
118 geo111 – numerical skills in geoscience

7.1 MATLAB GUI basics

MATLAB kindly1 provides a tool (itself a GUI) for creating GUIs – 1 For once, it is not a sperate, zillion-
dollar license ...the ’Graphical User Interface Development Environment’ (GUIDE).

GUIDE does 2 main things for you:

1. Firstly, it facilitates the design of the GUI window(s).
2. Secondly, it creates a code framework for the associated pro-
gram.

Figure 7.1: Starting GUI window of the
MATLAB GUIDE, GUI design tool.

You run GUIDE at the command line by typing its name:

» guide

and a window as shown in Figure 7.1 should appear. We’ll only
concern ourselves with the default option amongst the (4) ’GUIDE

templates’ – ’Blank GUI (default)’2. As for the tick-box ’Save new figure 2 So don’t go randomly clicking on
anything just yet!as:’ – we’ll leave this alone3. The ’Preview’ window is blank at this
3 You can save the resulting figure (and
code) under whatever filename you
wish, later anyway. (If you really want,
you can enter it in now here – it makes
little difference.)

point because you have selected a blank template (d’uh!) (and are
not loading in a previously created GUI). So, all that remains, is to go
ahead and click on ’OK’.

Actually ... before you move on, it is worth pausing at this point
and reflecting on what happened and what the implications are
for what you might like to do (GUI-wise). At the command line,
you entered the command guide, which presumably ran a script
or function (a piece of code in any case). A windows (the ’GUIDE

Quick Start’ window) was summoned (actually a figure window was
created). The (figure) window did not open completely blank, but
instead you might not:

• It has a close/minimize/maximize buttons at the top right (and
the window can be re-sized).
• It has a title at the top (in the title bar) with a cute (barf) MAT-
LAB icon.
• There are 3 buttons at the bottom right – ’OK’, ’Cancel’, and
’Help’. Presumably they’ll all do something (different) when
clicked.
• Everything else is neatly enclosed in a pair of tabs (one labelled
’Create New GUI’ and one ’Open Existing GUI’ and you can switch
between tabs by clicking on the required tab.
• In the ’Open Existing GUI’ tab, there is:

– A list (of template names plus that annoying cute little icon
again).
– An area with a border labelled ’Preview’ with a grey box

labelled ’Blank’ in the middle.
– There is a tick box and next to it (grey-ed out by default),

a box with a file path and name in and to the right of that, a

graphical user interfaces (guis) 119

button labelled ’Browse’.

In essence, most of the primary (or at least, basic) features of a
GUI are here to see. Funnily enough, nothing much had changed,
at least in Windows, since ... the 80s4. Maybe that is a good thing 4 That is: 1980s, as much as some

might believe Microsoft has made little
progress since the 1880s ...

as despite the MATLAB GUIDE tool being completely new to you,
you hopefully can guess what would generally likely happen if you
clicked on random bits of the ’GUIDE Quick Start’ window.

(If you have not already clicked OK – do it now.)

Figure 7.2: (Blank) GUI window editor
GUI window.

Rather than creating some basic code first5, MATLAB now throws

5 Actually, MATLAB has done this too
and you would have seen it open up in
the Code Editor window if you have
provided a filename in the ’GUIDE Quick
Start’ window.

you straight into a window design tool as per Figure 7.2. There is a
lot going on here, but start by noting there is the usual drop-down
menu bar at the very top (under the title bar (’untitled.fig’) of the win-
dow) and a row of icon underneath that (no re-appearance of the
MATLAB icon thankfully). At the bottom of the window there is
some information, mostly about location (of what?). To the left of the
window is a group of icons6 plus a (depressed, by default) mouse

6 Still no re-appearance of the MATLAB
icon!

pointer icon. Most of the window is made up of a pane (whose
contents apparently is, or might be, larger than the area shown as
indicated by the presence of scroll bars along the right and bottom
edges). The pane itself is ruled with a grid pattern.

Again – the great advantage of familiarity (of program GUI de-
sign) – you might guess (you’d be correct if you did) that the icons
to the left allow you to select an object and place it in the pane, the
grid serving to help you position the object. And this leads us to an
important point – creating GUI-based programs is as much (or more)
about design as it is about programming. The cleverest program (and
most complex calculations) might simply be a total fail if the GUI
is wholly unappealing or complete un-intuitive (or lacks a GUI en-
tirely). The grid is hence there for a reason and that is to guide you
towards creating an ordered (and aligned), logical, and uncluttered
arrangement of things (we’ll come to what the ’things’ are shortly)
within the GUI window.

You might be tempted ... to click on everything and throw all
sort of objects (what things?) into the pane of your embryonic GUI
window. But the more GUI objects you have ... ultimately, the more
code and the more debugging7 you’ll have to do. So we’ll start as 7 Which has a steep power relationship

with the amount of code.simply as possible and build up.

7.1.1 Hello, World [Static Text (box)]

This is as simple as it is going to get for a ’program’ with a GUI.
In the GUIDE window editor already open, if you haven’t fatally
mucked about with it, or open up a new GUI by typing guide (or
GUIDE) at the command line again – identify the Static Text icon (by

120 geo111 – numerical skills in geoscience

hovering the mouse pointed over an icon, its function is revealed).
Click (L mouse button) on it. The mouse pointer, when over the grid-
ded design pane, should change to a cross-hairs.8 Find a convenient 8 Note that this is to facilitate the po-

sitioning of the icon rather than being
anything about guns and shooting at
the coders behind Windows.

place perhaps at the intersection of two grid lines, click the mouse
down and drag out a box – this will be the size (and location) of the
Static Text object. Release the mouse button to finish. If you don’t like
the size or location, you can move/re-size just like you would to a
Windows (or MacOS etc.) window.

So far, the (static) text object as a rather unappealing content of
’Static Text’ in a pretty small font. You can edit the properties of this
object by double-clicking on it9. Whoa! That’s a long list of ... actu- 9 I didn’t actually read this anywhere –

the operation of the editor or Windows
has the same feel and intuitive usage
as the sort (hopefully) of Windows you
you are going to create in your GUI(s)).

ally, properties of the object. Each property (the column on the left)
has a default value (the column on the right) assigned to it. Evi-
dently, you can edit the properties using the design tool rather than
in the code code, setting a parameter value.10 For now, we’ll just 10 In reality: MATLAB is secretely

writing the relevant code and setting
the parameter value ...

make two changes:

1. For the String property – click in the box to the right, delete
’Static Text’ and write ’Hello, World’.
2. The text is pretty small ... so for the FontSize property, click in
the box to the right, delete 8.0 and write ... well, try something
larger.

Within reason, play with some of the other properties if you like (at
least, the ones that you can make a reasonably informed guess as ot
what they do). Maybe you end up with a design window looking
like Figure 7.3. Note that the effect of your changes is only shown if
you e.g. hit Enter or click on a different property. If you accidently
click outside of the text object an in the design pane, you’ll end up
switching the property editor to the window itself, which you don’t
want. (You can simply click back inside the text object to return the
property editor to the text object’s settings.)11 11 Unfortunately, the title of the prop-

erty editor window is completely
unhelpful – matlab.ui.control.UIControl
when the text object properties are be-
ing edited, and matlab.ui.Figure when the
(figure) window properties are being
edited. So maybe watch out for Figure
appearing in the title bar as an indicator
or quite what is being edited.

Figure 7.3: Design of the Hello, World
window!

When you are done (editing properties) – click the Save icon. If
this is a GUI that you have not previously created or previously as-
signed a filename to, you’ll get a Save As dialogue box. At this point,
MATLAB is going to save the window design with a .fig extension.

Something a little scary now happens – MATLAB opens up the
code editor and some code, with a filename the same as you entered
in but now with a .m extension. There is nothing we need worry
about ... yet. And in fact, half the file is taken up with a main func-
tion that has the comment: DO NOT EDIT. Please take this advice ...
:o)

Close the design window (and the code editor if it distracts you).
At the command line, type the filename (no extension) to run the
automatically generated code m-file. A window opens up ... the

graphical user interfaces (guis) 121

contents should come as no surprise, because you have just speci-
fied them (via the GUIDE GUI design tool). Your first GUI! But one
you might notice does not actually ’do’ anything – it just sits there
unresponsive. Although you can at least close it (because it is auto-
matically generated with the usual basic close/minimize icons plus
the name of the m-file in the titlebar.

7.1.2 Simple GUI responses [Push Button]

A GUI is only of any particular use if it allows some response to
input. This is going to involve a little code ... so we’ll start with the
simplest possible action – a button that performs a simple action
(closes the window).

Re-run guide and open up a new window editor (by clicking OK

in the GUIDE Quick Start window). Now find the Push Button icon,
click it, and drag out a push button object in the design pane. You
should see a box (with a pseudo 3D shading at the edges) with the
text Push Button in the centre as per Figure 7.4. As before, you can
edit the properties of the push button object (because the default
properties are totally boring) by double-clicking it. Start by editing
the font (size) and message. Perhaps ’Go away!’. And save ...

Figure 7.4: Design window with a
default push button object.

When it saves, MATLAB again opens up the code it generated.
There is slightly more code in the file this time and shortly, we’ll
need to look at it. But for now: type the name of the file at the com-
mand line. You’ll get a window opening with the push button you
created in it. Click on it. It does seems to ’respond’ (pretends to de-
press by means of changing the edges with the pseudo 3-D shading)
to the mouse click, but ... nothing else happens. This is where YOU
(and your amazing coding skills) now come in.

If you have closed the design window, re-run guide and rather
than creating a new GUI – switch to the Open Existing GUI tab and
double-click your filename (of the push button GUI) or select and
OK. Double-click on the push button object to open up the property
editor. We’ll make only one (more) change here – down the list of
properties your fine ’Tag’. This is the name (ID or handle) of the push
button object.12 By default, the name is pushbutton1. Edit this to ... 12 In essence, no different from a file-

name – a unique identifier for an object
(/file).

goawayButton (or pick an alternative name) and re-save the GUI.
Go to the code editor for the associated m-file (which will have the

same name remember). In the file we have:

• The main function which we can ignore (and indeed apparently
should not be edited!).
• function goaway_OpeningFcn which is executed when the GUI
is started up. This is the place to put code for initializing models
or whatever.

122 geo111 – numerical skills in geoscience

• I have no idea what function varargout = goaway_OutputFcn.
Textbooks helpfully say to ignore this. Great idea.
• Finally, function goawayButton_Callback. This function is
executed when your ’Go Away!’ push button is pressed.

In this simple GUI, we have only one figure and it is active (has
the mouses’ attention), so we could simply use the close com-
mand (’deletes the current figure’). Insert this simple command in the
function goawayButton_Callback function, after the last comment
line.13 Save the m-file and re-run. Now if you click on the ’Go Away!’ 13 Note that automatically generated

MATLAB code does not seem to ever
formally end a function as one really
should do ...

push button, the window does indeed go away (aka, closes).

7.1.3 Updating object properties (do you like bananas?)

Bananas. Do you like them? Perhaps the GUI can provide an answer
(rather than just text statements written to the command line via disp

as before).
Now you are going to want to think about the design of the GUI a

little. What we want is for the the GUI to display a question (’Do you
like bananas?’). There will be two options, ’Yes’ and ’No’ that can
be clicked. Depending on which one is clicked, some appropriately
supportive, or otherwise, message will appear in response. We need:

1. A plain (static) text box as before to display the question.
2. A pair of push buttons (again as before).
3. Another plain (static) text box to display the answer/response.

And ... we are going to need some code that, depending on which
button is pushed, displays a different message.

The latter part is not as bad as it sounds. We could have no test
initially in the 2nd (static) text box. We just need to change its text
property (i.e. change the no text to our message). This is mostly a
case of working out and using the unique identifier of this text box
object AND the identifier of the text property (of the text box object).

Firstly – re-run GUIDE. Create a new GUI window with the 4
elements (2 static text boxes and 2 push buttons). It is up to you
how you arrange these 4 objects in the design pane. You might be
guided how windows in programs you have used are designed. AT
the minimum, it is standard practice to place a ’No’ push button next
to and aligned horizontally, with the ’Yes’ (and often ’Yes’ to the right
of ’No’).

No idiot would design anything like Figure 7.5 and certainly not
with those color choices ... but you get the idea.

Figure 7.5: (completely) Bananas design
window.

For each of the objects (2 text boxes and 2 push buttons), I have
renamed them (the Tag property) to something more memorable than
e.g. button or box, #1, #2, #3, etc etc..

graphical user interfaces (guis) 123

The code that MATLAB generates for bananas.m (my name) is
not a lot more involved than before. Primarily, there is just a second
function associated with a mouse click on the 2nd push button.

The logic is going to be very simple. In fact, we don’t need any,
because if the Yes button is clicked, MATLAB will call one function
(my name: function yesbutton_Callback), and if the No button is
clicked, the other function (function nobutton_Callback) is called.
As alluded to above, how do we get the text to change in the 2nd text
box (from the default of no text)?

Unfortunately, MATLAB get all weird here.14 If you had a friend 14 Actually, no wierder than netCDF. Or
arguably Python ...called Luna, you might reasonably communicate with them via the

name ’Luna’. MATLAB doesn’t do it this way and instead assigns a
numeric ID. Luna might have an ID of 8.206034. So you are going to
have to get this ID, which in this case is the ID of the 2nd text box, if
you want to change a property (here: the displayed text).

First off, you can get the ID of the object property using findobj

and assign the result to some memorably variable, e.g.

h_answertext = findobj(’Tag’,’answertextbox’);

This is as simple(!) as asking to find the ID of the object which has a
Tag with value ’answertextbox’ (which was the value I set in the design
editor).15 15 What we might refer to as an ID,

MATLAB calls a handle. Hence com-
monly an ’h’ might appear at the start
of a variable name to indicate it con-
tains a handle.

Where would we put this line of code? Why not in the initializa-
tion function, function bananas_OpeningFcn and I am guessing, at
the end of that function16.

16 Be careful as MATLAB is not auto-
matically adding an end to the end of
functions ...

set

Sets ... the property value of an
object. The syntax is:

set(h,name,value)

where h is the handle (the ID ob-
tained via findobj), name, is the
name of a property, and value, the
value of a property.

Now – we have the ID of the 2nd text box and we can now set its
property (from no text t a suitable message). Lets first implement
an answer if the Yes push button is clicked. The command to set
a property is ... set. In our example, the handle we have already
obtained and assigned to the variable h_answertext. The name of the
property we want to change (refer to the column list in the property
editor if you like as a reminder) is ’String’. And the text ... well,
you can have whatever you want. The complete line is then:

set(h_answertext,’String’,’Yes, it is an excellent fruit.’);

Well, it turns out that this does not quite work? Why? My guess
that we could add the line:

h_answertext = findobj(’Tag’,’answertextbox’);

to the initialization function was incorrect. One possibility is that the
function states:

% -- Executes just before bananas is made visible.

meaning that this function is called before the window is opened. If
the objects have not yet been created at this point, they will obviously

124 geo111 – numerical skills in geoscience

have no ID and the variable h_answertext would be empty. Alterna-
tively, the variable h_answertext created in the initialixation function
is simply not accessible (visible) to function yesbutton_Callback.
Sod it, the line has been added to functionyesbutton_Callback in-
stead, giving:

h_answertext = findobj(’Tag’,’answertextbox’);

set(h_answertext,’String’,’Yes, it is an excellent fruit.’);

Now it works and creates the result shown in Figure 7.6.

Figure 7.6: (completely) Bananas GUI in
action.

Now extend this so that an alternative answer is provided if the
’No’ button is instead clicked. Other embellishments you could make
might be to make the color of the button you clicked change. This
is simply a matter of finding its object ID, and setting the property
BackgroundColor.

Finally, and to put a little of your coding skills to the test, how
about displaying a 3rd message (’Make up your mind!’?) if someone
changes their mind – i.e. if a second button is pressed (after the first).
You’ll need a variable to store whether any button has been pressed
and assign this an initial value of false, e.g.

var_pressed = false;

Whenever a button is pressed, var_pressed will become (will be set
to) true. So before displaying the message in both of the button press
callback functions, the value of var_pressed needs to be tested – a
false means this is the first time any button has been pressed. Once
that initial message is displayed, the var_pressed becomes true, and
when the next time a button is pressed and the value of var_pressed
tested, a true leads to a different message. All that is needed is an if

... in each callback function, and a line initializing var_pressed to
false (in function bananas_OpeningFcn). There is just one problem ...

Variables in functions are ’sectret’ (private) and limited (in scope) to
just that function. So the variable var_pressed which you initialized
at the end of function bananas_OpeningFcn cannot be seen by the
callback function.

We can enforce that the same variable is seen by multiple functions
by stating that it is global (in scope):

global var_pressed;

This line needs to appear at the start of each function in which you
need to read or write the value of var_pressed, i.e. in both callback
functions as well as the initialization function. The complete code for
the Yes button call box function would then look like:

graphical user interfaces (guis) 125

% -- Executes on button press in yesbutton.

function yesbutton_Callback(hObject, eventdata, handles)

% hObject handle to yesbutton (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see GUIDATA)

%h_answertext = findobj(’Tag’,’answertextbox’);

global var_pressed;

h_answertext = findobj(’Tag’,’answertextbox’);

if ∼var_pressed

set(h_answertext,’String’,’Yes, it is an excellent fruit.’);

else

set(h_answertext,’String’,’Make up your mind!’);

end

var_pressed = true;

