
3

Elements of ... programming

Nerd. This is what you are now going to become. And lose all your social skills. And sit at home all day in
front of your computer. Which has become your only friend.

You will achieve this higher state of Being by starting to learn to write and use scripts and functions (aka
m-files) in MATLAB. Actually, at this point you are now writing computer programs (of a sort) rather
than endlessly typing stuff at the command line in the forlorn hope that something useful might occur.
You will also be doing a great deal of code debugging ...

3.1 Introduction to scripting (programming!) in MATLAB

Commands in MATLAB can become very lengthy, and you typically
end up with multiple lines of code to get anything even remotely
useful done. And as you have noticed, it can take a lot of time to en-
ter in all these lines. When when you log off and go home ... it is all
gone. 1 ... If only there was some way of storing all these commands

1 MATLAB remembers all the com-
mands used in previous session (al-
though this may not be the case of
shared, lab computers) and lists them
in the Command History window. You
can recover and re-execute a previous
command in this list by double-clicking
it. You can also re-run more than one
line at a time by selecting multiple lines
and pressing F9 (or Evaluate Selection
from the (R-mouse button in Windows)
context menu).

in such a way that they could be worked on and run again with the
press of a button (as a wild guess, how about F5?), without having to
enter them all in, all over again from scratch ...

m-file

... is nothing more than a simple
text file, in which a series of one or
more MATLAB commands are writ-
ten and which via the .m extension,
MATLAB interprets as a program
file (script or function) that can be
edited and executed (or rather, the
list of commands inside, can be
executed in sequential order).

Assume a similar convention to
that for variables in the naming of
m-files.

Your wish is granted. In MATLAB, it is possible to store all of
your commands in a single text file, and then request that they are
all executed (sequentially) at one go. MATLAB gives this text file
a fancy name (because it is a very fancy piece of software, after all)
– a script2, otherwise known as an m-file. To create a new m-file;

2 The conception of a function, will be
introduced later.

from the File menu, select Script (a common type of m-file)3. You

3 In order version of MATLAB:
File/New menu, and select: Blank
M-file.

will see a text editor (more fancy-ness) appear in front of your very
eyes, containing your requested (but currently empty) m-file. Save
the m-file to your directory of choice. Alternatively, simply create a
new (blank) text file and saving it with the extension .m, rather than
e.g. .txt, creates you a (script) m-file. From an m-file, you can issue
all the MATLAB commands you previously would have entered
individually, line-by-tedious-line, at the command line. Furthermore,
having created and saved a MATLAB script, it can be executed again

50 geo111 – numerical skills in geoscience

and as many times as you like.
You can execute an m-file by typing its name into the Command

window (omitting the .m file extension). Ensure that MATLAB is
operating in the same directory as the directory that you have saved
your m-file. You can also run the script (m-file) by hitting the big
bright green Run icon button at the top of the m-file editor4. The

4 In order versions of MATLAB – select:
Debug/Run from the ’debug’ menu of
the Editor window.

short-cut for running it is to whack your paw down on the Function
Key F5.

OK – you are now ready for your very first program ... inevitably
... this has to be to print ’Hello World’ to the screen. No, really.
(Google it.) Create a new m-file, calling it e.g. hello_world.m. You
need to use the function disp (see Box or type » help disp) as al-
ways, for function syntax and usage), which will print to the screen,
either any text you specify (in inverted commas), or the value of a
variable (which could also contain character information). For now,
simply pass the text directly. Your program needs just a single line in
the m-file:

disp(’hello, world’)

Save the file (to your working directory). Run it at the command line
by typing its name (omitting the .m extension). Your first program
is a success! (Surely you could not screw up a single line program ...
?5) You could extend this to a mighty 2-line program by defining the

5 If MATLAB gives you an error mes-
sage something like
Undefined function or variable

’hello_world’

then it is likely you are simply not
in the same directory as the m-file,
and/or the location of the m-file is not
in one of the directory paths MATLAB
knows about (see previous Tutorials for
comments on changing directory vs.
adding paths.).

string as a variable and displaying the contents of the variable, i.e.,

message = ’hello, world’;

disp(message)

disp

... displays something (the contents
of a variable) to the screen. Actually,
it effect is basically identical to leav-
ing off the semi-colon (;) from the
end of a line. In the example of:

disp(X)

where the contents of X is a string,
you get the text displayed.

Note that the difference between
using disp and simply typing the
variable name:

disp(X)

is ... well, find out for yourself!

For further practice – pick one of any of the previous exercises
in which multiple lines of code were required, place them into a
new m-file (either by re-typing them in or copying them out of the
Command History window), save the file (to the same directory
that you are working from), and run it my typing its name at the
command line (omitting the .m extension).

3.1.1 Programming good practice

A few tips about good practice in (MATLAB) programming before
we go on (and on and on and on):

Creating help text in an m-file

MATLAB allows you to crete a
’help’ section in the m-file – text that
is outputted too the screen if you
type help on that particular script
(or function). The text is defined by
a block of comment lines at the very
top of the script file (or after the
function definition in the case of a
function). The last sequential com-
ment line is taken to be the end of
the help section. Note that the help
section can be a minimum of eon
single line. A typical basic format is:

1. Name of (in capitals), and very
brief summary, of the script
(/function).

2. List and description of the dif-
ferent forms of use (if there are
one or more optional parameters)
including definition of the input
parameters.

3. Examples.
4. A See also section listing similar

or related scripts or functions.

• Choose helpful variable names so that it is clear what each vari-
able represents. Avoid *excessively* short names, except for simple
index and counting variables. At the other extreme – excessively
long names, which the might be wonderfully descriptive, can lead
to even simple calculation stretching over multiple lines of code
(which can make it more difficult to see what is going on in the
code overall).

elements of ... programming 51

• Use comments within your m-file to add explanation and
commentary on your program. Anything after a % on the same line
is a considered a comment6, and is ignored by MATLAB. 6 Your % comment can start on a new

line, or follow on from the end of a line
of code, whichever is more helpful.

• Structure the code nicely. You can break the code up into sec-
tions, e.g. by adding a blank line. You might also start each section
with a label summarizing that it is going to do (via the addition of
a comment).
• To start with – program in as a simple step-by-step way as
possible. Breaking a complex calculation into several lines of sim-
pler calculations is much easier to debug and work out what you
were doing later, particularly if comments are also added. For all
practical purposes – at this level, everything will run just as fast
whether as a complex calculation on one line, or simple bite-sized
calculation spread over 4 lines with comment sin between.
• Always save your changes before running your program (or
you may unknowingly be running the previous version).
• If using the script to do some plotting, sometimes (but not
always) it is convenient to add at the top of the m-file,

close all;

This command close all currently open figures, plots, images, etc.

An illustration (and a far from perfect illustration) of a short script
exhibiting at least a few examples of good practice, is:

function [dum_temp] = ch4_ebm_basic(dum_S0)

% 0D case of EBM - analytical solution

% function takes one parameter - the solar constant (units of

W m-2) [NB. modern value: 1370.0]

% define constants

const_0C = 273.15; % (units: K)

const_sigma = 5.67E-8; % Stefan-Boltzmann constant (units: W

m-2 K-1)

% define model parameters

par_emiss = 0.62; % (non-dimensional)

par_albedo = 0.3; % mean albedo

% solve for surface temperature

% equilibrium equation:

% (1.0-par_albedo)*(par_S0/4.0) = par_emiss*const_sigma*loc_temp
∧4.0

% then re-arranged to:

loc_temp = ...

((1.0-par_albedo)*(dum_S0/4.0)/par_emiss/const_sigma)∧0.25;

% convert temperature units (Kelvin to Celsius) and set value

of return variable

dum_temp = loc_temp - const_0C;

end

which also illustrates one possibility for variable naming conven-
tion (’constants’ (variables which never change in value) start with a

52 geo111 – numerical skills in geoscience

const_ and parameters (variables whose values might be changed)
with par_, temporary (’local’) variables with loc_ and variables
passed into and out of the function: dum_). Note use of the semi-
colon at the end of every line to prevent (here unwanted) printing of
results to the screen. In the file, you can create as much ’ASCII art’
as you like if it helps to make the code clearer, e.g. adding separator
comment lines ...

% --------------------------------

... or highlighting certain section headers, e.g.

% *** PLOTTING SECTION ***

If it (a line) starts with a percentage symbol, then MATLAB ignores it
and you can type whatever you like after it (on the same line).

Your Hello World program might look like the following once it
has had a little tune-up (although in this example this is pretty much
over-kill):

% program to print ’Hello World’ to the screen

% *** START ***
% first - define the text to display and assign it to the

variable message

message = ’hello, world’;

% second - display the contents of variable message

disp(message)

% *** END ***

Finally, and related to the next subsection – code in stages, testing
the (partial) code at each step. Do not try and write all the code in
one go and only try it out at the end7. 7 Because it will not work 99 times out

of 100 ...

3.1.2 Debugging the bugs in buggy code

What programming is mostly about is not writing new code so much
as debugging8 what you have already written. Key then is to reduce 8 The art of fault-finding in computer

code.the incidence of bugs occurring in the first place, and when they do
occur, firstly to have code that lends itself to debugging and secondly,
knowing how to go about the debugging. The first two facets are
at least partly addressed through good programming practice (see
earlier)9. 9 And by the discipline of software

engineering, which is way out of scope
of this course.

Here’s an example to try out to start to see what might be involved
in debugging, loosely based on a previous plotting example – go
create a new m-file called: plot_some_dull_stuff.m10. Then add the 10 Remember – you are advised to name

your m-files as something vaguely
descriptive of what the script actually
does (and you do ont have to go with
this choice, although it might turn out
to be perfectly descriptive ;) (i.e. you do
not have to call it this!)

following lines to the file:

elements of ... programming 53

% my dull plotting program

% first, initialize variables and close existing figure

windows

close all;

x = -2*pi:0.1:2*pi;

y1 = sin(x);

y2 = cos[x];

% open a figure window and plot a sine graph

figure;

plot(x,y1,’r’);

% add a cosine graph

hold on;

plot(x,y2,k);

and then run it (refer to above for how).
Pretty dull stuff eh? Wait – maybe you didn’t get a figure appear-

ing on the screen with a pair of sines and cosines on. Has MATLAB
given you an error? If you typed in the above ’correctly’, you should
see:

Error: File: plot_some_dull_stuff.m Line: 6 Column: 9

Unbalanced or unexpected parenthesis or bracket.

Actually ... if this were your program, you should have paid attention
to earlier and not have written it all at once before testing it! But
at least MATLAB is giving you some sort of feedback. The actual
error reported might not always mean that much to you but the line
number at which the problem occurred is gold-dust. The line of code
is does not like is line 611, which is: 11 Note that although MATLAB ignores

comment lines (in the context of exe-
cuting code), it does count them when
telling you which line of the program
code an error occurs at.

y2 = cos[x];

Maybe the mistake is already obvious? If it is – go fix it and re-run
the program. If not, maybe test out the line more simply, passing in a
value directly to the function cos and not bother assigning the result
to a different variable, e.g.

» cos[0.0]

to which you get told:

» cos[0.0]

cos[0.0]

↑
Error: Unbalanced or unexpected parenthesis or bracket.

Now you have reduced the use of the cos command to its simplest,
whilst retaining the usage in your program that seemed to cause an
issue. Hopefully, now the error is apparent. If still not, check out help
on the cos function, or search cos in the MATLAB help (from the
question mark icon in the toolbar).

54 geo111 – numerical skills in geoscience

Is it important to recognise that (1) bugs will not always be flagged by
MATLAB with a line number, and you can have valid code but nonsensical
results, and (2) the mistake is often made earlier in the code than when
MATLAB flags up a problem line.

Other strategies for helping debug include:

1. Checking the what the values of the variables were at the point
at which the program derped – the current (and the point of pro-
gram crash) variable values are listed in the Workspace window.
2. Changing the relevant variable value(s) (here x) and re-typing
the problem line to see if it makes a difference12. 12 This is sort of similar to the example

given of simply testing a specific value
directly.

3. Commenting out (%) lines of code temporarily, or adding in
additional (temporary) lines of code, and re-running. Where cod-
ing in bite-sized chunks is an advantage in this respect, is that if
a program stops working after you have added a new section o
code, you can go comment out the new code (never normally just
delete it all), check that the original section of code still works, and
then line-by-line, un-comment the new code until the problem line
is found.
4. You can also put your program on hold just before the problem
line and explore the state of the variables at that point (see Box),
although in this particular example of a bug, MATLAB does not
allow this, presumably because if feels that the mistake is simple
and can be easily fixed.

Debugging – breakpoints
Breakpoints are indicators in the

code that tell MATLAB to pause that
that point. This allows for in-depth
testing of variable values and lines
of code without having to exit the
program.

To add a breakpoint in the code –
click in the (grey) margin of the code
editor on the problem line or before,
and MATLAB adds a red circle to
indicate a ’breakpoint’ has been set.
The presence of a breakpoint tells
MATLAB to pause that that line.

To unset a breakpoint, click on the
red circle or you can clear one or
more from the drop-down Break-
points menu in the toolbar.

Once you have fixed this, re-run the program. Ha ha – it still does
not work. (It is far from unusual to have multiple mistakes in the
same piece of code, hence why writing the code in chunks and test-
ing each time is helpful.) Now we have a problem on line 12:

Undefined function or variable ’k’.

Error in tmp2 (line 12)

plot(x,y2,k);?

Now MATLAB does not like function or variable ’k’ because it
cannot find that it has ever been defined. Is k meant to be a function
or variable? Look up help plot to remind yourself of the correct
syntax if the problem is not immediately obvious.

Once you have fixed the second bug; saved, and re-run the script,
you should see Figure 3.1.

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Output from the (bug-fixed
version of) plot_some_dull_stuff
m-file.

3.2 Functions

Functions in MATLAB, are really just fancy scripts. Again – just plain
old lines of code in a text file that is given a .m extension (making

elements of ... programming 55

it an m-file). The big difference from a script in MATLAB is that
a function can take variables as input and/or return an output (in
contrast, a script takes no input and returns no outputs, other than
plots or data files that might be saved).

A function is defined (and differentiated from a script) by a special
line at the very start13 of the m-file (see Box). 13 Literally: line 1. Not even a comment

line is allowed to appear before the
function definition line.

Functions
The all-important fancy first line

of a function, as defined in MATLAB
help, looks like:

function [y1,...,yN] =

myfun(x1,...,xM)

Thanks MATLAB (this seems overly
complex to say the least)!

OK – lets break this down. Lets
assume that you call the m-file
calc_stuff. The minimal definition of
a function then looks like:

function [] = calc_stuff()

(The syntax is critical and the defi-
nition line must look like this.) Here
we are saying – pass in not parame-
ters and return no values either. So
exactly like a normal script would
work and you would execute the
function calc_stuff by typing at the
command line:

» calc_stuff()

(Maybe you can get away without
the () bit.)

If you wan to pass in a single
parameter (here: X), then you define
the function:

function [] =

calc_stuff(X)

(To pass in more than 1 variable,
simply comma separated the vari-
able names.)

To pass out a parameter (here: Y)
(and no input):

function [Y] =

calc_stuff()

Lastly, at the end of the function,
you include the line:

end

This is all not as weird as you might think. For example, you have
already used the function sin – this takes a single input (angle in ra-
dians), and returns a single output (the sine of the angle). If you were
to write your own function for sin, the file would start something
like:

function [Y] = sin(X)

You can’t, of course, go re-defining pre-defined MATLAB function
names14. So how about if in your work, you found you frequently

14 Actually you can, but it is best not to.

needed to use the square of the sine of a number. You could keep
writing:

Y = (sin(X))∧2

or, if you were a little more devious, you could create your own func-
tion for returning the square of the sine of a number. Your m-file,
which here we’ll call sin2, the contents of which would look like:

function [Y] = sin2(X)

Y = (sin(X))∧2;

end

but of course with LOTS of comments to remind you what the func-
tion does etc. The new function is used pretty much as you would
expect and have used previously, e.g.

» sin2(0.5)

will return the square of the sine of a value of 0.5 and dump the
answer to the screen, and

» Y = sin2(0.5);

does the same but assigns the answer to the variable Y (and the semi-
colon suppresses output to the screen).

Go create your own function now. Start by creating one that takes
a single input and returns a value equal to the sine of the square of
the value (rather than the square of the sine as above). When you are
happy with this, create one with 2 inputs (see Box), that returns a
value equal to the sine of the first input, divided by the cosine of the
second input15 (i.e. y = sin(x1)

cos(x2)
). 15 Mathematically, the answer is not

valid for all possible values of the 2
inputs (why?), and later we’ll learn
how to pro-actively deal with such a
situation.

You have used other functions, perhaps without knowing it, and
some of them return values, but because you have not attempted to

56 geo111 – numerical skills in geoscience

assume the returned values to anything, you have not noticed. plot
is just such an example and if you look up » help plot, you’ll see
(towards the end of the help text):

plot returns a column vector of handles to lineseries objects,

one handle per plotted line.

Finally, it is important to note that by default, any variables cre-
ated within a function are TOP SECRET, and by that, I mean that
they are not accessible to the main MATLAB workspace and do not
appear listed in the Workspace window. To see that this is a non-
Trumpable true fact, create the following function (basically, the first
example but split into 2 steps):

function [Y] = sin2new(X)

tmp = sin(X);

Y = tmp∧2;

end

Here, a variable tmp is created to hold the value of the partial calcu-
lation. It does not appear in the Workspace window when you use
the function. The advantage of this is that you could create a sec-
ond function that also created a temporary variable internally called
tmp with both instances of tmp treated entirely sperate and isolated
by MATLAB (i.e. setting the value of one instance of tmp does not
affect the value of the other). This also however does lead to some
additional complications in debugging functions (see Box). Try set-
ting a breakpoint at the start of the line where the square of tmp is
calculated – note that tmp now appear in the Workspace window.
Continue the function and when it terminates, note that tmp is now
gone from the list.

Debugging – functions
Functions are a prime example

of the importance of being able to
pause code part the way through
(e.g. by setting a breakpoint) be-
cause when a function terminates,
or crashes, you get to see none of
the values of any variables created
within the function, unless they
have been returned as output (and
assuming here that the code did not
crash and managed to get to the
end). Setting a breakpoint allows
you to interrogate the values of any
internal variables.

