
92 geo111 – numerical skills in geoscience

5.3 Further (spatial / (x,y,z)) plotting

As you have seen earlier – the simplest possible way of taking a ma-
trix of data values and plotting them spatially, as a function of (x,y)
location, is the function image. In effect, this is treating your data as
if it were an image – the data values being the ’color’ of each pixel
and the location in the matrix defining where in the image (row,
column) the pixel is. The problem with this is that information re-
grading what is on the x and y axes is lost, be this distance, lat/lon,
or some set of observed/experimental variables, or whatever. instead,
the points are evenly spaced on both axes. Moreover, the raw values
are plotted and there is no possibility of interpolation/contouring
or smoothing. One could regard scatter plotting as an improvement
over this and a sort of x,y,z plotting, in as much as a 3rd dimension (z
data value) can be represented through color and/or symbol shape
and at time this can be quite effective. However, again, no interpola-
tion/contouring or smoothing is possible with scatter.

For plotting true (x,y,z)/’3D’ plots (i.e. data values in 2 spatial
dimension), MATLAB provides a wide variety of more formal ways
of plotting data spatially, including even the possibility of adding a
4th dimension representing the data value (x,y,z,zz) (see Box).

x,y,z PLOTTING
MATLAB calls plots of a (z) value

as a function of both x and y, ’3D’.
Strictly, one could look at some of
these functions as 2D, as scatter can
plot a 3rd data (z) value as different
colors/shapes/sizes as a function of
both x and y ... Anyway, the most
commonly used/useful and fortu-
nately simple, functions which create
a 2D (x, y) plot but with contours in
the value of (z), are:

1. contour – Plots a figure with the
data contoured, with a range and
increment between contours that
is fully specifiable, color-coded or
not, and labelled or not. Options
are also provided for specifying
how the contouring is done (and
the data interpolated).

2. contourf – Similar to contour,
except in between the (now sim-
ple black, by default) contours, a
fill color is plotted and scaled to
the data value.

For a genuine 3D plot, with surface
height determined by the data in
the 3rd dimension of the array, col-
ors and/or contours in the data in
the 4th array dimension, suitable
functions include:
surf, surfc, mesh
(but are not considered further here).

For a feel of what you should be able to learn to achieve using
MATLAB – go to the following webpage. In this data repository you
can do things like re-plot with different longitude, latitude, and tem-
perature ranges. Overlay the coastlines, and other useful things like
that. You can also click through the different months of the year to
get a feel for how the surface temperatures on Earth change with the
seasons. Note that the graphic produced from this particular website
is not particularly great, and you can all do better than this using
MATLAB already. Presumably there are some lazy PhD students
out there lacking the skills that you are (hopefully) learning. Perhaps
they should take GEO111 (or maybe you are ...)?

imagesc For a data array (matrix) A,

imagsc(A)

displays the data array as if a
bitmap, but unlike image (see ear-
lier), "uses the full range of colors in the
colormap".

As an example, load in the global topographic data file (etopo1deg.dat)
from the course webpage. This is the height of the (solid) surface of
the Earth relative to mean sealevel in meters, with the continents
having a positive value and the ocean floor, negative. The data is
conveniently on a 1° (longitude and latitude) grid. You could view
the resulting elements of the 2D array in the Variable window if you
like ... but at 360×180 in size, there may not be much of use you can
glean by visually inspecting the matrix7. 7 More useful then are the summary

details in the Workspace window, such
as the apparent absence of NaNs and
that the Min and Max Earth surface
heights seem plausible.

Try throwing the array into the image function see what happens
(hopefully something like Figure 5.1). It it had happened to come out

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.MONTHLY/.temp/#nameddest=views

further ... matlab and data visualization 93

displayed upsidedown8, then you’d need to flip the matrix upside- 8 It doesn’t in this particular case.

down using the command:

etopo1deg=flipud(etopo1deg);

and if the Earth instead appeared on its side9, you need to swap the

9 Actually, in this example, it is OK in
this respect too. Boring!

rows and columns (x for y axis):

etopo1deg=etopo1deg’;

It is not unusual for a first plotting attempt of spatial data to be in-
correctly orientated and a little trial-and-error to get it straight is
perfectly acceptable!

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.1: Very basic imaging (image)
of an array (2D) of data – here, global
bathymetry.

This is not exactly the prettiest of images. You can distinguish
ocean (blue) from land (mostly brown, but other color pixels in
places). Fortunately, MALTAB provides a variant of this plotting
function, imagesc, that calculates the color scale to exactly span the
min/max values in the data. Try it (and get something like Figure 5.2
hopefully).

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.2: Slightly improved very basic
imaging (imagesc) of bathymetry data.

The function imagesc also enables the range of data values the
colo9r range corresponds to, to be set. Refer to help on this func-
tion and see if you can plot just the above-sealevel, i.e. land surface
heights, spanning zero (sealevel) to the maximum height10.

10 Don’t forget the function max.

Which sort of in a round-about sort of way also brings us to how
to set the color scale, which can be changed using the colormap com-
mand (see Box). Try out some different colormaps and re-plot the
global topography data.What scales work well and what do not?
Which scales help pick out details of e.g. ocean floor depth variation
and which help pick out simple land-sea contrasts. Think about what
one might want to highlight about global topography and what color
scale might be best for this purpose? colormap MATLAB has a number of

’colormaps’ built in – color scale that
determine the colors that correspond
to the data. The command to change
the colormap from the default is:

» colormap NAME

where NAME is the name of the col-
ormap. You can find a list of possible
colormaps in help on colormap (in
a table towards the bottom). But a
brief summary is:

• parula – the current MAT-
LAB default – chosen to provide
a wide range of color and color
intensity.
• jet – the old MATLAB de-

fault, but one which uses red and
green in the same color, which
should be avoided (why?).
• hot, cool – relatively simple

color transitions but useful – hot
is something like you’ll see in
publication figures.
• pink – another simple and at

times useful transition and from
dark (almost black) to white.

To return to the default colormap:

» colormap default

Sticking with global Earth surface topography, how else can we
display the spatial data? For instance we might want to interpolate
it, contour it, or simple get the longitude and latitude exes correct.
Note that only by luck, because this particular dataset is 1 degree
by 1 degree, the default axis scale in MATLAB when using image is
approximately correct, although note that ’latitude’ has been ordered
in reverse and it goes from 1 to 180 rather than -90 to 90 ... We’ll
explicitly address this shortly.

To start with, you can simply use the contour function (see Box),
passing only the matrix (of global topography values). Try this. Now
you might want to think about flipping the matrix up-down, and/or
left-right, as your plot should have come out looking like Figure 5.3.

Once you have fixed the orientation of the topography map, you
might play about with the color scale (colormap) as before. You

94 geo111 – numerical skills in geoscience

might also try the companion to contour – contourf. Re-orientating
the matrix, switching to a different colormap, and plotting using
contourf, might give you something like Figure 5.4.

OK, so a next refinement in plotting esp. maps and contour plots,
is firstly to specify the range of the color scale, as we may not want
the min-to-max range chosen by default by MATLAB, and the num-
ber of contours (e.g. in the topography example, they are pretty far
apart and it is difficult to make out much detail). Both of these fac-
tors can be addressed simultaneously, by giving MATLAB a vector
containing the value at which you want the contours drawn11. 11 By default: MATLAB determines the

minimum and maximum data values,
and draws 10 equally spaced contours
between these limits.

Taking the global topography data – lets say you were interested
only in low lying and shallow bathymetry, and wanted 20 con-
tours intervals. Assuming a range in topographic height (relative
to sealevel) of -1000 m to +1000 m, you should be able to deduce how
to create the vector(?)12 12 If not, it is:

» v = [-1000:100:1000];

contour There are various uses of
contour. The simplest is:

contour(Z)

where Z is a matrix. Thsi ends up
similar to image except with the data
contoured rather than plotted as
pixels (the ’simularity’ here is that
the x and y axis values simple are
the number of the rows and columns
of the data).

You can specify the values at which
the contours are drawn, by passing a
vector (v) of these values, e.g.

contour(X,v)

More involved and practical, is:

contour(X,Y,Z)

where X, Y, and Z, are all matrices
of the *same* size (there is impor-
tant). X and Y contain the x and y
coordinate locations of y data values
(contained in matrix Z). In the exam-
ple of a map – X and Y contain the
longitude and latitude values of the
data values in Z.

Similarly, you can add a vector v

containing the contours to be drawn,
by:

contour(X,Y,Z,v)

Do this and check e.g. by opening up the vector in the Variables
window. You should see the numbers from -1000 to 1000 in intervals
of 100. Why, for instance, can you not simply write:

» v = [-1000:1000];

??? (Or rather: why might this not be a good idea ... ?)
Having created a specific vector of contours to plot, try it out. OK

– so this is a little weird and maybe not so useful, but you get the
point hopefully. So try plotting the following:

1. Just above sealevel topography, up to 10,000 m, in increments
of 100 m.
2. Just the sealevel (coastline) contour ... trickier – create a vector
with a value at zero, and a value either side – one very high and
one very low. Use contour rather than contourf, although the
latter produces a lovely land-sea mask!
3. Convert the data matrix of value in units of m, to ft, and plot
the ocean floor (values equal to or below sealevel) in intervals of
1000 ft.
4. Finally – try some different color scales for the above. Think
about which color scales best help illustrate the data, and whether
contour or contourf is clearer. Also: how many contour intervals
is ’best’? You key is to make features clear, within the plot becom-
ing cluttered or overly detailed.

The final refinement in contour plotting we’ll look at is adding la-
bels to the contours. The command to do this is clabel (for ’contour
label’) (see Box). Now, before anything, there is a slightly complica-
tion. clabel needs to know details of the contours and graphics ob-
ject with which to do anything with. For the purposes of this course,

further ... matlab and data visualization 95

you don’t have to worry about the details of this, but simply need to
know the following:

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.3: Example result of basic
usage of the contour function.

Figure 5.4: Example usage of contourf,
with the hot colormap (giving dark-
/brown colors as deep ocean, and
light/white as high altitude).

0

0

0
0

0

0

0

0

0

0

00

0

0

0

0

0

00

0

0

0
0

00
0

0

0

0

0
0

0

0

0

0

0

0
0

00

0

0

0

0 0
0

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 5.5: Example usage of contour,
contouring only the zero height isoline,
and providing a label.

1. When you call contour (or contourf), 2 parameters are re-
turned, which so far you have not cared about or even noticed. We
now need them. SO when you call either potting function, using
the syntax:

[C,h] = contour(...)

which saves a matrix of data to C, and a ID (technically: graphics
object ’handle’)to h.
2. When you call clabel, pass these parameters back in, e.g.

clabel(C,h)

(in its most basic usage).

If you do this, in an earlier example of plotting just the zero height
contour, and now using the most basic default usage of clabel (as
above), you get, for good or for bad, Figure 5.5.

In the default usage of clabel, you’ll get a label added on every
contour that you plot. This ... can get kinda messy if you have lots
and lots of contours plotted. You may well not need every single
contour labelled, particularly if you also provide a color scale (see
below). So you can also pass in a vector to tell MATLAB which con-
tours to label. For example, if you have a contour interval vector:

v = [-1000:100:1000];

maybe you onyl want labels every 500m, so you’d use a vector:

w = [-1000:500:1000];

to specific the labelling intervals. The complete set of commands
becomes:

» v = [-1000:100:1000];

» w = [-1000:500:1000];

» [C,h] = contour(etopo1deg,v);

» clabel(C,h,w);

clabel

» clabel(C,h)

labels every contour plotted from

[C,h] = contour(...);

(or from contourf).
By prescribing and passing a vec-

tor v of contour intervals, you can
label fewer/specific intervals rather
than all of them (the default), e.g.

» clabel(C,h,v)

Finally – missing from our color-coded plots so far, is a color scale
to relate values to colors (although labelling the contours works as an
OK substitute). The MATLAB command is simple:

» colorbar

(and see Box for further usage). Try adding a colorbar, and in different
places in the plot. Refer to the Box to try and add a caption to it ...

96 geo111 – numerical skills in geoscience

colorbar

This almost could not be simpler:

» colorbar

plots the color scale! By default, is
places it to the RH sice of the plot. If
you wish for it to appear anywhere
else, use the modified syntax:

» colorbar(PLACEMENT)

where PLACEMENT is one of:
’northoutside’, ’southoutside’,
’eastoutside’, ’westoutside’. Note
that these are strings and so need
to be in quotation marks. (More
options are summarized in a table in
help.)

Finally, you can also add a label to
the colorbar, but only if you get hold
of its ID (’graphics handle’) when
you call colorbar, e.g.

» h = colorbar

will save the graphics handle in
variable h, which you can then muck
about with via:

c.Label.String = ’The

units of my lovely

colorbar’;

(Don’t fight this – use this syn-
tax to set a label for the colorbar –
don’t worry about what it means.
MATLAB keeps rather annoy-
ingly changing the way it does this
anyway :()

In this next Example, we’ll address the issue with missing/incorrect
lon/lat axis labels on the plots.

Each data point in the etopo1deg matrix should have one longi-
tude value (x-axis) and one latitude (y-axis) value associated with
it. It should hopefully be intuitive to you now ... that what we need
is a pair of matrices, of exactly the same size as the etopo1deg data
matrix – one holding longitude values and one latitude values. There
are various ways of creating the required matrices ’by hand’ (or in-
volving writing a program including a loop). All of them are tedious.
There is a MATLAB function to help. But it is not entirely intuitive13

13 DON’T PANIC!

... meshgrid.
Spend a few minutes reading about it in help. In particular, look

at the examples given to help you translate the MATLAB-speak
gobbledegook of the function Description. You should be able to
glean from all this that this function allows us to create two a × b
arrays; one with the columns all having the same values, and one
with the rows all having the same values (exactly what we need
for defining the (lon,lat) of all the global data points). If not, and
probably not – see Box. And then lets do a simple example (adapted
from help):

» [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Y =

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

Here, we are taking 2 vectors – [1:3] and [10:14], and asking MAT-
LAB (very nicely) to create 2 matrixes, one in which [1:3] is repli-
cated down, until it has the same number of rows as the length of
[10:14], and one in which [10:14] is replicated across until it has
the same number of columns as the length of [1:3]. (Try it.)

It’ll become apparent *why* bother shortly. Honest.

meshgrid

The unholy syntax is:

[X,Y] = meshgrid(xv,yv)

Pause, and take a deep breath. On
the left – the results of meshgrid are
being returned to 2 matrixes, X and
Y. These are going to be our matrixes
of the longitude and latitude values
(in the particular example in the
text). So far so good(?)

On the right, passed into the func-
tion meshgrid, are two vectors – xv

and yv. Pause again.
What MATLAB is going to do,

is to take the (row) vector xv, and
it is going to replicate it down so
that there are as many rows as in
the vector yv. This becomes the
returned output matrix X. MATLAB
then takes the column vector yv, and
replicates it across so that there are
as many columns as in the vector xv.
This becomes the returned output
matrix Y.

In our Example – start my noting that the topography data is on a
regular 1 degree grid starting at 0° longitude. Latitude starts (at the
bottom) at -90° and goes up to +90°). We need a matrix containing
all the longitude values from 0° to 359° and latitude from -90° to 89°

further ... matlab and data visualization 97

.14 These matrices need to be the same size as the data matrix. 14 There is a slight complication with
this, which we’ll get to shortly, but note
that the data array is 360 elements (x-
direction) by 180 elements (y-direction).

Maybe just ’do’ it and then understand what has happebned after.
Create the longitude and latitude grids by:

» [lon lat] = meshgrid([0:359],[-90:89]);

View (in the Variables window) the lon matrix first. Scan through
it. Hopefully ... you’ll note that it is 360 columns across, and in each
column has the same value – the longitude. The matrix is 180 rows
’high’, so that there is a longitude value for each latitude. Similarly,
view lat. This also should make a little sense if you pause and think
about it, with the one exception that the South Pole latitude is at the
’top’ of the matrix – don’t worry about this for now ...

The only way to fuly make sense of things now, is to use it. Re-
member that use of contour (and contourf) can take matrices of x
and y (here: longitude and latitude) values that correspond to the
data entries in the data matrix (etopo1deg). Re-load the topography
data in case you have flipped it about in all sotes of odd ways, and
then do:

» [lon lat] = meshgrid([0:359],[-90:89]);

» contour(lon,lat,etopo1deg);

Almost! Note that the x and y axis labelling is ’correct’ and parti-
caulrly the y-axis, where latitude gos from -90 to 90 (although by
default MATLAB labels in intervals of 20 starting at -80 it seems).
But it also turns out that we do need to flip the data op-side-down.
We can actually do this in the same line as we plot:

» contour(lon,lat,flipud(etopo1deg));

Phew! (Figure Figure 5.6.)
0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

Figure 5.6: Usage of contour but with
lon/lat values created by meshgrid

function and passed in (and with the
hot colormap (giving dark/brown colors
as deep ocean, and light/white as high
altitude).

The final complication is that the data points in the gridded
dataset (matrix etopo1deg), technically correspond to the mid-points
of a 1 degree grid, not the corners. So if we were going to try and be
formally correct15, our vectors that we’d pass into meshgrid, would

15 Don’t worry about this for now –
grids will be covered more in subse-
quence chapters surrounding numerical
(environmental) models.

be:

» xv = [0.5:359.5];

» yv = [-89.5:89.5];

OK – another Example on this. Previously, you downloaded and
plotted monthly global distributions of surface air temperature. You
plotted these simply using pcolor (or image) and the results were
... variable. Certainly not publication-quality graphics and missing
appropriate longitude and latitude axes for the plots.

98 geo111 – numerical skills in geoscience

Make a copy of your original script (m-file) in which you cre-
ated the animation, and give it a new name. Edit your program,
and in place of pcolor, use contour or contourf (your choice!). Pass
in just the data matrix (of monthly temperature) when calling the
contour(f) function and don’t yet worry about the lon/lat values.
Get this working (i.e. debug it if not). You should end up with a
contoured animation (rather than a bit-map animation).

The problem with the axis labelling should be much more appar-
ent (than compared to the topography data, which was on a handy 1
degree grid already). So you need to make a matrix of longitude val-
ues, and one of latitude. using meshgrid. The grid is a little awkward:

1. The longitude grid runs from 0°E (column #1) with an incre-
ment of 1.875°; i.e., 0.000°E, 1.875°E, 3.750°E, ... up to 358.125°E
(column #192).
2. Latitude runs from 88.54196°S (-88.54196°N) at row #1, to
88.54196°N (row #94) with an increment of about 1.904.

so I’ll give you the answer up-front:

» lonv = [(1.875/2):1.875:360-(1.875/2)];

» latv = [-90+(1.904/2):1.904:90-1.904];

» [lon lat] = meshgrid(lonv,latv);

Now use the longitude and latitude values matrices, in conjunction
with contour(f), to plot the global temperature distributions ’prop-
erly’. Try plotting just one plot first, before looping through all 12
months.

At this point (before creating an animation), you might also ex-
plore some of the plotting refinements we saw earlier. For example,
as per Figure 5.7. Firstly – get the units of the temperature data array
into units of °C or °F rather than °K. Either: assign the temp array
data to a new array and make the appropriate conversion from °K
(all within the loop), or you can do this subtraction on the line that
you actually plot the data (i.e., within the contour/contourf func-
tion), for example:

contourf(lon(:,:),lat(:,:),temp(:,:,month)-273.15);

would convert to °C as it plotted the data.
You can also get the plotting temperature limits and contouring

consistent between months and with greater resolution by adding the
following line (before the loop starts):

v=[-40:2:40];

and then to the contour(...) (or contourf(...)) function, add ,v to
the end of the list of passed parameters. This particular choice for the
vector v tells MATLAB to do the contouring from -40 to 40 (°C), and

further ... matlab and data visualization 99

at a contour interval of 2 (°C).. Play around with the min and max
limits of the range, and also with the contour interval to see what
gives the clearest and least cluttered plot. For instance, maybe you
don’t want the low temperatures to go ’off’ the scale (the white color
in the filled contour plot).

Longitude

La
tit

ud
e

Climatological July surface air temperature

0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50

Figure 5.7: Example con-
tour plot including meshgrid-
generated lon/lat values. Result of
contourf(lon,lat,temp7,30), where
the data file was temp7.tsv, with some
embellishments.

5.3.1 Plotting maps

You can do some nice spatial plotting with this data using the MAT-
LAB Mapping Toolbox. This should be available as part of the MAT-
LAB installation in the Lab (and also if you have downloaded and
installed an academic version on a personal laptop). Refer to the on-
line documentation for the Mapping Toolbox to get you started. The
key function appears to be geoshow. Try plotting the region encom-
passing the ’quake data, with a coastal outline (of land masses), and
the ’quake data overlain. Explore different map projections. Remem-
ber to always ensure appropriate labelling of plots.

