
88 geo111 – numerical skills in geoscience

5.1 Further data input

Previously, you imported ASCII data into MATLAB using the load

command1. You might not have realized it at the time, but the use of 1 Or maybe ’cheated’ and used the
MATLAB GUI ...load requires that your data is in a fairly precise format. MATLAB

says "ASCII files must contain a rectangular table of numbers, with an
equal number of elements in each row. The file delimiter (the character
between elements in each row) can be a blank, comma, semicolon, or tab
character. The file can contain MATLAB comments (lines that begin with a
percent sign, %)." Firstly, your data may not be in a simple format and
often may contain both numerical values and string values. Secondly,
your data may not even be in a text/ASCII format. For instance,
you data maybe be in an Excel spreadsheet, or for spatial scientific
data, an increasingly common format is called ’netCDF’ (Network
Common Data Form). In this section, we’ll go through the basics and
some examples of each.

5.1.1 Formatted text (ASCII) input

The general procedure that you need to follow to input formatted
text data is as follows:

opening and closing files
MATLAB has a pair of commands

for opening and closing files for
read/write:

• fopen will open a file. It
needs to be passed the name (and
path if necessary) of the file (as
a string), and will return an ID
for the file (assign (save) this to a
variable – you’ll need it!).
• fclose ... will close the file. It

requires the ID of the file (i.e. the
variable name you assigned the
result of calling fopen to) passed
to it as a parameter.

textscan

According to (actually, para-
phrased from) MATLAB:

C = textscan(ID,format)

" ... reads data from an open text file into
a cell array, C. The text file is indicated
by the file identifier, ID. Use fopen to
open the file and obtain the ID value.
When you finish reading from a file,
close the file by calling fclose(ID)."

The ID part should be straightfor-
ward (if not – follow through the
Example).

The format bit is the complicated
bit ... There is some help in a fol-
lowing Box and via the Example.
Otherwise, there is a great deal of
details and examples in MATLAB
help – you could look at this as a
sort of menu of possibilities, and
given a particular file import prob-
lem, the best thing to do is simply
scan through help, looking for
something that matches (or is close
to) your particular data problem
(and/or ask Google).

1. First, you need to ’open’ the file – the command (function) for
this is called fopen (see Box). You need to assign the results of this
function to a variable for later use.
What is going on and why this all differs so much form using
load, where you only had to use a single command, is that you
first have to open a connection to the file ... before you even read
any of the contents in(!)2.

2 This is very common across all(?)
programming languages.

2. Secondly ... you can read the content in (finally!). The com-
plications here include specifying the format of the data you are
going to read in. You also need to tell MATLAB the ID of the file
that you have opened (so it knows which one to read from). The
function you are going to use to do this is called textscan.
3. Close the file using fclose (see Box). You are going to have to
pass the ID of the open file again when you call this function (so
MATLAB knows which file to close).
4. Lastly, you are going to have to deal with the special data struc-
ture that MATLAB has created for you ...

If you are interested (probably not) – the connection made to an
open file is called a file pipe. Typically, you have have multiple open
file pipes at the same time in programs, and this is why obtaining and
then specifying a unique ID for the pipe you wish to read or write
through, is critical.

further ... matlab and data visualization 89

As an initial Example to illustrate this alternative (and more flexi-
ble) means of importing of data, we are going to return to the paleo
atmospheric CO2 proxy dataset file – paleo_CO2_data.txt3. Assum- 3 The version that you have used before

– not to be confused with a version
ending in .dat that we will look at
shortly ...

ing that you have already (previously) downloaded it, open it up
in a text editor and view it – you should see 4 neatly (ish) aligned
columns of numeric values ... and nothing else4. 4 This ’nothing else’ is important as it

is the reason why you were previously
able just to load the data.

OK – so having seen the format of the data in the ASCII file, you
are going to work through the following steps5: 5 You can start off working at the com-

mand line if you wish, but ultimately,
you are going to need to put everything
into an m-file.

1. First ’open’ the file – you will be using the function command
fopen, and passing it the filename6 (including the path to the file

6 For convenience, you could assign the
filename (+ its path) to a (string) vari-
able and then simply pass the variable
name – remember, no ’ ’ needed for
a variable naming containing a string
(whereas ’ ’ is needed for the string
itself).

if necessary). So that you can easily refer to the file that you have
opened later, assign the output of fopen7 to a variable, e.g.

7 The output is a simple integer index,
whose value is specific to the file that
you have opened.

» openfile_id = fopen(’paleo_CO2_data.txt’);

2. Now ... this is where it gets a trickier – the function you are go-
ing to use now is called textscan. Refer to help on textscan, but
as a useful minimum, you need to pass 3 pieces of information:

(a) The ID of the open file (you have assigned this to a handy
variable (openfile_id) already.)

(b) The format of the file (see margin note). (This is where it

According to MATLAB help:
"the format is a string of conversion

specifiers enclosed in single quotation
marks. The number of specifiers de-
termines the number of cells in the
cell array C." Take this to mean that
you need one format specifier, per
column of data. The specifier will
differ whether the data element is a
number or character (and MATLAB
will further enable you to create
specific numerical types).

The format specifiers are all listed
under help textscan. However,
your Dummies Guide to textscan

(and good for most common appli-
cations) is that the following options
exist:
%d - (signed)integer

%f - floating point number

%s - string

MATLAB will automatically repeat
the format for as many lines as there
are of data. Alternatively you can
specify precisely how many times
you would like the format repeated
(and hence data read in).

gets much less fun, but hang in there!) You simply list, space-
separated, and between a single set of quotation marks, one
format option per element of data.

In this particular Example, there are 4 items of data (per
row) – each of them is an integer or a floating point number8,

8 At least, none of them are clearly
strings, right?

depending on how you want to look at it. Assuming that the
data is a floating point number, the format for the input of each
number item, is %f.

The result of textscan is then assigned to a parameter, e.g.

my_data = textscan(openfile_id,’%f %f %f %f’);

3. So far, so good! And you can now close the file:

» fclose(openfile_id);

4. Actually, it does get worse before the end of the tunnel ... what
textscan actually returns, i.e. your read-in data, is placed into
an odd structure call a cell array. It is not worth our while wor-
rying about just what the heck this is, and if you view it in the
Variables window (i.e. double click on the cell array name in
the Workspace window), it does not display the simple table of 4
columns of data that maybe you were expecting. For now, we can
transform this format into something that we are more familiar
with using the cell2mat function, e.g.

90 geo111 – numerical skills in geoscience

my_data_array = call2mat(my_data);

And now ... it is done, i.e. there exists a simple array, of 4 columns,
the first being the age (Ma), the second being the CO2 concen-
tration value (units of ppm), and the 3rd and 4th; minimum ad
maximum error estimates in the proxy reconstructed value. :)

MATLAB claims that a cell array

is "A cell array is a data type with in-
dexed data containers called cells. Each
cell can contain any type of data. Cell
arrays commonly contain pieces of text,
combinations of text and numbers from
spreadsheets or text files, or numeric
arrays of different sizes." I am sort of
prepared to believe this.

Basically, in object-oriented speak,
a cell array is an object, or rather, an
array of objects. As MATLAB hints
– the cells can contain *anything*.
Your limitation previously is that
an array had to be all floating point
numbers, all integers, or all strings,
and if strings, all the strings had
to be the same size. For strings in
particular, it is obvious that a more
flexible format where a vector could
contain both ’banana’ and ’kiwi’
is needed (try creating a 2-element
vector with these 2 words and see
what happens). You clearly might
also want to link a number with a
string (e.g. number of bananas) in
the same array, rather than have to
create 2 sperate arrays.

cell2mat

Having created this weird format
(cell array), now MATLAB has
to give you a way of converting the
data inside into something more
usable. The function is cell2mat,
which for a cell array C:

A = cell2mat(C);

will return the corresponding
(’normal’) array A.

Now this is only true if all the
data in C is of the same tpye (e.g.
all floating point numbers). If the
data types are mixed or you only
wish for a sub-set of the data to be
extracted and converted, simply
index the required part of the cell
array (Examples on this later).

As a further example, we are going to process a more complicated
version of the paleo atmospheric CO2 proxy dataset. The file is called
paleo_CO2_data.dat and is available from the course webpage. An
initial problem here is even opening up the file to view it – if you
use standard Windows editors such as Notepad it fails to format it
properly when displaying its contents9. The first lesson then in sci-

9 If you use a Mac (or linux) however,
all text editors should display the
content jus fine.

entific computing then is to have access to a more powerful/flexible
editor than default/built-in programs such as Notepad. One good
(Windows) alternative is Notepad++10. So go open the file with this

10 Conveniently installed on the Watkins
computer lab computers.

instead11. Note the format – there are a bunch of header lines and

11 Right-mouse-button-click over the file,
then select Open with and then click on
Notepadd++.

moreover, some of the columns are not numbers (but rather strings).
So even if you were to edit out the headers with comments (%)12, you

12 Recall that MATLAB ignore lines
starting with a % and this includes
loading in data lines using load.

are still left with the problem of mis-matched columns. You could
edit the file in Excel to remove the problematic columns ... but now
this seems like a real waste of time to be editing data formats with
one software package just to get it into a second! (Again, you could
use the MATLAB GUI import functionality ... but it will be a healthy
life experience for you to do it at the command line :o))

OK – so having gotten an idea of the format of the ASCII data file,
you are going to work again through the 4 steps:

1. First ’open’ the file as before (fopen) and assigned the ID re-
turned by the function to a variable openfile_id2.
2. Call textscan. However, we now want to pass 3 pieces of infor-
mation (compared to 2 before):

(a) The ID of the open file.
(b) The format of the data.
(c) And now – a parameter, together with an (integer) value, to
specify how many rows of the file, assumed to be the header
information, to skip.

(Again – the result of textscan is then assigned to a variable
which will represent a cell array.)
Lets do the easy bit first – to tell MATLAB to skip n lines of a file,
you add the parameter ’HeaderLines’ to the list of parameters
passed to textscan, and then simply tell it how many lines to skip.
In this Example, you’d add:

further ... matlab and data visualization 91

my_data = textscan(openfile_id2, ... ,’HeaderLines’,3);

OK – now to dive back into the MATLAB syntax mire ... Lets
just load in just the first 2 columns of data, and assume that they
are both integers (and skipping the first 3 lines of the file as per
above). We might guess that we could simply write:

my_data = textscan(openfile_id2,%d,%d,’HeaderLines’,3);

Try it (including closing the file, and a call to cell2mat, as before).
What has happened?
It seems that MATLAB translates your format (’%d,%d’) into: ’read
in a pair of integers, and keep automatically repeating this, until
something else is encountered’. That something else is sequence
of characters at the end of the first data line (line #4, because we
skipped the first 3), that makes MATLAB think that it has finished
(or rather, that it cannot reading in 2 pairs of integers any longer).
This leaves you with 2 pairs of integers – i.e. a 2×2 matrix (as
you’ll see if you look at my_data_array).
Here is a solution – we could omit all the information following
the first 2 elements (something for Google to help with).13: 13 This turns out to be specifying

’%*[
∧\n]’, which in effects sort of

says:
’skip everything (all the fields) (%*)

up until the end of the line is found
([∧\n]).

my_data = ...

textscan(openfile_id2,’%d %d %*[
∧\n]’,’Headerlines’,3)

3. Now close the file:

fclose(openfile_id);

4. And now convert the results to something more human-
readable:

my_data_array = call2mat(my_data);

This should do it – a simple array, of 2 columns, the first being the
age (Ma) and the second the CO2 concentration value (units of ppm).
:)

There must be some sort of important life lesson hidden here.
Perhaps about only working with well-behaved data files, or using
the GUI import functionality? But hopefully it does illustrate that
messy files can be dealt with, without the need for laborious editing
or processing in Excel.

5.1.2 Importing ... Excel spreadsheets

If your data is contained in an Excel spreadsheet, and you want it in
MATLAB, your options are:

1. Select some, or all, of the columns and rows in a specific work-
sheet, and either copy-paste this into a text file (but taking care
that the worksheet column widths are formatted such that they

92 geo111 – numerical skills in geoscience

are wider than the widest data element), or save in an ASCII for-
mat, with comma or tab delineations between columns. In either
case, then load in the data using load, or if consisting of mixed
numbers/text, go through the Hell that is textscan
2. Use MATLAB function xlsread.

xlsread

There are various uses (i.e. alterna-
tive allowed syntax) for xlsread for
an Excel file with name filename.
The 2 relevant and more useful ones
look to be:

1. num = xlsread(filename)

which will return the *numeric*
data in the Excel file filename in
the form of a matrix, num. Note
that non-numeric (e.g. string)
headers and/or columns, are
ignored. Also note that num is a
’normal’ numeric array and does
not require any conversion.
2. [num,txt,raw] = ...

xlsread(filename) will
additionally return text data in a
cell array txt, and *everything* in
a cell array raw.

You can also specify a particular
worksheet out of an Excel file to load
in:

num = ...

xlsread(filename,sheet)

(and there are further refinements
and options listed under help).

So ... option #2 looks ... is looking the easiest ... :)

As an example, lets return to the paleo proxy CO2 data again, but
this time, as an Excel sheet. The data file you need is:
paleo_CO2_data.xlsx
(You may as well go load this into Excel just to take a look at the
format and so subsequently, you’ll know if you have imported it
faithfully or not.)

From the help box on xlsread, it should be pretty apparent what
you do. And in fact, I am going to leave you to work it out – try and
import the age and CO2 data (the numeric part of the data) from
paleo_CO2_data.xlsx.

If you need to, you index a cell array, pretty well much like a nor-
mal array, except it has an alternative syntax. For a normal, numeric
array A, you might write:

» A(4,3)

to reference the value in the 4th row, 3rd column. For a cell array C, to
index the cell in the 4th row, 3rd column, you’d also write:

» C(4,3)

but you’d get a cell returned, not the value in the cell. If you want
the value in the cell located at (4,3), you’d put the index in curly
brackets:

» C{4,3}

and you’d get a value of 3000 returned in the example of raw.

5.1.3 Importing ... netCDF format data

Much of spatial, and particularly model-generated, scientific output,
is in the form of netCDF files. This is a format designed as a com-
mon standard to facilitate sharing and transfer of spatial data, but in
a way that enables e.g. a ’complete’ description of dimensions and
various types of meta-data to be incorporated along with the data.
The format is platform independent and a variety of graphical view-
ers exist for viewing and interrogating the data. Most programming
languages support the reading and writing of netCDf format data.
MATLAB is no exception here.

further ... matlab and data visualization 93

As per the previous subsection on data import, and indeed file
read/write in programming languages in general – one opens a file
and receives an ID for that file. The file can then be written to or
read (including just interrogating its properties rather than neces-
sarily extracting spatial data) using this ID. And of course, closed
(using the ID). However, the netCDF standard is a little odd in how
reading/writing is implemented and everything has to be done by
determining the ID of a particular data variable or property of the
file. As you’ll see ...

The general approach for reading netCDF data is as follows:

1. Open the netCDF file by

ncid = netcdf.open(filename,’nowrite’);

where filename is the name of the netCDF file (which generally
will end in .nc). ’nowrite’ simply tells MATLAB that this file
is being open as read-only (this is the ’safe’ option and prevents
accidental deletion of over-writing of data).
2. This is the weird bit, as we cannot ask for the data we want
automatically :o) Instead, given that we know14 the name of the 14 There are ways of listing the variables

if not.variable we want to access, we ask for its ID ...

varid = netcdf.inqVarID(ncid,NAME);

where NAME is the name of the variable (as a string), allowing us
to then request the data:

data = netcdf.getVar(ncid,varid);

that says – assign the data represented by the variable varid, in
the netCDF file with ID ncid, to the variable data.

So actually, not totally weird – you request the ID of the vari-
able, then use that to get access to the data itself. The names of
the MATLAB commands vaguely make sense in this respect –
inqVarID for inquiring about the ID of a variable, and getVar for
getting the variable (data) itself15. 15 It is beyond the scope of this course to

worry about why in the case of netCDF,
the function are all netcdf. something.
Just to say, it involves objects and
methods and is a common notation
in object orientated languages (that
nominally, MATLAB isn’t).

3. Finally – close the file, by passing the ID variable into the func-
tion netcdf.close, i.e.

netcdf.close(ncid);

Note that you need to pass the ID of the netCDF file for each
and every command (after netcdf.open) so MATLAB knows which
netCDF object you are referring to.

For a netCDF Example, we’ll take the output of a low resolution
Earth system model (GENIE). To start off, download the ’2D marine
sediment results’ netCDF file – fields_sedgem_2d.nc. The data here

http://www.seao2.info/mycgenie.html

94 geo111 – numerical skills in geoscience

is relatively simple – a 2D distribution of bottom-water and surface
sediment properties, saved at a single point in time. In other words,
there are only 2 (spatial) dimensions to the data16. 16 Adding time would make it 3 dimen-

sions (2 spatial + 1 of time). Adding
height or depth in the ocean would also
make it 3 (3 spatial). 3 spatial + time
would make for a 4-dimensional dataset
...

OK – we’ll start by opening the file (assuming that you have
downloaded it!), remembering to assign its unique ID to some vari-
able. Then, you’ll want to get hold of (and assign to another vari-
able), the ID of the variable we want to get hold of and plot – in this
Example, it is called ’grid_topo’. Having obtained the ID for this
variable, you can then fetch it – assign it to a variable data. Then
close the file.17 17 You should be able to do all of this

without further hints – the sequence
of commands and how they are used,
is given in the introduction to this
subsection.

You should now have an array called data. It should be 36×36 in
size. Why not plot it18. Can you guess what it might be? Is it in the

18 Your choice of 2D plotting function.
correct orientation? (If not – correct it.)

Clearly what is missing are the x and y axis values, which you
should have correctly deduced are longitude and latitude, respec-
tively, with latitude presumably going from -90 to 90N, and longitude
... well, maybe it is not completely obvious exactly what the value of
longitude is at the original.

A great strength of netCDF its the ability of this file format to also
contain the grid (axis) details that the data is on. There are ways of
finding out the names of the axis variables (dimensions), but for now,
I’ll give you them:

• ’lat’ – is the latitude axis. (Technically, the axis values are the
mid-points of the grid cells.)
• ’lon’ – is the longitude axis.

The axes are held in the netCDF file as vectors and we can retrieve
this (1D) data in a similar way to the 2D data:

varid = netcdf.inqVarID(ncid,’lat’);

lat = netcdf.getVar(ncid,varid);

varid = netcdf.inqVarID(ncid,’lon’);

lon = netcdf.getVar(ncid,varid);

in which we obtain the ID of the axis variable ’lat’, then retrieve the
axis data and assign it to a vector lat (and then likewise for longi-
tude). Do this, and confirm that you get plausible vectors represent-
ing positions along a longitude and latitude axis.

The final task would then be to take the 2 axis vectors, and create
a pair of matrices – one containing longitude values associated with
the 2D data points, and one containing latitude values associated
with the 2D data points. For this, you need to use meshgrid19. See 19 See subsequent section.

if you can create the necessary lon/lat matrices and then plot the
model topo data on its correct axes.20 20 If you have flipped the data matrix

around earlier when plotting, un-do
this, or re-load the 2D data, or else the
axes will no long correspond to the data
matrix orientation ...

The variable names of other data-sets that you might load and
experiment with in terms of plotting function, color scale, and any

further ... matlab and data visualization 95

other refinements that help visualise the data, include:

• ’ocn_sal’ – deep ocean salinity (units of per mil).
• ’ocn_O2’ – concentration of oxygen in bottom waters (units of
mol kg−1).
• ’sed_CaCO3’ – % of calcium carbonate in surface sediments.

In a related netCDF Example, we’ll extend the problem to 3D –
2 spatial dimensions (longitude and latitude) and one of time. The
file you need is called fields_biogem_2d.nc21. You are going to go 21 The back-story is that this contains

the 2D surface ocean and atmosphere
fields form a model experiment in
which the climate system was spun-
up from rest and uniform values of
everything, so as time progresses, the
spatial patterns of the climate system
start to evolve and stabilize.

through the same basic procedures of: opening the file, obtaining the
variable ID, accessing the data using that ID, and closing the file. The
name of the variable is called ’atm_temp’. Create a script to do this
all, calling the data array that you obtain by calling

netcdf.getVar(ncid,varid);

data3. How many dimensions does this array have? What are the
lengths along each dimension? Can you guess which dimension of
the 3 time is?

The name of the time axis variable is ’time’, and you can access
the times along this axis (i.e. the times at which the model saved a 2D
spatial state) by:

varid = netcdf.inqVarID(ncid,’time’);

times = netcdf.getVar(ncid,varid);

Ideally, you should be able, given the 3D array that you have ob-
tained (from the data variable atm_temp), to specify and plot, the
1st model-projected surface air temperature distribution, as well as
the last distribution. And given that the variables for latitude and
longitude are also ’lat’ and ’lon’, you should be able to plot the
temperature distribution with appropriate axes (and contoured).

You should also ... using find, be able to determine (and plot) the
2D data slice corresponding to the year (mid point) 1999.5.

Finally, test yourself and understanding to date, by creating an
animation of how the surface air temperature in the model evolves
over time.22 22 You have everything you need – the

vector of times, and from this you can
determine how many times there are
and hence the number of iterations of a
loop.

