
3

Elements of ... programming

Nerd. This is what you are now going to become. And lose all your social skills. And sit at home all day in
front of your computer. Which has become your only friend.

You will achieve this higher state of Being by starting to learn to write and use scripts and functions (aka
m-files) in MATLAB. Actually, at this point you are now writing computer programs (of a sort) rather
than endlessly typing stuff at the command line in the forlorn hope that something useful might occur.
You will also be doing a great deal of code debugging ...

50 geo111 – numerical skills in geoscience

3.1 Introduction to scripting (programming!) in MATLAB

Commands in MATLAB can become very lengthy, and you typically
end up with multiple lines of code to get anything even remotely
useful done. And as you have noticed, it can take a lot of time to en-
ter in all these lines. When when you log off and go home ... it is all
gone. 1 ... If only there was some way of storing all these commands

1 MATLAB remembers all the com-
mands used in previous session (al-
though this may not be the case of
shared, lab computers) and lists them
in the Command History window. You
can recover and re-execute a previous
command in this list by double-clicking
it. You can also re-run more than one
line at a time by selecting multiple lines
and pressing F9 (or Evaluate Selection
from the (R-mouse button in Windows)
context menu).

in such a way that they could be worked on and run again with the
press of a button (as a wild guess, how about F5?), without having to
enter them all in, all over again from scratch ...

m-file

... is nothing more than a simple
text file, in which a series of one or
more MATLAB commands are writ-
ten and which via the .m extension,
MATLAB interprets as a program
file (script or function) that can be
edited and executed (or rather, the
list of commands inside, can be
executed in sequential order).

Assume a similar convention to
that for variables in the naming of
m-files.

Your wish is granted. In MATLAB, it is possible to store all of
your commands in a single text file, and then request that they are
all executed (sequentially) at one go. MATLAB gives this text file
a fancy name (because it is a very fancy piece of software, after all)
– a script2, otherwise known as an m-file. To create a new m-file;

2 The conception of a function, will be
introduced later.

from the File menu, select Script (a common type of m-file)3. You

3 In order version of MATLAB:
File/New menu, and select: Blank
M-file.

will see a text editor (more fancy-ness) appear in front of your very
eyes, containing your requested (but currently empty) m-file. Save
the m-file to your directory of choice. Alternatively, simply create a
new (blank) text file and saving it with the extension .m, rather than
e.g. .txt, creates you a (script) m-file. From an m-file, you can issue
all the MATLAB commands you previously would have entered
individually, line-by-tedious-line, at the command line. Furthermore,
having created and saved a MATLAB script, it can be executed again
and as many times as you like.

You can execute an m-file by typing its name into the Command
window (omitting the .m file extension). Ensure that MATLAB is
operating in the same directory as the directory that you have saved
your m-file. You can also run the script (m-file) by hitting the big
bright green Run icon button at the top of the m-file editor4. The 4 In older versions of MATLAB – select:

Debug/Run from the ’debug’ menu of
the Editor window.

short-cut for running it is to whack your paw down on the Function
Key F5.

OK – you are now ready for your very first program ... inevitably
... this has to be to print ’Hello World’ to the screen. No, really.
(Google it.) Create a new m-file, calling it e.g. hello_world.m. You
need to use the function disp (see Box or type » help disp) as al-
ways, for function syntax and usage), which will print to the screen,
either any text you specify (in inverted commas), or the value of a
variable (which could also contain character information). For now,
simply pass the text directly. Your program needs just a single line in
the m-file:

disp(’hello, world’)

Save the file (to your working directory). Run it at the command line
by typing its name (omitting the .m extension). Your first program

elements of ... programming 51

is a success! (Surely you could not screw up a single line program ...
?5) You could extend this to a mighty 2-line program by defining the

5 If MATLAB gives you an error mes-
sage something like
Undefined function or variable

’hello_world’

then it is likely you are simply not
in the same directory as the m-file,
and/or the location of the m-file is not
in one of the directory paths MATLAB
knows about (see previous Tutorials for
comments on changing directory vs.
adding paths.).

string as a variable and displaying the contents of the variable, i.e.,

message = ’hello, world’;

disp(message)

disp

... displays something (the contents
of a variable) to the screen. Actually,
it effect is basically identical to leav-
ing off the semi-colon (;) from the
end of a line. In the example of:

disp(X)

where the contents of X is a string,
you get the text displayed.

Note that the difference between
using disp and simply typing the
variable name:

disp(X)

is ... well, find out for yourself!

For further practice – pick one of any of the previous exercises
in which multiple lines of code were required, place them into a
new m-file (either by re-typing them in or copying them out of the
Command History window), save the file (to the same directory
that you are working from), and run it my typing its name at the
command line (omitting the .m extension).

3.1.1 Programming good practice

A few tips about good practice in (MATLAB) programming before
we go on (and on and on and on):

Creating help text in an m-file

MATLAB allows you to crete a
’help’ section in the m-file – text that
is outputted too the screen if you
type help on that particular script
(or function). The text is defined by
a block of comment lines at the very
top of the script file (or after the
function definition in the case of a
function). The last sequential com-
ment line is taken to be the end of
the help section. Note that the help
section can be a minimum of eon
single line. A typical basic format is:

1. Name of (in capitals), and very
brief summary, of the script
(/function).

2. List and description of the dif-
ferent forms of use (if there are
one or more optional parameters)
including definition of the input
parameters.

3. Examples.
4. A See also section listing similar

or related scripts or functions.

• Choose helpful variable names so that it is clear what each vari-
able represents. Avoid *excessively* short names, except for simple
index and counting variables. At the other extreme – excessively
long names, which the might be wonderfully descriptive, can lead
to even simple calculation stretching over multiple lines of code
(which can make it more difficult to see what is going on in the
code overall).
• Use comments within your m-file to add explanation and
commentary on your program. Anything after a % on the same line
is a considered a comment6, and is ignored by MATLAB.

6 Your % comment can start on a new
line, or follow on from the end of a line
of code, whichever is more helpful.

• Structure the code nicely. You can break the code up into sec-
tions, e.g. by adding a blank line. You might also start each section
with a label summarizing that it is going to do (via the addition of
a comment).
• To start with – program in as a simple step-by-step way as
possible. Breaking a complex calculation into several lines of sim-
pler calculations is much easier to debug and work out what you
were doing later, particularly if comments are also added. For all
practical purposes – at this level, everything will run just as fast
whether as a complex calculation on one line, or simple bite-sized
calculation spread over 4 lines with comment sin between.
• Always save your changes before running your program (or
you may unknowingly be running the previous version).
• If using the script to do some plotting, sometimes (but not
always) it is convenient to add at the top of the m-file,

close all;

This command close all currently open figures, plots, images, etc.

52 geo111 – numerical skills in geoscience

An illustration (and a far from perfect illustration) of a short script
exhibiting at least a few examples of good practice, is:

function [dum_temp] = ch4_ebm_basic(dum_S0)

% 0D case of EBM - analytical solution

% function takes one parameter - the solar constant (units of

W m-2) [NB. modern value: 1370.0]

% define constants

const_0C = 273.15; % (units: K)

const_sigma = 5.67E-8; % Stefan-Boltzmann constant (units: W

m-2 K-1)

% define model parameters

par_emiss = 0.62; % (non-dimensional)

par_albedo = 0.3; % mean albedo

% solve for surface temperature

% equilibrium equation:

% (1.0-par_albedo)*(par_S0/4.0) = par_emiss*const_sigma*loc_temp
∧4.0

% then re-arranged to:

loc_temp = ...

((1.0-par_albedo)*(dum_S0/4.0)/par_emiss/const_sigma)∧0.25;

% convert temperature units (Kelvin to Celsius) and set value

of return variable

dum_temp = loc_temp - const_0C;

end

which also illustrates one possibility for variable naming conven-
tion (’constants’ (variables which never change in value) start with a
const_ and parameters (variables whose values might be changed)
with par_, temporary (’local’) variables with loc_ and variables
passed into and out of the function: dum_). Note use of the semi-
colon at the end of every line to prevent (here unwanted) printing of
results to the screen. In the file, you can create as much ’ASCII art’
as you like if it helps to make the code clearer, e.g. adding separator
comment lines ...

% --------------------------------

... or highlighting certain section headers, e.g.

% *** PLOTTING SECTION ***

If it (a line) starts with a percentage symbol, then MATLAB ignores it
and you can type whatever you like after it (on the same line).

Your Hello World program might look like the following once it
has had a little tune-up (although in this example this is pretty much
over-kill):

% program to print ’Hello World’ to the screen

% *** START ***

elements of ... programming 53

% first - define the text to display and assign it to the

variable message

message = ’hello, world’;

% second - display the contents of variable message

disp(message)

% *** END ***

Finally, and related to the next subsection – code in stages, testing
the (partial) code at each step. Do not try and write all the code in
one go and only try it out at the end7. 7 Because it will not work 99 times out

of 100 ...

3.1.2 Debugging the bugs in buggy code

What programming is mostly about is not writing new code so much
as debugging8 what you have already written. Key then is to reduce 8 The art of fault-finding in computer

code.the incidence of bugs occurring in the first place, and when they do
occur, firstly to have code that lends itself to debugging and secondly,
knowing how to go about the debugging. The first two facets are
at least partly addressed through good programming practice (see
earlier)9. 9 And by the discipline of software

engineering, which is way out of scope
of this course.

Here’s an example to try out to start to see what might be involved
in debugging, loosely based on a previous plotting example – go
create a new m-file called: plot_some_dull_stuff.m10. Then add the 10 Remember – you are advised to name

your m-files as something vaguely
descriptive of what the script actually
does (and you do ont have to go with
this choice, although it might turn out
to be perfectly descriptive ;) (i.e. you do
not have to call it this!)

following lines to the file:

% my dull plotting program

% first, initialize variables and close existing figure

windows

close all;

x = -2*pi:0.1:2*pi;

y1 = sin(x);

y2 = cos[x];

% open a figure window and plot a sine graph

figure;

plot(x,y1,’r’);

% add a cosine graph

hold on;

plot(x,y2,k);

and then run it (refer to above for how).
Pretty dull stuff eh? Wait – maybe you didn’t get a figure appear-

ing on the screen with a pair of sines and cosines on. Has MATLAB
given you an error? If you typed in the above ’correctly’, you should
see:

Error: File: plot_some_dull_stuff.m Line: 6 Column: 9

Unbalanced or unexpected parenthesis or bracket.

Actually ... if this were your program, you should have paid attention
to earlier and not have written it all at once before testing it! But

54 geo111 – numerical skills in geoscience

at least MATLAB is giving you some sort of feedback. The actual
error reported might not always mean that much to you but the line
number at which the problem occurred is gold-dust. The line of code
is does not like is line 611, which is: 11 Note that although MATLAB ignores

comment lines (in the context of exe-
cuting code), it does count them when
telling you which line of the program
code an error occurs at.

y2 = cos[x];

Maybe the mistake is already obvious? If it is – go fix it and re-run
the program. If not, maybe test out the line more simply, passing in a
value directly to the function cos and not bother assigning the result
to a different variable, e.g.

» cos[0.0]

to which you get told:

» cos[0.0]

cos[0.0]

↑
Error: Unbalanced or unexpected parenthesis or bracket.

Now you have reduced the use of the cos command to its simplest,
whilst retaining the usage in your program that seemed to cause an
issue. Hopefully, now the error is apparent. If still not, check out help
on the cos function, or search cos in the MATLAB help (from the
question mark icon in the toolbar).

Is it important to recognise that (1) bugs will not always be flagged by
MATLAB with a line number, and you can have valid code but nonsensical
results, and (2) the mistake is often made earlier in the code than when
MATLAB flags up a problem line.

Other strategies for helping debug include:

1. Checking the what the values of the variables were at the point
at which the program derped – the current (and the point of pro-
gram crash) variable values are listed in the Workspace window.
2. Changing the relevant variable value(s) (here x) and re-typing
the problem line to see if it makes a difference12. 12 This is sort of similar to the example

given of simply testing a specific value
directly.

3. Commenting out (%) lines of code temporarily, or adding in
additional (temporary) lines of code, and re-running. Where cod-
ing in bite-sized chunks is an advantage in this respect, is that if
a program stops working after you have added a new section o
code, you can go comment out the new code (never normally just
delete it all), check that the original section of code still works, and
then line-by-line, un-comment the new code until the problem line
is found.
4. You can also put your program on hold just before the problem
line and explore the state of the variables at that point (see Box),

elements of ... programming 55

although in this particular example of a bug, MATLAB does not
allow this, presumably because if feels that the mistake is simple
and can be easily fixed.

Debugging – breakpoints
Breakpoints are indicators in the

code that tell MATLAB to pause that
that point. This allows for in-depth
testing of variable values and lines
of code without having to exit the
program.

To add a breakpoint in the code –
click in the (grey) margin of the code
editor on the problem line or before,
and MATLAB adds a red circle to
indicate a ’breakpoint’ has been set.
The presence of a breakpoint tells
MATLAB to pause that that line.

To unset a breakpoint, click on the
red circle or you can clear one or
more from the drop-down Break-
points menu in the toolbar.

Once you have fixed this, re-run the program. Ha ha – it still does
not work. (It is far from unusual to have multiple mistakes in the
same piece of code, hence why writing the code in chunks and test-
ing each time is helpful.) Now we have a problem on line 12:

Undefined function or variable ’k’.

Error in tmp2 (line 12)

plot(x,y2,k);?

Now MATLAB does not like function or variable ’k’ because it
cannot find that it has ever been defined. Is k meant to be a function
or variable? Look up help plot to remind yourself of the correct
syntax if the problem is not immediately obvious.

Once you have fixed the second bug; saved, and re-run the script,
you should see Figure 3.1.

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Output from the (bug-fixed
version of) plot_some_dull_stuff
m-file.

56 geo111 – numerical skills in geoscience

3.2 Functions

Functions in MATLAB, are really just fancy scripts. Again – just plain
old lines of code in a text file that is given a .m extension (making
it an m-file). The big difference from a script in MATLAB is that
a function can take variables as input and/or return an output (in
contrast, a script takes no input and returns no outputs, other than
plots or data files that might be saved).

A function is defined (and differentiated from a script) by a special
line at the very start13 of the m-file (see Box). 13 Literally: line 1. Not even a comment

line is allowed to appear before the
function definition line.

Functions
The all-important fancy first line

of a function, as defined in MATLAB
help, looks like:

function [y1,...,yN] =

myfun(x1,...,xM)

Thanks MATLAB (this seems overly
complex to say the least)!

OK – lets break this down. Lets
assume that you call the m-file
calc_stuff. The minimal definition of
a function then looks like:

function [] = calc_stuff()

(The syntax is critical and the defi-
nition line must look like this.) Here
we are saying – pass in not parame-
ters and return no values either. So
exactly like a normal script would
work and you would execute the
function calc_stuff by typing at the
command line:

» calc_stuff()

(Maybe you can get away without
the () bit.)

If you wan to pass in a single
parameter (here: X), then you define
the function:

function [] =

calc_stuff(X)

(To pass in more than 1 variable,
simply comma separated the vari-
able names.)

To pass out a parameter (here: Y)
(and no input):

function [Y] =

calc_stuff()

Lastly, at the end of the function,
you include the line:

end

This is all not as weird as you might think. For example, you have
already used the function sin – this takes a single input (angle in ra-
dians), and returns a single output (the sine of the angle). If you were
to write your own function for sin, the file would start something
like:

function [Y] = sin(X)

You can’t, of course, go re-defining pre-defined MATLAB function
names14. So how about if in your work, you found you frequently

14 Actually you can, but it is best not to.

needed to use the square of the sine of a number. You could keep
writing:

Y = (sin(X))∧2

or, if you were a little more devious, you could create your own func-
tion for returning the square of the sine of a number. Your m-file,
which here we’ll call sin2, the contents of which would look like:

function [Y] = sin2(X)

Y = (sin(X))∧2;

end

but of course with LOTS of comments to remind you what the func-
tion does etc. The new function is used pretty much as you would
expect and have used previously, e.g.

» sin2(0.5)

will return the square of the sine of a value of 0.5 and dump the
answer to the screen, and

» Y = sin2(0.5);

does the same but assigns the answer to the variable Y (and the semi-
colon suppresses output to the screen).

Go create your own function now. Start by creating one that takes
a single input and returns a value equal to the sine of the square of
the value (rather than the square of the sine as above). When you are
happy with this, create one with 2 inputs (see Box), that returns a

elements of ... programming 57

value equal to the sine of the first input, divided by the cosine of the
second input15 (i.e. y = sin(x1)

cos(x2)
). 15 Mathematically, the answer is not

valid for all possible values of the 2
inputs (why?), and later we’ll learn
how to pro-actively deal with such a
situation.

You have used other functions, perhaps without knowing it, and
some of them return values, but because you have not attempted to
assume the returned values to anything, you have not noticed. For
example, plot and scatter are in fact a functions, and return the ID
of the plot graphic. We simply have not been asking for the returned
value so far. As per MATLAB help:

H = SCATTER(...) returns handles to the scatter objects

created.

with the handle, H, being an identifier of the graphic which could
prove to be useful if e.g. you would like to modify one of the proper-
ties of an existing graphic.

Debugging – functions
Functions are a prime example

of the importance of being able to
pause code part the way through
(e.g. by setting a breakpoint) be-
cause when a function terminates,
or crashes, you get to see none of
the values of any variables created
within the function, unless they
have been returned as output (and
assuming here that the code did not
crash and managed to get to the
end). Setting a breakpoint allows
you to interrogate the values of any
internal variables.

Finally, it is important to note that by default, any variables cre-
ated within a function are TOP SECRET, and by that, I mean that
they are not accessible to the main MATLAB workspace and do not
appear listed in the Workspace window. To see that this is a non-
Trump-able true fact, create the following function (basically, the first
example but split into 2 steps):

function [Y] = sin2new(X)

tmp = sin(X);

Y = tmp∧2;

end

Here, a variable tmp is created to hold the value of the partial calcu-
lation. It does not appear in the Workspace window when you use
the function. The advantage of this is that you could create a sec-
ond function that also created a temporary variable internally called
tmp with both instances of tmp treated entirely sperate and isolated
by MATLAB (i.e. setting the value of one instance of tmp does not
affect the value of the other). This also however does lead to some
additional complications in debugging functions (see Box). Try set-
ting a breakpoint at the start of the line where the square of tmp is
calculated – note that tmp now appear in the Workspace window.
Continue the function and when it terminates, note that tmp is now
gone from the list.

58 geo111 – numerical skills in geoscience

3.3 Conditionals ’101’

Conditional Statements
The principal conditional statement

in MATLAB is: if ... end

The basic if structure is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

end

in which the code CODE is executed
if EXPRESSION is evaluated as true.
No code is executed otherwise (and
STATEMENT is false).

A variant addition – else – which
allows for an alternative block of
code (OTHER STATEMENT(S)) to be
executed if EXPRESSION is instead
evaluated as false, is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

else

OTHER STATEMENT(S)

end

Finally, there is 3rd variant including
elseif:

if EXPRESSION (IS TRUE)

STATEMENT(S)

elseif EXPRESSION (IS

TRUE)

OTHER STATEMENT(S)

else

OTHER STATEMENT(S)

end

Now, assuming that the first EX-
PRESSION is not true, a second
EXPRESSION is evaluated, and
only if that second EXPRESSION is
also not true, will the final possible
STATEMENT be evaluated. (Here,
this final variant is shown with an
else ... included at the end, but
this is not a formal requirement to
include.)

3.3.1 if ...

One of the other main programming constructs is the conditional
statement, in which the outcome (one or more statement(s)) is conditional
on the ’truth’ or otherwise of a given (i.e. it being true or false). This
is embodied in MATLAB (and similarly in most languages) by the if

... end construct (see Conditional Statements Box).
In creating an if ... end construct, the statement tested for

truth can be any one of:

1. A variable having a value of true (1) or false (0). e.g.

if happy

...

where happy is a variable.
2. A MATLAB function returning a true or false, e.g.

if isnan(A)

...

where variable A, may or may not be a NaN.
3. A relational operator (see earlier), i.e. one of e.g.:

>, <, <=, >=, ==, ∼=, &&, ||

and applied to a pair of variables, one variable and one value, or
two values, e.g.:

if A > B

...

where A and B are numbers.

An initial and rather computer programming textbook-like
example is as follows: designing a program (a MATLAB script saved
as an m-file) that asks whether or not you like bananas, and if you
answer ’yes’, tells you ’Correct – they are a great fruit!’.

But before we worry about anything else (e.g. how to apply a con-
ditional statement), you’ll need to know about inputting information
into a MATLAB program from the keyboard16. Amazingly, you can 16 All programming languages have

such a facility and man basic pro-
grams, at least in the Old Days prior
to widespread GUIs, make use of
keyboard input

guess (I actually just did) the command for requesting input – it is
input (for ’input’ – a rare occasion when everything is logical and
simple!) (see Box).

With this (how to get MATLAB to ask for input and then receive
and do something with keyboard input) – firstly create a blank m-file
and save with a ’suitable’ filename. Maybe add a header comment to
remind you what this script is going to do.

elements of ... programming 59

Secondly, (and on the next line) – define the text (question) that
you are going to ask and assign this string to the variable my_question.
Then place the input command (on the next, now 3rd line) for string
input, and assign the input string to the variable my_answer. You
should have a program consisting of 3 lines – an initial comment line,
a line defining the question and assigning this string to a handy vari-
able (my_question), and a line taking the results of the input function,
and assigning it to a second variable (my_answer).

input

There are two variants – one for
inputting numerical information and
one for inputting a string (test) (as
1 could be either the value one or a
1-character string ...).

For inputting a numerical value:

x = input(prompt)

will display the text in the string
variable prompt and set the value
of x when a number is entered and
RETURN pressed.

For inputting a string:

str = input(prompt,’s’)

will display the text in the string
variable prompt and set the value
of str when a string is entered and
RETURN pressed. Note that the
second parameter passed to the
function input (’s’), tells MATLAB
that the input is a string rather than
a number.

Run the program thus far. You should see the question displayed,
and when you type in an answer and hit RETURN, the program will
end. Because your m-file is configured as a script and not a function
(see earlier), you can see the variable answer in the variable list and
can check its value – it should contain a string with the answer you
gave to the question. Make sure it all works like this so far.17

17 HINT: When you type the answer,
it appears on the screen immediately
adjacent (and untidily) to the end of the
question. You can make this look nice(r)
by adding a space at the end of the
question string you assigned to prompt,
e.g. prompt = ’Do you like bananas?

’;.

OK – aside from the use of input, there is nothing new here. Yet.
The purpose of the program is to give a reply that depends on the
answer given. This is where we are going to utilize a conditional state-
ment – depending on whether the answer is ’yes’ or not, we are going
to display a different message. This is a fundamental programming
element – different code will execute depending on the value of a
variable – here the ’different code’ is a different message and the
value of the variable is ’yes’ or ’no’ (or other answer).

You are going to add an ’if ...’ statement to the code (starting
on line 4) to test whether the answer, held in the variable answer,
is equal to ’yes’. In the language of MATLAB syntax (see Box), the
EXPRESSION is whether the string contained in my_answer is ’yes’.
How do we ask MATLAB to compare the value of my_answer with
’yes’? Once upon a time, long long ago, MATLAB was simple and
helpful and you could write:

if (my_answer == ’yes’)

[MESSAGE]

end

where [MESSAGE] you will later replace by a message that you will
display using the disp command that you saw before. (In this stupid
example it might be: ’Correct – they are a great fruit!’).

strcmp For once, the MATLAB help
explanation is relatively simple and
straightforward:

tf = strcmp(s1,s2)

compares s1 and s2 and

returns 1 (true) if

the two are identical.

Otherwise, strcmp returns

0 (false).

Which is pretty well much how we
expected asking: s1 == s2 to pan
out.

(In MATLAB help – tf, the vari-
able name used in the example, is
short for ’true-false’.)

However ... life is no longer this simple. MATLAB is going to
make us use the function strcmp (see Box). In using strcmp we might
break things down into 2 steps – the first comparing the 2 strings
(my_answer and ’yes’) and returning to us a value of true or false
that we will store in a new variable. In the second step, we’ll ask the
conditional to act on the value of the variable. The code will now
look like this:

comparison_result = strcmp(my_answer, ’yes’);

60 geo111 – numerical skills in geoscience

if comparison_result

[MESSAGE]

end

Or, we could have made this more compact:

if strcmp(my_answer, ’yes’)

[MESSAGE]

end

Your code should now have the 3 lines from before (comment,
define question, get input) followed by 4 lines of the conditional
structure, comprising: the strcmp function, the if ..., use of disp to
display a message, and last, end.

Re-run (after saving) the program and confirm that it works (ask-
ing whether you like bananas and if you answer ’yes’, tells you ’Cor-
rect – they are a great fruit!’). If not – time to de-bug! Note that if you
tested the code in two stages, any bug at this point is only in the con-
ditional structure. Start by double-checking the syntax required for
the if ... structure. You could also try commenting out the message
line and re-running.

Next, you might display an alternative message is the answer is
not ’yes’. Refer to help / the margin Box on if ... and note that you
can extent the structure with an elseif which would be followed by
a line displaying the alternative message (e.g. ’Then you need to get a
life, apple-lover.’)18. 18 And then the line with end after

that – follow the prescribed structure
exactly.

You could extend this example further and tackle the situation of
their being 3 possible answers – ’yes’, ’no’, and ... ’I don’t know’ (or
any other answer). Now the basic structure becomes

if strcmp(my_answer, ’yes’)

[MESSAGE 1]

elseif strcmp(my_answer, ’no’)

[MESSAGE 2]

else

[MESSAGE 3]

end

Here – we are now adding an elseif ... line (followed by its
specific message) (and see Box/help). Maybe try this and test it fully
– inputting a ’yes’, a ’no’, and some other answer, and confirming
that you get the correct message displayed.

You could also turn this around, and test for any answer except
’no’ (the ∼ is making the test, not ’no’), i.e.

if ∼strcmp(my_answer, ’no’)

[MESSAGE 1]

else

[MESSAGE 3]

end

elements of ... programming 61

Now you are asking whether the answer is something other than
’no’ (which might be ’yes’, but not necessarily so) – in the logical
construct – whether the (string) contents of answer are not equivalent
to ’no’.

Continuing to beat this same tired example to death ... what if
some wise-crack answered ’YES’ rather than ’yes’?19 One could write: 19 This goes to the heart of all software

testing – what if the user does some-
thing you were not expecting? Hence
why all software undergoes extensive
testing by user or people who did
not test it. Sometimes there are pre-
releases (’alpha’ or ’beta’ versions or
simple ’pre-release’) of software to all
or specific parts of the user community,
precisely to provide feedback, find
bugs, and see whether they can break it
...

if strcmp(my_answer, ’yes’)

[MESSAGE 1]

elseif strcmp(my_answer, ’YES’)

[MESSAGE 1]

end

This will work, but you might note that you have had ot exactly du-
plicate the MESSAGE line. If instead of displaying a simple mes-
sage, a complex calculation was carried out – all the lines of the
code following the if ... would have to be exactly duplicated af-
ter the elseif While it might seem trivial to simply copy-paste
the required lines, this is20 dangerous – if the first set of lines are 20 Note quite in the same way that

driving down a mountain highway with
your eyes shut or hungry sharks are
dangerous.

ever changed (due to a bug-fix or simple further development of
the code), the same changes MUST then be exactly duplicated in
each and every instance, or the code will not longer work correctly.
This is *very* easy to forget to do, particularly for extensive code or
code that you have not looked at for ... years. Code duplication also
makes the overall code unnecessarily long (and hence harder to look
through).

Instead, we can nest statements containing relational operators.
What does this mean? Well, in the example of the answer being ’yes’
or ’YES’, logically, what we want is:

(1) the contents of answer is equivalent to ’yes’
OR

(2) the contents of answer is equivalent to ’YES’

In code, this is written:

strcmp(answer, ’yes’) || strcmp(answer, ’YES’)

Make sure you are happy with what this means (it is pretty well
much exactly as it looks == logic).

So – go modify your code to allow for a ’YES’ or a ’yes’. Hell, try
allowing for a ’Y’ or a ’y’ as well.21 (You could extend it to ’no’ also 21 Sort of for this reason and that there

are many different ways of writing
’yes’, software often requires you to
answer ’yes’ in a restricted number of
ways – this restriction is made clear
as part of the message that asks the
question. Common is to restrict the
answer to ’Y’ or ’y’.

but I think you get the point ...)

A non-text and non fruit related example. Almost.

62 geo111 – numerical skills in geoscience

How many bananas could you eat in a day? I bet it is less than ten.
We’ll let the computer ask and if the answer is 10 or more, you (the
computer) shouts: ’lier!’.22 22 This example is even more stupid

than the last one. But no more stupid
than in any computer programming
textbook and it will at least demon-
strate a subtly different usage of if
....

The basic code is very similar to before. Create a new m-file, add
a comment line, define your question (’How many bananas do you
think you could you eat in a single day?’) and then get MATLAB to
ask it and pass back whatever is entered in at the command line. The
only difference at this point – refer to the usage of input (see Box) –
is that we want a number input rather than a string. You can call the
variable into which you assign the result of input, the same as before,
or to make it distinct, e.g. n_bananas, i.e.

n_bananas = input(my_question)

In the if statement, we now want to test whether the value of
n_bananas is greater or equaol to 10 (or equivalently, greater than
9), i.e.

if (my_answer >= 10)

[MESSAGE 1]

else

[MESSAGE 2]

end

or

if (my_answer > 9)

[MESSAGE 1]

else

[MESSAGE 2]

end

Write this code and get it going. Feel free to switch fruit / fruit
consumption threshold, question/answers, or whatever.

3.3.2 switch ...

A less commonly used alternative to if ... is switch ... case

... and is helpful in the case of multiple possible correct answers
and/or multiple different answers.

For instance, and back to the ... fruit ... you might want the same
answer for multiple different kinds of fruit. Trying coding up the
program that would give you ’A great fruit!’ for any of ’banana’,
’kiwi’, ’apple’, ’pineapple’, and ’cucumber’ (yes they are technically
fruit – Google it). You will find either you have many lines of code
and many duplicated lines of the same message, or a very long line
after if ... with loads of strcmp and ORs (||). Using switch ...

case ... the code instead might look like:

elements of ... programming 63

switch my_answer

case {’banana’, ’kiwi’, ’apple’, ’pineapple’, and ’cucumber’}

disp(’A great fruit!’)

otherwise

disp(’yuck!’)

end

where my_answer is the name of a fruit entered in, in response to
input, e.g.

my_answer = input(’What is your favourite fruit?,’s’);

Note that for a list of multiple possible value, MATLAB requires
the list after case to be encased in {}. For a single answer, it would
just be:

case ’banana’

for a string, and for a number:

case 10

Conditional Statements (2)
The other main conditional state-

ment is: switch ... case ...

end

The basic switch structure is:

switch VARIABLE

case VALUE(s)

STATEMENT(s)

end

which deviates rather from how
MATLAB describes it, but this
makes more sense to me (and hope-
fully to you). Here, VARIABLE is a
variable and it is compared with
one or more VALUE(s). If the value
of VARIABLE matches that of the
VALUE(s), then STATEMENT(s) are
executed.

A common variant adds a default
set of STATEMENT(s) to be executed
if the value of VARIABLE does not
match any of the VALUE(s), e.g.

switch VARIABLE

case VALUE(s)

STATEMENT(s)

otherwise

STATEMENT(s)

end

You can also have multiple case
possibilities:

switch VARIABLE

case VALUE(s)

STATEMENT(s)

case VALUE(s)

STATEMENT(s)

otherwise

STATEMENT(s)

end

64 geo111 – numerical skills in geoscience

3.4 Loops ’101’

Loops in MATLAB
for

The basic for ... end structure
is:

for n = VAL1:VAL2

CODE

end

where VAL1 and VAL2 are the limits
that n will count between (start-
ing at VAL1 and ending at VAL2),
meaning that STATEMENT(S) will be
executed (VAL2-VAL1)+1 times in
total. STATEMENT(S) can be one or
more lines of code, that will all be
executed on each and every cycle of
the loop.

The loop need not count in in-
crements of one (1), the default,
e.g.:

for n = VAL1:INC:VAL2

CODE

end

counts with an increment of INC.
It is also possible to count down (a
negative value of INC).
while

The basic structure is similar to
that for for ... end:

while STATEMENT (IS TRUE)

CODE

end

while differs from if in that there
are no alternative branches of code
that can be executed. The while ...

end loop cycles and CODE continued
to be executed (for ever) until the
STATEMENT is evaluated to be false.

The next main program construct that you are going to see is the
loop. There are a number of different forms of this in MATLAB (see
Loops Box) (and also in other programming languages), but the basic
premise is the same – a designated block of code (one of more lines
of code23), is repeated, until some condition is met. That condition

23 It is possible to for the block of code
to be only a fragment of a single line
and hence the entire loop plus code
block, to be written on a single line.

might be something as simple as a count having been reached, e.g.
the block of code is always executed n times, or the condition might
be slightly more complex and involve a conditional statement (see
later). Will explore a very basic loop though an example, almost as
contrived as for conditionals :o)

3.4.1 for ...

In this subsection we’ll start with a very straight-forward and some-
what abstracted usage of for ..., which hopefully will get you
in the mood for loops. Then we’ll go through some slightly more
problem-focused examples.

Loops Ground Zero. Basically – loops cycle through a series of
numbers between specific limits, or if you like, ’count’. As the loop
counts (cycles), it allows you to execute some code, so for each count
(or cycle), the (same) block of code is executed. We’ll worry about
what you might ’do’24 (i.e. the code fragment) in a loop, later.

24 Note intentionally a joke. Actu-
ally, this is only funny if you know
FORTRAN, and even then it is only
marginally funny.

Consider, or rather: create a new m-file25 with the following loop:

25 Comment it!

for n=1:10

end

Save it. Run it. What did it do?
I bet you have absolutely no idea! It actually cycled around ten

times, counting from n=1 through n=10, but you would not know it as
there was no code without the loop to do anything.26

26 You get one clue – if you look in the
variables Workspace window, you’ll
see there is a variable n, with a value
of 10 – the last value it was assigned
before the loop ended.

There are 2 alternative crude debugging strategies you could
take27:

27 Plus, you could add a breakpoint and
view the value of n in the Workspace
window each cycle around the loop.

1. Simply add a line within the loop with the name of the (count-
ing) variable, e.g.

for n=1:10

n

end

and it will spit out the value of n each time around the loop.
2. Print the value of n ’properly’28, e.g.

28 Although you can get away with just
writing:

disp(n)

elements of ... programming 65

for n=1:10

disp(str2num(n))

end

or you can tart this up even nicer by creating a string that provides
more explicit information back to you, e.g.

for n=1:10

my_string = [’The value of n is: ’ str2num(n)]

disp(my_string)

end

or if you are happy with more going on in a single line:

for n=1:10

disp([’The value of n is: ’ str2num(n)])

end

(but they work the same – check it).

Loops in action. So, consider the following (contrived) ’problem’
– you want to be able to enter a series of numbers and return their
sum (although equally one could perform and return all sorts of
statistics).29 The basic code is simple. Using the other (numerical 29 Obviously, one way to do this would

be to enter the numbers into a file first,
use the load function, and calculate the
sum.

input) form of input, for 2 numbers, it might look like (although in
practice, your code is full of helpful comments, right?):

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

B = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B)]);

The first 4 lines you should be A-OK with. Note that in line 5, 2
strings have been concatenated by enclosing ’The sum of the numbers

is: ’ and num2str(A+B) in a pair of brackets []. The string repre-
senting the number sum is itself created by adding A and B, and then
converting the resulting number into a string using num2str (see ear-
lier). As always – if you are happier breaking down the last line into
its component parts, e.g.

answer = A+B;

answer_string = num2str(answer);

disp(answer_string);

then please do!
So far so good. But what if you wanted 4 numbers summed ...

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

66 geo111 – numerical skills in geoscience

B = input(my_question);

my_question = ’Please enter a number: ’;

C = input(my_question);

my_question = ’Please enter a number: ’;

D = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B+C+D)]);

You can see whether this is going – firstly that you are duplicating
more and more lines of code as the number of numbers increases.
Secondly, and we’ll come to that in a moment – what if the program
does not know a priori how many numbers you want to sum?

You can see the code that is being repeated (here for input x):

my_question = ’Please enter a number: ’;

x = input(my_question);

If you bothered to read the margin box earlier, you’d known that
this is exactly what a loop can be used for. We therefore want some-
thing of the form:

for n = VAL1:VAL2

my_question = ’Please enter a number: ’;

x = input(my_question);

end

It should be apparent if you tried it
out, that the value of x at the very end
of the program, is equal to the last
value you entered. In other words,
each time you go around the loop you
are over-writing the previous entered
value and end up with nothing to sum
at the end. There are two (or more)
possibilities to solve this:

1. You could keep a running sum.
This would also avoid having to
explicitly calculate a sum at the end,
but you would not have saved the
numbers as you went an no other
stats would be possible.
You would do this by adding the
inputted value to the existing value,
i.e.

x = x + input(prompt);

where x is the running total. What
this says is: take the current value
of x, add the value if the user input,
and place the total back into the
variable x.
The only problem here ... is that
MATLAB does not know what the
very first value of x is – i.e. the value
before the loop start and that you
then try and add input(prompt) to.
The solution is to initialise the value
of x before the loop starts, e.g.

x = 0;

2. Alternatively, you could add the
newly inputted number to the end
of an existing vector. In this way,
you end up recording all the values
that were inputted. e.g.

y = [y input(prompt)];

which says take the vector y, and
add a further value (input(prompt))
to the end of it. At the end of
the program (after the loop has
terminated), you have to sum the
contents of the vector y.

The easy part is the configuration of the loop – in the previous
example with 4 inputs, we would write:

for n = 1:4

and the loop with go around 4 times as the counter n counts from 1
(VAL1) to 4 (VAL2) in increments of 1 (the default behavior of the colon
operator). Each time around the loop the block of (2 lines of) code is
executed and a number is inputted. But what is still missing? Try it
exactly like this and see if you can see what is going on, or rather,
not going on. If you think it is not working as expected – try some
debugging. See if you can come up with a solution once you see
what the problem is. (Warning: the spoiler is in the margin.)

After having tried your own solutions, try out both of the given
alternatives (assuming that one of them was not also your solution).
Note that you are note given the complete code needed and some
further debugging might be needed (but they do both work!).

Two things to be aware of in doing this:

1. If you set the maximum number of items quite high and then
get bored and need to exit the program – press the key combi-
nation Ctrl-C and MATLAB will exit your program (but leave
MATLAB running).
2. If you run the program a second time and use the vector ap-
proach, something very odd starts to happen to the reported sum.

elements of ... programming 67

You can solve this (first try it out – running the program several
times in a row to see what happens) either by initializing the vec-
tor y, just like you did for x in the 1st solution, i.e.

y = [];

(before the loop starts, of course), or you can clear the workspace
using » clear all (clears *all* variables), or clear just the problem
variable (y) that will end up growing and growing and growing ...
(» clear y).

3.4.2 Other loop configurations and usages

In the previous examples, the loop limits were fixed in the program
itself – you’d have to edit the script code and save the file in order
to be able to input and sum a different number of values. You could
create a more flexible program by making the m-file a function rather
than a script.30 The idea here is to create a function that takes a sin- 30 There are other ways of adding

flexibility to the loop count that we’ll
see shortly.

gle input. This input will be the maximum loop count. If the input
variable was called max_count, then the loop structure would now
look like:

for n = 1:max_count

my_question = ’Please enter a number: ’;

x = input(my_question);

end

Referring to the previous lessons on functions (as well as help if need
be), create a function that when you call it, e.g. like:

» function_sum(5)

will request 5 inputs and display the sum.
Alternatively, your program (as a script), before the loop starts,

could ask for the number of values to be entered, passing this to
the variable max_count, with the loop then looking exactly like the
above. In both cases you are substituting a fixed number (e.g. 4) for
a variable that might contain any number. Equally, not only does the
count not need to start at one, and the lower loop count limit could
also be a variable (min_count?).

Finally, in addition to flexible loop count limits, the value of the
increment in the count each time around the loop need not be one.
For example:

for n = 10:10:100

...

end

is exactly equivalent in terms of the number of iterations carried out
to

68 geo111 – numerical skills in geoscience

for n = 1:1:10

...

end

and which is the same as the default behavior of the colon operator:

for n = 1:10

...

end

The value of the loop counter n simply differs by a factor of 10 at
every iteration between the top and bottom two versions.

3.4.3 Fun(!) worked examples

(Only one example to date. And not necessarily even fun.)

Loops, camera, action! (A more colorful example of loops in ac-
tion.) What we are going to do is (load and) plot a sequence of
monthly data-sets and put them together to create a movie (animated
graphic) to illustrate the seasonality of temperature in global climate.
You will hopefully thereby better appreciate the value of constructs
such as loops in computer programming in saving you a whole bunch
of effort and needless duplication of code. (Equally, you might not
have wanted a movie as the end result, but simply a number of plots,
all identical except in the specific array of data they were plotted
from.)

First download all the monthly global surface temperature data-
files on the course webpage (there are 12 files to download)31. Then 31 In scripting, it is also possible to

automate downloading files from the
internet.

you are going to want to plot them all ... which would get desper-
ately tedious if you had to do this at the command line 12 times.
Think how much more of your life you would be wasting if the data
were weekly. Or monthly data for 1972 through 2003, some 372 sep-
arate data-files ... You would never have time to go get a coffee ever
again(?)

Create a new m-file. Call it ... anything you like32. However, as 32 bob_the_builder.m counts as ’any-
thing you like’, but that looks pretty
lame and it certainly won’t help you
remember what the script does if you
came back to it sometime in the future.

well as appropriately naming your script file, add a comment on the
first line of the file as a reminder to yourself of what it is going to
do. Also, for now, it is helpful to include the command: close all

(which closes all currently open figure windows) although this is far
from essential.

To make an animation, we need to make a series of frames, with
each one being a different monthly temperature plot (in sequence;
Jan through Dec). The files are rather conveniently named: temp1.tsv,
temp2.tsv, ... temp12.tsv33. We should start by loading this little lot 33 Don’t worry about the .tsv file

extension – the file format is plain old
text (ASCII) and could have instead
been .txt.

in. For the first file we could write:

elements of ... programming 69

temp = load(’temp1.tsv’);

or equally:

temp(:,:) = load(’temp1.tsv’);

and hence with a slight-of-hand, we could also write:

temp(:,:,1) = load(’temp1.tsv’);

Can you see that these statements are identical? Run the script with
one, then with the other, just to be sure. The last form is really useful,
because we can now go on and write:

temp(:,:,2) = load(’temp2.tsv’);

What you have done here is to load the January 2D (lon-lat) temper-
ature distribution into the 1st 2D layer of the temp array, and then
we have gone and created a second 2D layer on top of the first with
the February data in it. Look at the Workspace window (or type
size(temp)) – you now have a 3D (94×192×2) array. Fancy! This is
your first 3D array – there is nothing really conceptually different
from the 2D arrays that you have already been using, we simply have
a 3rd index for the third dimension (if it helps, you can think of a 3D
array as being indexed by: row, column, layer).

You could go on and load in the March, April, etc data in a similar
fashion, but you should be able to see a pattern forming here – each
filename differs only in the number at the end of its name and this
number corresponds not only to the number of the month, but will
also correspond to the layer index of the 3D array that you will cre-
ate. This is something that a loop could be used for while you go off
for a coffee.

We first need to construct the loop framework. We’ll call the
month number counter variable, month. Create a loop (with noth-
ing in it yet) with month going from 1 to 12.34 Refer to the course text 34 Don’t forget to suitably comment

what it is that the loop does with a
line (or even 2, but don’t write a whole
essay) beginning with a %.

(this document!), and/or the MATLAB documentation, and/or the
entirety of the internet, if necessary. The syntax (and examples) is
described in full under » help for. Save the script (m-file) and run
it35. What happens? Can you tell? 35 Typing: the m-file filename without

the extension.One way of following what is going on as MATLAB executes the
commands within a script is to explicitly request that it tells you how
it is getting on. You can use the function disp to help you follow
what the program is doing (this is Old School debugging36). Within 36 You can also add a breakpoint within

the loop and thus can cycle through the
loops one-by-one, thereby being able to
check the status of the variables within
the loop and how they change from
iteration to iteration.

the loop, add the following line:

disp(month)

then save and re-run the script. Now you can see how the loop pro-
gresses. This sort of thing can be useful in helping to debug a pro-
gram – it allows you to follow a program’s progress, and if the pro-
gram (or MATLAB script) crashes, then at least you will know at

70 geo111 – numerical skills in geoscience

what loop count this happened at, even if you are not given any more
useful information by MATLAB. Only when you are happy that you
have constructed a loop that goes around and around 12 times with
the variable month counting up from 1 to 12; comment out (%) the
printing (disp) line37 (unless you have grown rather attached to it) 37 Note that by commenting out a line

rather than completely deleting it, if
you want to print out the loop count
in the future, all you have to do is to
un-comment the line, rather than type
in the command all over again. This can
be really useful if your debug command
is long, or particularly if you have a
whole series of lines that are required
to report the information you want to
know.

and move on.
We can construct filenames to load in by:

1. Forming a complete filename by concatenating sperate strings.
For example:

» filename = [’temp’ ’1’ ’.tsv’]

will create the filename for the first dataset out of 3 components
parts – a common elements of all the filenames (’temp’), the num-
ber of the month (’1’), and the file extension (’.tsv’).
2. Converting a number value of a (count) variable to a string (the
num2str function).

This is where the role of the loop counter (stored in the variable
month) comes in. Each time around the loop, the value of variable
month is the number of the month. All you have to do is to convert
this value to a string and thereby automatically generate the correct
month’s filename each time (as per above).

Now add the following within the loop in your script;

filename = [’temp’ num2str(month) ’.tsv’];

and after it some debugging38: 38 Or you can make use of a breakpoint.

disp(filename)

just to confirm that appropriate filenames are being generated. Save
and run the script. Satisfy yourself that you know what it is doing.
Can you see that you are now automatically generating all the 12
filenames in sequence? And this only takes 3 lines of code total (not
including the debugging line), compared with 12 lines if you had to
write down all the 12 file names long-hand.

comment out the disp(filename) line, and add a new line to load
in each dataset from the new filename that is constructed each time
the loop goes around.39 Assign the new 2D data array to the temp ar- 39 Remember that the load line goes

inside the loop. (Why? Try writing it
outside the loop (at the end) and see
what happens if you like.)

ray at the next layer number. Take a look at the Workspace window –
note that you have an array (temp) that has size 94×192×12. If temp
is 94×192×1 then go back a page or so and go through the bit about
loading data into a 3D array. You want to avoid over-writing the in-
formation that is already there, so the line; temp = load(filename);
will not work (and you will only get a 94×92 array after going 12
times around the loop). Why? (Again, look back a page-ish.)40 40 If you are still stuck, then stick up a

paw.

elements of ... programming 71

At the end of (but still within) the loop (i.e., before the loop has
completely finished), create a new figure window on one line, then
plot (using pcolor) the monthly temperature data on the next line,
and add the essential labelling stuff (lines after that). All within the
loop still. This line should look something like:

pcolor(temp(:,:,month));

and should produce extremely exciting graphics as in Figure 3.241. 41 The 2D graphics will get *much*
better later – one thing at a time!(Don’t just type this line in blindly (maybe it doesn’t ’work’ anyway).

Make sure that you understand what you are doing (otherwise why
do GEO111 at all?).)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.2: Extremely unappealing
blocky plot of Earth surface temper-
ature (who cares with month? – the
graphics are too poor to matter ...).

Save and run the script. Do you have 12 different temperature
plots on the computer screen?42 Note that this is where the close all

42 If not, stick you paw up in the air for
help ...

command at the start of your script comes in useful. Because if you
re-run the script, you wont then end up with 24 figure windows.
And then 36 the time after that, and ... (There is actually no need to
create a new figure window each time – comment out the command
that creates a new figure window (figure). Save and re-run and note
the difference.)

movie2avi

The function movie2avi converts
an animation encoded in MATLAB’s
movie format to an avi file, which is
a common film format that can then
be played in Windows (or other op-
erating systems) without having to
use MATLAB to display it. It is also
a format that could e.g. be embed-
ded in a Powerpoint presentation. A
typical basic usage is:

» movie2avi(M,’file.avi’);

where file.avi is the output file-
name and M the input MATLAB
movie name.

Finally ... look up MATLAB help on getframe. Then go back to
your global temperature loading/plotting script and add the follow-
ing line43:

43 Where to put the line? See the
Example given in the help on this
function. It is exactly what you are
doing here.

M(month)=getframe;

Save and run. When MATLAB is all done, at the commend line
type in:

» movie(M,5,2)

and hopefully ... an animation of the progression of monthly surface
air temperatures globally, should appear44.

44 Note that the active Figure window
may have disappeared behind some
other windows so go rescue it to see
what is happening.

If you want to play some more, just type help movie – there are
controls for not only the number of times you loop through the com-
plete animation, but also for the numbers of frames per second. But
we will revisit this later – the 2D plotting you have done so far is
very basic and there is no scale or sane x/y axes. Later we can also
add the continental outlines that will help orient you and improve
the quality of the graphical output.

Before you move – go look at your script – is it well commented?
Would you be able to tell exactly what it does it by the end of GEO111?
What about next year? Are the loop contents indented? It is important
that it is commented and laid out adequately.

72 geo111 – numerical skills in geoscience

3.5 Loops and conditionals ... together(!)

No surprise that you might combine both loops and conditionals in
the same programming structure. In fact, this becomes very powerful
and is an extremely common device in programming.

3.5.1 for ... and conditionals

break

Simply – break terminates the ex-
ecution of a for or while loop’. And
from help a further clarification:
’Statements in the loop after the
break statement do not execute.’

Slightly more complicated (but not
much) in the case of nested loops –
in this case, break exits only the loop
in which it occurs.

Indenting code
Just do it (or let MATLAB do it). Even

for a single loop or conditional, it is
way easier to see what code is within
the loop and what outside it, when the
code inside starts several spaces in from
the margin.

For nested loops and conditionals, it
is even more important to keep (visual)
track on what is going on.

Note that the indention (or lack of)
does not affect the execution of the code
(unlike in e.g. Python).

As an alternative to (or as well as) a fixed loop, or variable and (func-
tion) parameter passed controlled loop, we could specify a near infi-
nite loop, but provide a get out of jail free. For example, within the
loop, we could add a line that asks an additional question: ’Another
input (y/n)?’ We would test the answer and if no (’n’), exit the loop
(and report the sum as before). This would look like:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

for n = 1:1000000

my_number = input(my_question1);

my_string = input(my_question2,’s’);

if strcmp(my_string,’n’)

break

end

end

where 1000000 is simply chosen as a ’very large number’ and one
rather larger than the maximum number of numbers you could ever
imagine entering45.

45 There us a better way of doing this,
with the while construct, that we’ll see
shortly.

The key new command here is break. The way the code works
(hopefully!) is that at the start of a new iteration of the loop, the
’another input’ question is asked – if no further input is required,
the loop exits via the break command. Otherwise (the else), the
user is prompted for another input. Note that now we have loops
and conditionals nested together, it helps even more to indent the
code46. Also note that here – the two different questions (demands) 46 MATLAB will do this for you if you

click on the Indent icon. It will also
indent the code as far as it reasonably
can, as you type.

outputted to the screen – ’Another input (y/n)?’ and ’Please enter a
number’ – are pre-defined before the loop starts. These same lines
could be placed within the loop, but re-defining the variable e.g.
my_question1 as ’Another input (y/n)?’, each and every time, is
redundant (i.e. it could instead simply be defined once at the start of
the program). Also also note that in this code, the number entered
in is assigned to the variable my_number rather than n as was used
before – simply to help distinguish the number input from the string
input (assigned to my_string).

It is up to you to ’do’ (i.e. add or modify the code) something with
the number entered in an stored in the variable my_number, as each

elements of ... programming 73

time around the loop, the previous value is over-written by the new
input.

Currently, the program only exits upon entering ’n’ to the ques-
tion. Instead, we could have it exiting for any answer other than ’y’:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

for n = 1:1000000

my_number = input(my_question1);

my_string = input(my_question2,’s’);

if ∼strcmp(my_string, ’y’)

break

end

end

which compares my_answer and ’y’, if this is not true (that they are
the same), break is executed.

A more practical example would be in saving a data file, to test
for a filename already existing and if so, automatically modifying the
new file name so as not to over-write the file.47 The relevant function 47 Note that while in the m-file Editor,

MATLAB asks you if you want to over-
write an existing file, when saving a
file directly from a program, no such
dialogue box or warning is given.

is exist and in the case of a test for a file, returns either 0 (the file
does not exist in the MATLAB search path, although that does not
rule out it existing somewhere else entirely), or 2 (the file exists).

Clearly(?), in the example of saving the movie file (using the
movie2avi command), you might well want to test whether the file-
name that you have chosen already exists (i.e. the value returned by
exist is 2). If so (i.e. the file exists), you need to modify the filename
by means of a new concatenation, perhaps appending something
like ’_NEW’ to the end of the string48. If not, and the filename has not 48 Recall that in using the movie2avi

command, you pass a filename – simply
modify the filename passed, in a similar
way to in which you modified the
filename for loading the temperature
data.

already been used, you can proceed as before – the equivalent of
’doing nothing’. Go ahead – try it (i.e. modify your code to avoid
over-writing an existing filename).

exist

Tests for whether a specified
variable, function, file, or directory
exists, and in generally, which is
these it is.

The general syntax and usage is:

exist(’A’)

to return what A is.
An extended syntax with a second

passed parameter:

exist(’A’,’file’)

returns value of 2 is returned is A if a
file, and for:

exist(’A’,’dir’)

returns a value of 7 is returned is A if
a directory.

You could start by defining a default filename in the code49 that

49 Either near the very start of the
program (neater), or just before you
need to use the string (to save a file).

you will use if there is no clash with any existing file, e.g.

my_filename = ’GEO111_movie.avi’

Now test whether this filename already exists:

filename_check = exist(my_filename,’file’)

Finally, using an if statement, test whether the value of filename_check
is equal to 2. If so, you are going to need to modify the filename
string (my_filename). If not, you can let the conditional just end and
proceed to saving. Modifying the filename is just as per for the exam-
ple of loading global temperature distributions, e.g.

74 geo111 – numerical skills in geoscience

my_filename = [’NEW_’ my_filename];

where here, we take the string contained in my_filename, we append
a ’NEW_’ to the start50, and assign the new (longer) string back into 50 Note that because the filename

already has its ’.avi’ extension attached,
you’ll have to modify the start of the
string.

the variable my_filename.
The file naming becomes a little awkward, so rather than the entire

filename + extension, you might just store just the filename in the
(my_filename) variable. i.e.

my_filename = ’GEO111_movie’

but the remembering when you test fo rthe existence of a particular
file, you must add the extension, i.e.

filename_check = exist([my_filename ’.avi’],’file’)

(here we create a new string [my_filename ’.avi’] by concatenating
my_filename with the extension ’.avi’). If the filename exists, the new
filename we generate can then be:

my_filename = [my_filename ’_NEW’];

(adding the ’_NEW’ after, rather than before the existing filename
string).

3.5.2 while ...

We can re-frame the earlier example programs using the while con-
struct rather than the for loop. But now ... you need to specify under
what conditions the loop continues as the basic syntax (see earlier or
help) is:

while STATEMENT (IS TRUE)

CODE

end

Here – STATEMENT (IS TRUE) is the conditional. For instance and
rather trivially, create the following as a program and run it51: 51 You ... are going to need a Ctrl-C on

this one ...
while true

disp(’sucker’)

end

What has happened is that true is always ... true. Hence the con-
dition is always met and the while loop loops forever. Conversely,
while false would never loop, not even once. more interesting and
useful is when the statement might change in value as the loop pro-
gresses.

Consider (and type up in a script):

n = 0;

while (n < 10)

disp(’sucker’)

end

elements of ... programming 75

This also will loop for ever as n is initialized to 0 and hence the state-
ment (n < 10) is always true. But if we increment the value of n each
time around the loop:

n = 0;

while (n < 10)

disp(’not a sucker’)

n = n + 1;

end

then the loop will execute exactly 10 times (just as per for n = 1:10).
You could also do this in reverse:

n = 10;

while (n > 0)

disp(’not a sucker’)

n = n - 1;

end

Now, n counts down from 10 and when it reaches a value of 0, it is
no longer greater than zero and the statement (n > 0) is false (and
the loop terminates).

It is not always completely obvious whether even simple while
loops like this execute 9 or 10 (or 11) times particularly when often
you might come across while (n >= 0) that allows the loop to con-
tinue when when n has reached z value of zero (but not below). So –
spend a little while playing about with different while configurations
and loop criteria.

Finally, note that the conditional statement in the while loop need
not test for an integer being larger or smaller than some threshold.
One could equally loop on the basis of a string equality/inequality.
For example, taking the previous example using break could be re-
coded with a while loop:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

my_string = ’y’;

while strcmp(my_string,’y’)

my_number = input(my_question1);

my_string = input(my_question2,’s’);

end

and ends up a slightly shorter and more compact piece of code, omit-
ting the need for a break or a nested structure. However, in this
example, we do need to initialize the value of my_string (to ’y’ – as-
suming that we want at least one number). Try it and then adjust it
so that the loop proceeds as long as the answer is not ’n’ (rather than
as long as it is ’y’)52. Note that as before – it is up to you to ’do’ (i.e. 52 See earlier Example.

add or modify the code) something with the number entered in an

76 geo111 – numerical skills in geoscience

stored in the variable my_number, as each time around the loop, the
previous value is over-written by the new input.

Extending the filename checking example53 to fully integrate 53 Which first time around did not
actually combine loops and conditionals
in the same structure. Rather, a loop
came first in the program (loading in
and plotting the temperature data),
ended, and only then a conditional
checking the filename.

a loop and conditional. The problem with the previous code is that
you checked for the existence only a default filename (and appended
’_NEW’ if a file already existed).

One (partial) solution would have been, rather than append a pre-
defined string (’_NEW’) to the filename, would be to request that the
user provide either a string to append, or a completely new filename.
You have already see the input command in action, so you should be
in a good position to code this modification up.54 54 Effectively, all you have to do, if exist

returns a 2 and the file already exists,
is to ask for an alternative filename,
and use the string entered in as the new
filename (and don’t forget to add the
’.avi’ extension to the end when saving)

A better solution (because even when asking for an alternative
filename – what if that file exists too?) would be to keep checking for
a filename clash and keep asking for a new filename, until a unique
one is found. Who knows how many attempts this might take (to
find an unused filename), so while ... would be a better choice of
loop than for Becasue exist returns a 2 if the file already exists,
a logical condition for while would be while exist is returning 2:

my_question = ’Please enter an alternative filename (without

the extension): ’;

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename ’.avi’],’file’)

end

Within the loop, a new filename is requested and then check
against the directory contents. What is missing is the initial value
of filename_check. In a previuos example, we simpy set a value at
the start. If we did that here, the first line of this code would look
like:

filename_check = 2

In this case, we do not need a default filename as the user provides
the veyr first filename that is tested. Alternatively, we could perform
a single check before the loop starts:

my_question = ’Please enter an alternative filename ...

(without the extension): ’;

my_filename = ’GEO111_movie’;

filename_check = exist([my_filename ’.avi’],’file’)

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename ’.avi’],’file’)

end

elements of ... programming 77

3.6 Even more (and loopier) loops

[Further examples of increasingly extreme loopiness.]

Looping through arrays. In plotting e.g. global temperature distri-
butions, it would be nice to add on the continental outline. Currently
and particularly with the very basic 2D plotting you have seen so far
(pcolor) left to some extent guessing where the land and where the
ocean is.

A pair of files are provided (from the website), comprising a series
of pairs of lon-lat values that delineate the outline of the continents
and all but the smallest of islands:

continental_outline_lat.dat

continental_outline_lon.dat

Download, and load these into the MATLAB workspace (in the
’usual way’). You should now have 2 vectors. Maybe view then in
the Variable Window to get a better idea of what you are dealing
with. Also keep an eye on the entries in the Workspace Window and
perhaps the Min and Max values to give you an idea of the range
(here: of longitude an latitude values). Try plotting these lon/lat lo-
cations. Use the scatter plotting function (which makes it all the
easier as your data is in the form of 2 vectors already). You might
need to reduce the size of the plotted points (refer to the earlier ex-
ercises, or help) and additionally, you might want to fill the points
(up to you). Remember you can set the axis limits, which presumably
should be 0 to 360 or -180 to 180, on the x-axis (longitude), and -90 to
+90 on the y-axis (latitude). Font sizes of labels can also be increased
if necessary. You might end up with something like Figure 3.3.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

Continental outline

la
tit

ud
e

Figure 3.3: Continental outline (of
sorts).

By plotting dots (points), the coastal outline at higher latitudes
gets increasingly pixelated (why?). So, we might instead plot as lines
between the lon-lat pairs. For this, you could simply use plot. Do
this, and see if you get something like Figure 3.4..

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 3.4: Another continental outline
(of sorts).

Well ... interesting. If you think about it, as one continental outline
is completed, the next lon-lat pair will be for the next continent or
island. What plot does is to join up *all* the adjacent points, which is
why you get the straight lines criss-crossing the map with the start of
each successive continent and island in the dataset joined to the end
of the previous one.

The continental outline dataset is not actually that useless. There
are additional files that specify which block of lon-lat pairs belong to
a single shape (i.e. continent or island). Load in the 2 additional files:

continental_outline_start.dat

continental_outline_end.dat

78 geo111 – numerical skills in geoscience

These vectors hold information regarding the start row and end row,
of each shape. Again, view the contents of these vectors to get an
idea of what is going on. For example, you’ll see that the first entry is
that the first shape starts on row 1 (continental_outline_start.dat),
and ends on row 100 (continental_outline_end.dat). The 2nd
shape starts on row 101, and ends on row 200. etc etc The simplest
way too start dealing with all this, is to just plot the very first shape,
defined by rows 1-100 of the lon and lat vectors. By now, you hope-
fully will be able to see that to plot rows 1-100 of lon and lat data,
you are going to do:

plot(lon(1:100),lat(1:100));

(here I have named the arrays lon and lat for added convenience
rather than the long-winded default file-name based versions
(continental_outline_lat, continental_outline_lon)).

Well ... this is probably about as unexciting as it gets – a small
piece of the Antarctic coastline. If you do a hold on and plot the
next block (rows 101-200), you’ll get the next chunk of coastline.
(Try this and see.) You could keep going this – manually adding
additional sections of the global continental outline. This could
get tedious ... and it turns out that there are 283 different frag-
ments to plot, all one after another. (This number comes from ask-
ing MATLAB the length of continental_outline_start.dat or
continental_outline_end.dat.) This is, of course, why we need to
get clever with a loop and automatically go through all 283 fragments,
plotting them on on top of another in the same figure.

length

This function could almost not be
simpler – just pass the name of a
vector, and it returns its length (i.e.
the number of rows, or columns,
depending on the shape of the
vector).

How? First you need to have the plot command in a more gen-
eral form – you do not want to have to read the values out of the
continental_outline_start.dat and continental_outline_end.dat

files manually. Hopefully, it should be apparent that you can re-write
the plot statement for the first fragment, as:

plot(lon(line_start:line_end),lat(line_start:line_end));

where for the first fragment, the values of line_start and line_end

are given by lstart(1) and lend(1), respectively (renaming the
original vectors to shorten the variable name)55. Re-writing again: 55 You cannot use the obvious variable

name end – why not?
plot(lon(lstart(1):lend(1)),lat(lstart(1):lend(1)));

Try this and check you still get the single piece of the Antarctic coast-
line.

Really, you should hopefully be making the mental leap to looking
at (1) and thinking that it could be: (n), where n is a loop counter
which can go from 1 to 28356 and hence loop through all the line 56 This number comes from a 5th file

– continental_outline_k.dat, that
numbers the continents/islands from
1 to 283. You don’t need it, although
downloading it, loading it, and deter-
mining the length f the vector gives you
the loop limit and you would not have
to go trusting me to write down 283
correctly without making a mistake ...

fragments. Yes? For instance, setting n=1, and plot (with n replacing

elements of ... programming 79

1 in the code fragment above) – you should again get that very first
fragment. Try setting n=283 and plot. Do you get the last fragment
(what is it of57)? 57 An island at about 20N and -150E if

you have done it correctly.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 3.5: Another go at the continen-
tal outline!

So ... create yourself an m-file. Load in the lon-lat pairs as vectors
(renaming then to something more manageable if you wish). Load in
the vectors continuing the start and end information. Create a do ...

end loop. Maybe print (disp) the loop count and run the program
(after saving), just to check first that the loop is functioning correctly.
Before the loop, create a Figure window. and set hold on. You now
have a basic shall of a program – loading in the data, initializing a
figure, and appropriate looping, but not yet actually doing anything
within the loop.

In the loop all you need is the plot command, but with the start
and end rows being a function of n (or whatever you call the loop
counter). Set axis dimensions and label nicely (after the loop ends).
Run it. Hopefully ... something like Figure 3.5 appears(?)

