apparently nonsensical ’issues’
when you make changes and text the App, try closing the design
window and any open Figure windows and type » clear all.



graphical user interfaces (guis) 129

Part I – the basic GUI.
To achieve a GUI along the lines of Figure 7.7 you need to create

the following objects in the window design editor (but don’t create
them quite yet – details will follow ...):

1. Something to display all the action and graphics in. This is
pretty well much like MATLAB creates when you use plot,
scatter, or any of the graphical functions that create a Figure
Window. This is called an Axes object.
2. A Push Button for telling MATLAB to start calculating (and
displaying) the balls’ trajectory.
3. A Push Button for resetting the game once it is finished.17 17 This we’ll only worry about making

use of this in Part IV.4. A Push Button to finish the game and close the App.
5. A Slider (bar) to set the initial speed of the ball.
6. A Slider to set the initial angle of the balls’ trajectory.
7. For each slider bar: a Static text box to display the value.
8. Also for each slider bar: a Static text box to display the units.

Make a start by running GUIDE at the command line. Create a
new (blank) GUI. You might save it once the GUI editor window
has open up18. MATLAB then opens the Editor and the GUI code 18 File – Save As. . .

template.
Sketch out on a piece of paper how you might lay out the objects

in your GUI window before you actually start to create anything. If
you have graph paper to hand, you could sketch out your design
on a grid similar to the design window grid and size. Note that
should should be aiming to make the Axes object square (i.e. the
same length in both x and y dimension) as the background image
we are going to use is square.19 Also note that the Sliders can be 19 Later on you might want to try

substituting your own background
image. In this situation, you might
need a different aspect ratio to the Axes
object.

horizontal rather than vertical if you prefer and if it make it easier to
pack in all the objects.

OK – to begin for real.

1. You have to start somewhere (i.e. you have to pick on one ob-
ject as the first one to be created!), and the best place to start is
arguably with the Axes object as it is the largest object in your
window. Click on the Axes icon and drag out the position and size
of the object you want.20 By default, it is assigned a name (its Tag 20 Note that you can drag the GUI editor

window larger, and you can also drag
larger the gridded design area, meaning
that your App window will be larger
that you run the program.

property) of axes1. You are not going to have so desperately many
objects that it is necessarily worth re-naming it, but you can if you
wish (although the text will refer to axes1 where needed). Remem-
ber that you can move and re-size it at any point after creating it.
Its position as x,y of the objects origin as well as dimensions (x-
length and y-height) are indicated by Position at the bottom right



130 geo111 – numerical skills in geoscience

of the design window. For e.g. creating an approximately square
Axes object, you can also simply count the number of grid lines in
each dimension.

Save the .fig file and run it21. You do indeed have a graph-like 21 Note that there are two things that
potentially might both need being
saved – the m-file and the .fig file. If
you make code changes, save the m-file,
and if you make design change sin the
GUI editor, save the .fig file.

object with labelled axes. This is not actually that convenient (to
have the axes labels when you don’t need any in this particular
example). In the design window – double click on the Axes object
to bring up its list of properties. Find and edit XTick – delete all
the tick mark numbers. Do the same for the y-axis. Close the GUI
window from the previous version if it is still open, then save and
re-run. Now you should see a large white square(ish) with two
thin black lines delineating the axes22, and nothing else. 22 We could remove these black lines,

but they’ll get covered up later.
2. Next Push Button #1. Create (position and size, where- and
how-ever you think best). Simplest is to leave the default name
(’pushbutton1’). Change the text associated with the Push Button
(property ’String’). Label as ’Throw’, ’Go’, or whatever seems
appropriate. Remember that you can change the default font size,
family, color ... (and e.g. make bold etc.) as well as the color of the
button itself (plus a host of other property options).

3. Create a 2nd Push Button (’pushbutton2’) as per before. Label
consistent with the GUI aim (and e.g. Figure 7.7 ).

4. Similarly, create 3rd Push Button (’pushbutton3’).

5. Now we need a Slider23 bar. These are bar with a slider (’knob’) 23 Not anything to do with baseball.

that can be slide up and down via the mouse, or moved by click-
ing in the bar above or below the position of the slider. By doing
so (changing the position of the slider along the slider bar), you
change the numerical value of the slider. We are going to use one
in order to set the initial speed of the ball. So go create one (leav-
ing the default name of ’slider1’).

Because we need to link the Slider to our model (in terms of
parameter value), we need to specify a minimum and maximum
value that the Slider can take, as well as an initial value. These
properties can be set at in the code, but we’ll start off by specifying
them using the design GUI tool. If you double click on the Slider
you’ll get its property list opened up. The minimum and maxi-
mum property value name are Min and Max – edit these to span
a plausible initial speed range24. Also set a default initial value 24 I used 0 to 20ms−1.

(parameter name ’Value’)25. 25 I assumed 0ms−1.

6. Create a second Slider (’slider2’) for setting the initial angle of
the ball (theta).26 26 Here I assumed a range of 0 to 90°,

with a default of 0°.
7. Because the Sliders themselves do not tell you quite what
value you have slide the slider to, it is a Good Idea to somewhere



graphical user interfaces (guis) 131

display the value. We’ll do this via a Static Text box (’text1’) and
you’ll need to create one to go with each Slider (so you’ll also have
a ’text2’ named object). For now – simply leave the default text
property as it is.

8. Finally, if you follow the design in Figure 7.7, you could add a
further pair of Static Text boxes in order to display the units. This
is far from essential and I’ll leave it up to you whether you bother,
particularly if your window is cluttered already.

That is the basic GUI design done. Save and run (having first
closed any open, running, instances of your GUI program). You
should have a window with all the objects discussed, but with none
of them yet doing anything.

At this point it is worth quickly orientating you around the automatically-
generated code m-file:

• At the very top:

function varargout = pokemon(varargin)

appears at the very top of the m-file and defines the main func-
tion. In this example, the main function is called pokemon (meaning
the App is run by typing » pokemon). Remember that you do not
have to edit any of this function.

• Next comes:

% -- Executes just before pokemon is made visible.

function pokemon_OpeningFcn(hObject, eventdata, handles,

varargin)

This is the function that is called just before the window is made
visible and we’ll edit it later in order to carry out some initial tasks
(i.e. before the ballistics model itself runs).

• Then:

% -- Outputs from this function are returned to the command

line.

function varargout = pokemon_OutputFcn(hObject, eventdata,

handles)

which is mysteriously useless and we will not edit.
• The first actually useful automatically generated code is:

% -- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

This will contain the code that is executed when the ’Throw’ (or
’Go’) button (’bushbutton1’) is pressed and will end up containing
the complete ballistics model code.

• The function code for when second button (’bushbutton2’)
is pressed appears in order after the function associated with
’bushbutton1’:



132 geo111 – numerical skills in geoscience

% -- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

We’ll only make use of this towards the very end of this section is
making the final refinements to the App.

• Then, the third button (’bushbutton3’):

% -- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

This will contain more more than a command to close the App (as
you have programmed previously).

• The code that is called whenever the position of the first
slider the appears:

% -- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

• This is then followed by a second function associated with
slider1 whose purpose is ... not obvious. Perhaps slider initializa-
tion? Regardless, we’ll be ignoring the following code:

% -- Executes during object creation, after setting all

properties.

function slider1_CreateFcn(hObject, eventdata, handles)

• The final code is the pair of functions for the 2nd slider (of
which we’ll only edit the first function (slider2_Callback)):

% -- Executes on slider movement.

function slider2_Callback(hObject, eventdata, handles)

% -- Executes during object creation, after setting all

properties.

function slider2_CreateFcn(hObject, eventdata, handles)

Before we move on, you could add your fist code to the m-file – a
close action if you click on the lower of the three Push Buttons. Refer
to the previous sub-section and example to remind yourself how to
do this. You are aiming to have the App window close when you
click on pushbutton3, whose associated function is called function

pushbutton3_Callback.
Save the m-file and re-run the App by typing its name (e.g. »

pokemon) and the command line (first closing any already open in-
stances of it). The App window should now close when you click
on the third button. In the GUI design editor, edit the ’value’ of
the String property of this Push Button so that it has a logical and
vaguely meaningful label.



graphical user interfaces (guis) 133

Part II – (graphics) initialization. Note that in this section, all the
code will go in function pokemon_OpeningFcn, after the (automati-
cally generated) lines:

% Choose default command line output for pokemon

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes pokemon wait for user response (see UIRESUME)

% uiwait(handles.figure1);

First, we’ll read in a background image (’background.jpg’ – avail-
able for download from the course webpage) and then display it.
We’ll use the commands imread for reading in the graphics format
(and converting it into something MATLAB prefers) and then imshow

to display it. The first part is easy enough:

img_background = imread(’background.jpg’);

The question then becomes ’where’ to display it. You might not think
there is even a question in this – in the window! Except ... where
in the window? We actually want the background image in the
(currently) blank Axes area, not just anywhere in the figure win-
dow (which also have various button etc. objects positioned in it).
We need to find the ID of the Axes object and tell MATLAB that is
’where’.27 We can get the handle (ID) of the Axes object via: 27 Actually, it may work without wor-

rying about this, but we’ll need to be
able to specify where to position other
images later anyway.

h_axes = findobj(’Tag’,’axes1’);

and then tell MATLAB that this is currently the object to put things
in by:

axes(h_axes);

We then use this handle in the call to imread:

h_background = imshow(img_background,’Parent’,h_axes);

While we’re at it, we can specify the axis range for plotting the posi-
tion of the ball in the Axes object, and add a hold on for complete-
ness. If we also define the axis ranges (in m) as parameters (that we
can use elsewhere), the complete code (so far), at the end of the auto-
matically generated code in function pokemon_OpeningFcn, becomes:

% define grid dimensions

x_max = 10.0;

y_max = 10.0;

% read in background image

img_background = imread(’background.jpg’);



134 geo111 – numerical skills in geoscience

% set axes suitable for game

axes(h_axes);

axis([0 x_max 0 y_max]);

hold on;

% draw background

h_background = imshow(img_background,’Parent’,h_axes);

When you run this, you should get Figure 7.8.

Figure 7.8: Template App with back-
ground image.

Next, we want a Pokemon to throw the ball at! The load-in code
(which can go after the code fragment above) for the image is identi-
cal to before:

img_eevee = imread(’Eevee.png’);

(The image itself (’Eevee.png’) can be downloaded from the course
webpage.) There are two complications in using imread, however. To
see what these complications are, after the img_eevee = line, add the
following:

h_eevee = imshow(img_eevee,’Parent’,h_axes);

to also display the image. Well, it is a bit of an odd mess. By default,
imshow tries to fit an image to the space, so that might, at least partly,
help explain things.

We can start by making the Pokemon image smaller and see
whether that helps us to work out what is going on. To do this, we
could e.g. pick half of the size of the Axes object, and plot the Poke-
mon from the origin. A replacement line to do this would look like:

h_eevee = imshow(img_eevee,’Parent’,h_axes,’Xdata’,[0 x_max/2],...

’Ydata’,[0 y_max/2]);

When you run this, you should get Figure 7.9.

Figure 7.9: Template App with back-
ground image plus Pokemon.

You can see firstly that the Pokemon image is half the size of the
space – exactly as we requested via ’Xdata’,[0 x_max/2] which says
to start the image at zero on the x-axis and stretch it horizontally
until half way along (x_max/2), and similarly for the y-axis. Except
... with imshow, it seems that the y-axis origin starts at the top and
is positive downwards (which the Pokemon is in the top left, rather
than bottom left, corner).

To cut a long story short, we can generalize the position and size
of the Pokemon that is displayed (and use this at the end when we
refine the App), via the following code fragment28: 28 You should delete the lines starting

img_eevee = and h_eevee = first.
This 10-line code fragment then follows
directly on from the previous 11-line
one.

% define pokemon size

dx_pokemon = 0.2*x_max;

dy_pokemon = 0.2*y_max;

% define initial pokemon position

x_pokemon = x_max-dx_pokemon;

y_pokemon = y_max-dy_pokemon;



graphical user interfaces (guis) 135

% read in pokemon image

img_eevee = imread(’Eevee.png’);

% draw pokemon

h_eevee = imshow(img_eevee,’Parent’,h_axes,’Xdata’,[x_pokemon...

x_pokemon+dx_pokemon],’Ydata’,[y_pokemon y_pokemon+dy_pokemon]);

Now giving you a small Pokemon – in fact, 20% of the Axes size as
specified in the definition of the Pokemon size parameters, dx_pokemon
and dy_pokemon. If you run this, you should get Figure 7.10.

Figure 7.10: Template App with back-
ground image plus small Pokemon at
bottom right.

One final thing now is the background to the Pokemon image. The
original format (png) is actually defined with a transparent back-
ground. MATLAB can make use of this with a small tweak to the
code – replacing the img_eevee = line with:

[img_eevee, h_map_eevee, h_alpha_eevee] = imread(’Eevee.png’);

which grabs additional graphics information and specifically about
the transparency. And after the last line (h_eevee = ), add:

set(h_eevee, ’AlphaData’, h_alpha_eevee);

which implements the transparent background and hopefully gives
you Figure 7.11.

Figure 7.11: Template App with back-
ground image plus small Pokemon at
bottom right, now with its transparency
applied.

Part III – incorporating the ballistics model.
Here – almost all the code in this section will go into function

pushbutton1_Callback – the function that is executed when the first
Push Button is clicked. But before any coding – ensure that the text
label associated with the first Push Button is appropriate for launch-
ing the ball (’Throw’, ’Go!’, whatever).29 29 Remember – double-click on the

pushbutton1 object in the design editor
and then find and edit the value of the
String property.

Below is a simple rendition of the ballistics model. All that has
been modified from a stand-alone m-file that would plot the trajec-
tory of a ball, is that the creation of a figure (and associated hold

on) is not necessary (because this has already bene done within the
initialization function). either copy-paste your own version (and com-
ment out the figure creation line), or add the below version.

% model constants

g = 9.81;

% model parameters

theta0 = 80.0;

s0 = 5.0;

h0 = 2.0;

% model parameters - time (s)

dt = 0.05;

t_max = 10.0;

% calculate initial velocity components

u = s0*cos(pi*theta0/180.0);

v = s0*sin(pi*theta0/180.0);

% set initial position of ball

x = 0.0;



136 geo111 – numerical skills in geoscience

y = h0;

% create Figure window and hold on

%Figure;

%hold on;

% run model

for t=dt:dt:t_max,

end

% update horizontal and vertical positions

dx = dt*u;

x = x + dx;

dy = dt*v;

y = y + dy;

% plot current position of ball

scatter(x,y);

if (y < 0.0)

break;

end

% update vertical velocity (horizontal velocity unchanged)

dv = -dt*g;

v = v + dv;

end

When you rn the complete App, and press the first Push Button,
you should see the ball’s trajectory plotted. Upside-down! WTF!?

Well, this does seem to be the coordinate system in this Axes ob-
ject. We can fix this by subtracting the model calcuated height (y)
from the maximum y-axis value (y_max) and adjuct the scatter line
to:

scatter(x,y_max-y);

Except ... we defined y_max in the initialization function, and its value
is not available in this function, unless we define it as global in both,
so lets do that – add the following lines:

global x_max;

global y_max;

to both

• function pokemon_OpeningFcn

• function pushbutton1_Callback

(before any of your other code in these files, but below anything that
MATLAB generated automatically in the first place).

It works, and in the right direction (for ’up’), but it is hardly
iTunes grade App material. What we can do, is to replace the point
plotted by scatter, with an image.

At the top of function pokemon_OpeningFcn (after the global

declarations) load in a ball image:

[img_ball, h_map_ball, h_alpha_ball] = imread(’Pokeball.png’);

(using the full format of returned parameters because we’ll make use
of its transparency). We’ll then define the size of the ball:



graphical user interfaces (guis) 137

dx_ball = 0.05*x_max;

dy_ball = 0.05*y_max;

and finally, in place of scatter ..., write:

h_ball = imshow(img_ball,’Parent’,h_axes,’Xdata’,...

[x x+dx_ball],’Ydata’,[y_max-y y_max-y+dy_ball]);

set(h_ball, ’AlphaData’, h_alpha_ball);

The first of these final two lines, displays the image given by the
parameter (ID) img_ball. It ensures it is displayed in the axes area
pointed to by h_axes (and because of this, you also have to de-
fine x_axes as global30, i.e. global h_axes;). Its size is dx_ball by 30 Directly underneath the other two

global definition lines AND in a sim-
ilar position in the initialization func-
tion: function pushbutton1_Callback

.

dy_ball. Its x-coordinate is simply x (hence the image goes from x

to x+dx_ball) and its y-axis coordinate ... well, don’ worry about it,
after much trial-and-error, it works. Now you should have something
like Figure 7.12 when you run it.

Figure 7.12: App with ball trajectory
trail.

To finish this section off, we’ll improve how the trajectory f the ball
is displayed. Firstly, we could add a delay between each addition of
the ball image, rather than them all sort of appear at once. After the
set ... line, add:

pause(0.005);

This is some improvement visually. We could also remove the previ-
ous ball image, so that only one ball image is displayed on the screen
at any one time, hopefully giving the impression of movement. Since
we were good and obtained the handle (h_ball) of the ball image
when we displayed it, this gives us a means to tell MATLAB to get
rid of it again. Now, after the pause line, add:

delete(h_ball);

which simply deletes the last ball image object that was plotted.
Now when you run it you should see a single ball image that

follows the trajectory that you calculated with your time-stepping
ballistics model.

Part IV – utilizing the sliders.
So far it is not much of a game – the values of the parameters

determining the initial speed and angle of the ball are set in the code.
You could always edit the code, save, and re-run to replay the game
with a different throw, but ... really(?)

The Sliders are there to allow you to adjust the two key parameter
values and the ’Throw’ (/’Go’) button can be re-clicked on to then
re-run the game. The Sliders are set up such that when you move
the slider, its value changes. In designing the GUI and creating the



138 geo111 – numerical skills in geoscience

objects you have already set the min and max values of the Sliders
to something reasonable. What remains is to obtain the value of each
Slider and pass that to your ballistics model.

The first step is to read the new Slider value when the slider is
moved. Taking the example of the first Slider (’slider1’) which con-
trols the initial speed of the ball – we first need to request the handle
(ID) of this Slider. As before, we use the findobj function:

h = findobj(’Tag’,’slider1’);

which simply asks for the handle (passed to variable h) of the object
whose ’Tag’ is ’slider1’. You then31 use the get function to get the 31 On the next line.

’value’ (one of the properties of the object):

s0 = get(h,’Value’);

where here the value is assigned to the variable s0 (initial speed).
These two lines of code go in function slider1_Callback just after
the comment lines (there is actually no other code (automatically
generated) in this function as it currently stands).

While we’re here editing this function, what else might be helpful
to happen when the slider is moved and its value changes? Although
from creating the Slider object you know (unless you have forgotten)
what the min and max Slider values are, you would still be some-
what guessing what its exact (or even rough) value was. During the
GUI design phase, you created a pair of Static text boxes for each
Slider. One of each pair was intended to display the Slider value. So
lets do this now. The Static text box for the value display was called
(its Tag) text132. 32 At least, it was in my GUI design –

check the name of yours.Once again, before we can change any of the properties, we need
to determine the handle of the object. For Static text box text1, the
code would be:

h = findobj(’Tag’,’text1’);

(this should be starting to become familiar to you by now ...).
To set its value, which in this case is a text string, we write:

set(h,’String’,num2str(s0));

where num2str(s0) converts a numeric value into a string (as you
have seen before). These two lines of code will go after the first two
in the same function (as you need to have obtained the value of s0
before you can use it to change then text box display).

At this point you may as well save and re-run. Now, when you
drag and release the slider for initial speed, its new value is displayed
above it in the text box. At least, this should be what happens ...

Write the analogous four lines of code for the other Slider, which
will go in function slider2_Callback. Now the parameter value



graphical user interfaces (guis) 139

being read and displayed in the text box is the initial angle of launch,
theta0 (of whatever you prefer to call the parameter).

Again – save and test what you have so far. This should now be
two Sliders that are linked to two Static text boxes such that when
the slider is moved, the new values are displayed.

There is one final step to take. If you change either or both Slider
values and click on ’Throw’ /’Go’, the trajectory of the ball is the
same as before – you are not actually changing the parameter values
used to initialize the ballistics model yet. Recall that variables within
functions are private – they cannot be ’seen’ outside of the function
their value is set in. Unless you declare them as global variables.

So, in each Slider function, you need to declare the respective
parameter (s0 or theta0) as global. This will need to be the first line
of the code (after the comment lines and before the four lines of code
you inserted). You will also need to add the global declarations at
the start of the pushbutton1 code where your model lives (function
pushbutton1_Callback(hObject, eventdata, handles)):

global s0;

global theta0;

You then need to comment out the lines that set your initial model
parameter values:

%theta0 = 80.0;

%s0 = 5.0;

You can test it now, and if you do, you might find that nothing
appears to happen if you press ’Throw’. Only if you change the slider
positions does anything (i.e. a moving ball) happen. We have created
the situation where the ballistics model takes it values for initial
speed and angle from the parameters s0 and theta0. The only place
in the code in which these values are set are the Slider functions.
BUT, the Slider functions are only called when the slider is moved.
So on starting the App, unless you first move the Sliders, the values
of s0 and theta0 are undefined33. 33 Invariably, undefined variables in

code are assigned a value of zero, but
you should never try and use a variable
whose value has not somewhere been
defined.

What to do? Well, recall there is the function that is called when
the App first starts up and in which we loaded up various images
etc. In this function, we could also check the value of each Slider
(even though the slider could not have been moved yet), set the pa-
rameter values, and display the Slider values in the Static text boxes.

At the end of the code in function pokemon_OpeningFcn, add:

% read in default model parameters and set labels

h = findobj(’Tag’,’slider1’);

s0 = get(h,’Value’);

h = findobj(’Tag’,’text1’);

set(h,’String’,[num2str(s0)]);



140 geo111 – numerical skills in geoscience

h = findobj(’Tag’,’slider2’);

theta0 = get(h,’Value’);

h = findobj(’Tag’,’text2’);

set(h,’String’,[num2str(theta0)]);

which is pretty well much just an amalgamation of the code you
have added to the two Slider callback function. The last final piece
is to remember that the initial Slider values you read and set s0 and
theta0 on the basis of, cannot be seen outside of this function. So at
the top, along with the other global statements, make s0 and theta0

global to.
Note that if you do not like the new defaults for s0 and theta0,

you can always edit the properties of the Sliders in the GUI design
editor window thing.34 34 Equally, you could have coded in

defaults and then set the Slider values
to be these defaults when the App
starts up. The process is basically
exactly the same as for setting the Static
text box string values.

Part V – pokeball/Pokemon collision detection.

Part VI – final game refinements.


