6
Further ... Programming

In this chapter we’ll get some (more) practice building programs

and crafting (often) bite-sized chunks of code that solve a specific,

normally computational or numerical (rather than scientific) problem

(algorithms) L * According to the all-mighty Wikipdeia
(and who am I to argue?) — an "algo-
rithm ... is a self-contained step-by-step
set of operations to be performed.
Algorithms perform calculation, data

processing, and/or automated reason-
ing tasks."

98 geo111 — numerical skills in geoscience

6.1 find!

So — a single MATLAB function gets a high-level section, all to itself.
Either it’s really powerful and useful, or I am running out of ideas for
the text?.

find ... finds where-ever in an array, a specific condition is met. If
the specific condition occurs once, a single array location is returned.
The specific condition could occur multiple times, in which case find
will report back multiple positions in the array.

What do I mean by a “specific condition’? Basically — exactly as per
in the if ... construction — a conditional statement being evaluated
to true.

OK - some initial Examples.

Lets say that you have a vector of numbers, e.g.:

A=1[37519742];

and you want to find the maximum value in the vector — easy3

But ... you want to find *where* in the vector the maximum value
occurs. Why might you want to do this? Rarely do you have a single
vector of data on its own — generally it is always linked to at least one
other vector (often time or length in scientific examples). Trivially,
our second vector might be:

B = [0:7];

and is time in ms. The question then becomes: at what time did the
maximum value occur? Obviously, this is easy by eye with just 8
numbers, but if you had 1000s ...

We can start by determining the maximum value.

c = max(A);

Now, we use find to evaluate where in the array A (here: a vector)
the element with a value of max(A) occurs, or where the condition d
== c is true,where d is the element in question (the maximum value).
So:

find(A(:) == c);

should do it. Here, what we are saying is: take all of the elements in
A and find where an element occurs that is equal to ¢ (the maximum
value which we already determined). Try it, and MATLAB should
return 5 — the 5th element in the vector.

Finally, if we assign the result of find to d, we can then use d to
determine the time at which the value of 9 occurred, i.e. B(d) which
evaluates to 4 (ms):

In this example, find returned just a single element, but if we
instead had:

2 It is really powerful and useful.

find

MATLAB defines find, with a basic
syntax of:

k = find(X)

as 'return[ing] a vector containing
the linear indices of each nonzero
element in array X'. That means ...
nothing to me. This is going to have
to be a job for some Examples ... (in
order to see what find is all about).

31 hope so ... check back earlier in the
course on max.

further ... programming

A=1[39519742];

The maximum value is still the same (9) but now ...

» find(A(:) == c)
ans

U Nl

What has happened is that find has determined that there are 2
elements in vector A that satisfy the condition of being equal to c (9)
and these lie at positions (index) 2 and 5. The result vector, if you
assigned it to the variable d again, can be used just as before to access
the corresponding times in vector B;

» d = find(A(:) == c); » B(d)
ans =
14

i.e. that the times at which the values of 9 occur are 1 and 4 (ms).
Any of the relational operators (that evaluate to true or false) can
be used. In fact — looking at it this way leads us to maybe understand

the MATLAB help text, because true and falsea are equivalent to

1 and 0, and find is defined as a function that returns the indices
of the non-zero elements in a vector. By writing A(:) == c we are
in effect creating a vector of 1s and 8s depending on whether the
equality is true or not for each element. You can pick apart what is
going on and see that this is the case, by typing:

» A(:) == c¢
ans

© 0O 0o 0 o = O I

(the statement being true at positions (index) 2 and 5, which is exactly
what find told you).

For instance, we could ask find to tell us which elements of A
have a value greater than s5:

» find(A(:) > 5)
ans

o U1 Nl

99

100 geo111 — numerical skills in geoscience

(Inspect the contents of vector A and satisfy yourself that this is the
case.)

We can also use find to filter data. Perhaps you do not want val-
ues over 5 in the dataset. Perhaps this is above the maximum reliable
range of the instrument that generated them. Having obtained a
vector of locations of these values, e.g.

d = find(A(:) > 5);

we can plug this vector back into A and assign arrays of zero size to
these locations — effectively, deleting the locations in the array; i.e.

A(d) = [];

They it, and note that the size* of A has shrunk to 5 — all the other
elements remain, and in order, but the elements with a value greater
than 5 have gone. You could apply an identical deletion (filtering) to
the time array (B(d) = []).

Play about with some other relational operators and criteria, and
make up some vectors of your own until you are comfortable with
using find.

Back TO THE 'QUAKE ExaMPLE: Find> how may earth quakes there
were bigger than M = 8? Also determine how many quakes occurred
bigger than M = 7, 6, 5, 4, and 3. Determine the day on which the
magnitude 8.7 shock occurred.

In the first problem (number of quakes greater than a specified
limit) — you need ask find to return the row numbers for all quakes
satisfying the condition: magnitude > 8.0. find will return you a
column vector. You don’t actually need to worry about or access the
contents of the vector, you just need to know how many elements
there are in the vector (because there will be one element for each
occurrence of magnitude > 8.0). This is the same as its length (see
earlier and/or help).

In the second problem - you need to find the row number of the
quake magnitude data which satisfies the condition: magnitude >
8.7. Knowing the row number, you can then access the data column
containing the sate information, and hence extract the day and solve
the problem.

All these problems can actually be solved in a single line of MAT-
LAB, but feel free to break it down into multiple steps.

IN THE SEALEVEL (OXYGEN ISOTOPE) EXAMPLE, you could start by de-
termining the maximum and minimum sea-levels that have occurred

4Use the command length or view in
the Workspace Window.

5 Intentional joke *and* clue.

over the last 782,000 years. Then ... because it would be helpful to
know *when* the minimum and maximum sea-level heights oc-
curred, use the find function to find the data row in which the mini-
mum and maximum values occurred. Once you know the respective
data rows, you can then easily pull out the ages.® Find the ages of
both minimum and maximum values.

Also find all the occasions (times) on which sealevel was higher
than today (modern). (Or equivalently, when the oxygen isotope
value, that we are assuming directly reflects changes in level, was
lower than modern?.)

You can also ask questions based in time, such as what was the
sealevel (or oxygen isotope value) at 21 ka (i.e. without having to
look through the data manually and determine on which row 21 ka
occurs, because this is exactly what find can do this for you)? This
can be particularly useful if the value of time is calculated or passed
in from elsewhere, rather than specified as e.g. 21 ka, because you
may not a priori know what the value will be, hence automating the
script with find is super useful. Effectively then you are creating an
algorithm for taking a time input and determining sealevel.

FOrR AN EXAMPLE OF DATA-FILTERING — dig out the paleo-proxy (not
ice-core) atmospheric CO, data you downloaded. One further way
of plotting with scatter is to scale the point size by a data value. We
could do with by:

SCATTER(data(:,1),data(:,2),data(:,2))

... except ... it turns out that there are atmospheric CO, values of zero
or less and you cannot have an area (size) value of zero or less ...

This leads us to a new use for find and some basic data filtering.
The simplest thing you could do to ensure no zero values, would be
to add a very small number to all the values. This would defeat the
'no zero’ parameter restriction, but would not help if there were neg-
ative values and you have now slightly modified and distorted the
data which is not very scientific. Substituting a NaN for problem val-
ues is a useful trick, as MATLAB will simply ignore and not attempt
to plot such values.

So first, lets replace any zero in the CO; column of the data with a
NaN. The compact version of the command you need is:

data(find(data(:,2)==0),2)=NaN;

But as ever — perhaps break this down into separate steps and use
additional arrays to store the results of intermediate steps, if it makes
it easier to understand, e.g.

further ... programming 101

SHINT - if your maximum value was
stored in the variable max_value, you
found find the corresponding row by:
find(data(:,2) == max_value)

What this is saying, is search the 2nd
column (the sea-level values) of the
array data, and look for a match to
the value of max_value. The equality
operator (==) is used in this context.

7 Lower d180 => less ice volume =>
higher sealevel.

NaN

... is Not-a-Number and is a
representation for something that
cannot be represented as a number,
although if you try and divide some-
thing by zero MATLAB reports Inf
rather than a NaN.

NaN can also be used as a function
to generate arrays of NaNs. The most
common/usage in this context is:

N = NaN(szl,...,szN)

which will (according to help) "gen-
erate a a sz1-by-...-by-szN array of
NaN values where sz1,...,szN indi-
cates the size of each dimension. For
example, NaN(3,4) returns a 3-by-4
array of NaN values."

102 geo111 — numerical skills in geoscience

list_of_zero_locations = find(data(:,2)==0);
data(list_of_zero_locations,2) = NaN;

What this is saying is: first find all the locations (rows) in the 2nd
column of data which are equivalent (==) to zero. Set the CO, value
in all these rows, to a NaN (technically speaking: assign a value of NaN
to these locations). You have now filtered out zeros, and replaced the
offending values with a NaN and when MATLAB encounters NaNs in
plotting — it ignores them and omits that row of data from the plot.
Alternatively, we could have simply deleted the entire row con-
taining each offending zero. Breaking it down, this is similar to be-
fore in that you start by identifying the row numbers of were ze-
ros appear in the 2nd column, but now we set the entire row to be
‘empty’, represented by []:

list_of_zero_locations = find(data(:,2)==0);
data(list_of_zero_locations,:) = [];

If you check the Workspace window?, you should notice that the size
of the array data has been reduced (by 4 rows, which was the number
of times a zero appeared in the 2nd column).

We are almost there with this example except it turns out that
there is a CO; proxy data value less than zero(!!') We can filter this
out, just as for zeros. I'll leave this as an exercise for you? ... The plot
should end up looking like Figure 6.1. As another lesson-ette, given
that the circles are insanely large ... try plotting this with proportion-
ally smaller circles™.

As a last (optional) exercise on this ... In the CO; data, there are
min and max uncertainty limit values. One could color-code the
points in a scatter-plot to represent either the min or the max (per-
haps try this first), but one on its own is not necessarily much use.
One could color-code by the difference, but this is a function of the
absolute value and one would expect large uncertainty bars if the
mean (central) estimate was high, and lower if it were low. Per-
haps we need the relative range in uncertainty? Can you do this?

i.e., scatter-plot the mean CO, estimate (as a function of time),
but color-coding for the range in uncertainty as a proportion of the
value?

It turns out this is not entirely trivial because as you have seen,
the data is not as well behaved as you might have hoped. In fact, it
is just like real data you might encounter all the time! Before you do
anything — break down into small steps what you need to do with
the data, as this will inform what (if any) additional processing you
might have to carry out on the data. It should be obvious, that to
create a CO, difference, relative to the mean, you are going to have
to divide by the mean value (column #2 in the array). So first off —

8Or:
» size(data)

9 But you might e.g. use <=.

° HINT: you are going to want to apply
a scaling factor to the vector you passed
as the point size data.

Proxy-atmospheric CO
7000 /4 A :
(

({
6000 \\

\

Il
/]

5000

(ppm)

4000

Atmospheric CO.
8
8

8

100 150 200 300 350 400 450

Time (Ma)

Figure 6.1: Proxy reconstructed past
variability in atmospheric COz2 (scatter
plot).

further ... programming 103

if any of the mean values are zero, it is all going to go pear-shaped.
Actually, equally unhelpful, or at least, lacking in any meaning, may
be negative values. If you inspect the data (in the Variable window),
there are both zeros and negative values for mean CO; proxy esti-
mates. We need to get rid of these. Follow the steps as before. You
may also have to process the min and max values should they turn
out to be the same. Likely you are going to have to delete all the rows
in which (1) column #2 values are zero or below, and (2) column #3
and #4 values are equal (you could also try the NaN substitution and
see if it works out). (If you need a slight hint ... one possible answer

is here' , but try and work it out for yourself.) " In this possible solution — all rows
. L. . TP in the array data, with mean CO2
All that is missing now, is any indication of what the color scale values less than or equal to zero, are
actually means in terms of values (and of what). MATLAB will add a deleted. Also, all rows for which the
) max and min values are the same, are
colorbar to a plot with the command ... colorbar. Although the color also deleted.
. . . » data=load('paleo_C02_data.txt’,
scale gets automatically plotted with labels for the values, looking . .rlascii’):
. , . » data(find(data(:,2)<=0),:)=[1;
at the plot, we still don’t know what the values are of (e.g. units). » data(find(data(:,3)==data(:,4)),:)
We can label the colorbar, but MATLAB needs to know what we o=l
. 3 » scatter(data(:,1),data(:,2),40,
are labelling. Each graphic object is assigned a unique ID when you ...100%(data(:,4)-data(:,3))./data(:,2),
. . .. Filled”);
create them and which normally you know nothing about. We can Xtabel ("Tine (Ma)’)

» ylabel(’Atmospheric C0_2 (ppm)"’)
» title(’Proxy atmospheric C0_2")

create a variable to store the ID, and then pass this ID to MATLAB to
tell it to create a title for the colorbar. To cut a long story short:

colorbar_id=colorbar;
title(colorbar_id, 'Relative error (%)';

Proxy atmospheric CO Relative error (%)
500

7000

It should end up looking something like Figure 6.2 in which you -

can see the high relative uncertainty (bight colors) prevail at low CO;
values and "deeper time’ (ca. 200-300 Ma). The colorbar title (label)

is maybe not ideal, nicer would be one aligned vertically rather than
horizontally. We'll worry about that sort of refinement another time.

5000 350

. 300
4000 °
250

3000 e
° LY 200

. 150

Atmospheric CO,, (ppm)
.

100

50

0 100 200 300 400 500
Time (Ma)

Figure 6.2: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

