
2

Elements of ... MATLAB and data visualization

Hello Newbies! This first lab’s porpoise is to start to get you familiar with what MATLAB is all about
and understand how to import and manipulate (array) data in this software environment and do some
basic plotted (aka ’data visualization’). If your are clever, you might find menu items or buttons to click
that will do the same thing as typing in boring commands at the command line. In fact, you would have
to be pretty dumb not to notice all that brightly colored eye-candy in the GUI (Graphical User Interface –
i.e., menus, buttons, and stuff) at the top of the screen. However, you will get to grips with programming
much quicker if you stick with the instructions and do almost everything that is asked of you using the
command line (rather than doing stuff via the GUI), at least to start with. You’ll just have to trust me for
now ... We’ll start with the very basics and things that you could easily do in Excel instead, and build up.

Graphics is one of the important strengths of MATLAB. Although other software packages and scripting
languages exist that perhaps have the edge on MATLAB in terms of visually appealing plots and graphs,
MATLAB is worlds apart from e.g. Excel.

2.1 Using the MATLAB software

2.1.1 Starting MATLAB

To start with: find the MATLAB icon on the desktop; run the pro-
gram. You should see a number of sub-windows arranged within the
main MATLAB window, hopefully including at the very least, the
Command Window1. Depending on whether you have used MATLAB 1 Conveniently labelled Command Window

– you cannot possibly fail to identify it
...

before and it has remembered your settings, windows may also in-
clude: Command History, Workspace, Current Folder. If instead you see;
’Tetris’, ’Grand Theft Auto: San Andreas’, and ’World Championship
Pool’, then you have the wrong software running and are going to
find learning MATLAB rather hard. However, there is big $$$ to be
made in on-line gaming tournaments these days. Would you really
rather be a geologist and spend the rest of your days hitting rocks
with a hammer? If so, read on ...

24 geo111 – numerical skills in geoscience

2.1.2 The command line

When MATLAB initially starts up, the Command Window should
display the following text:

Academic License

»

or in order versions of the software:

To get started, select MATLAB Help or Demos from the Help

menu.

»

but in either case, with a vertical blinking line (cursor) following the
double ’greater than’ symbols2. 2 Note that in nerd-speak the » is

called the command ’prompt’ and is
prompting you to type some input
(Commands, swear words, etc.). See –
the computer is just sat there waiting
for you to command it to go do some-
thing (stupid?). If one does not appear
at the bottom of whatever is in the Com-
mand Window is means that MATLAB
is busy doing something extremely
important. Or perhaps, MATLAB may
have completely died. Either way, it will
not accept any new/further commands
until it is done calculating/dying.

If you are unfamiliar with using command-line driven software
... Don’t Panic! Nothing bad can happen, regardless of what you do.
Well, almost. It is possible to accidently clear MATLAB’s memory of
the results of calculations and data processing and close plots and
graphs before you have saved them, but MATLAB remembers all the
commands you type, so in theory it is perfectly possible to quickly
reproduce anything lost. (Later on we will be placing the sequence
of commands into a file (that is saved) and so ultimately, MATLAB
should turn out to be mostly fool-proof.)

2.1.3 MATLAB GUI

There are lots of fancy looking icons and pretty colors and you could
spent all day staring at them and not getting any work done. Or
learn good programming practice. Which is why we mostly will
ignore the eye-candy and little (if any) guidance will be given as to
the functionality of the GUI. Look at this as a lesson for the user (to
read the Help, textbook, on-line documentation, or simple go Google
for an answer3). 3 i.e. Internet fishing

2.1.4 Help(!)

Press F1 or click on the question mark icon on the tool-bar, to bring
up the indexed and searchable MATLAB documentation.4 4 It is also possible to obtain context-

specific help, e.g. on a specific (built-in)
function, which we’ll see in due course.

2.2 Basic concepts

2.2.1 Variables

A variable is, in a sense, a pointer to a location in computer memory
where a piece of information is stored5. A variable is associated a 5 In the bad old days, this pointer was

the actual address in memory and
might have looked something like
f04da105.

elements of ... matlab and data visualization 25

name to make things rather more easy and convenient. The name
can be anything you like in MATLAB, as long as it does not contain
numbers or special characters. So actually, you are only allowed se-
quences of letters (otherwise knows as ’words’). But you can create
a variable name based on 2 (or more) words, separated by an under-
score (_). Valid variable names would include:

A

B

cat

derpyhooves

this_is_boring_stuff

BIG

big6 6 Note that MATLAB distinguishes
between lower and UPPER case letters
in a variable (i.e. BIG and big would
represent two different and distinct
variables).

Variables are entirely useless unless they have some information
assigned to them. In fact, you can type in any of the variable names
above (at the command line) and MATLAB will deny it knows what
you are talking about7. 7 Technically, MATLAB reports:

Undefined function or variable

which tells you it is neither a func-
tion name (more on this later), nor is
defined as having any information
associated with it.

So far so useless – you need to assign something to it. Which
brings us to quite ’what’ and ’how’. First of, you need to know that
variables can have the following types:

• Integer – An integer number is a counting number, i.e. 1, 2,

3, ... and including zero and negative integers. MATLAB has
different representations for integer numbers, depending on how
large a number you need to represent (and how much memory it
will need to allocated to storing it). This is something of a throw-
back to the days when computers only had 1/10000000th of the
memory of your iPhone and were slower than a lemon.

• Real (floating point)8 – A real number can have a non-integer 8 The distinction (sort of) is that floating
point is a specific representation of a
real number.

component, e.g. 1.5 or 6.022140857 × 1023. Real numbers also
come in different precisions in MATLAB (also to do with memory
allocation and speed), determining not just the number of decimal
places that can be represented, but also the maximum size.

• String (character) – One or more characters, but now allowing
spaces (unlike in the case of naming variables).

• Logical – true or false.

• etc – No, not a real type, but to note that MATLAB defines
and recognises a whole bunch of other types, including Complex
(MATLAB can handle complex numbers) and Object (we will also
not worry about objects, which can incorporate a combination of
types. At least, not yet ...).

The first thing to learn is to ideally, do not attempt to mix up
(combine) variables of different types. MATLAB is very forgiving

26 geo111 – numerical skills in geoscience

when it comes to combining an integer and a real number in the same
calculation, but in other programming languages, this should be
avoided. However, even in MATLAB, strings and reals (or integers) are
very different things. When necessary, different variable types can be
converted between (see Variable Type Conversion Box).

Variable Type Conversion
MATLAB provides a variety of

functions (see later) for converting
between different types of variables.
The most commonly-used/useful
ones are as follows:

1. converting from a number to a
string (s)

• s = num2str(N), where N is
any number type variable

• s = int2str(I), where I is
an integer

2. converting from a string (s) to a
number

• x = str2num(s), where N is
(generally) a double precision
(real) number

Case #1 (num2str) is generally the
most useful, e.g. in adding specific
captions to plots (with caption text
based on the value of a numerical
variable) – examples are given later.

The second and perhaps rather more important thing, is how to
assign a value to a variable (and in fact, create the variable in the first
place). Programming languages such as FORTRAN require you to
define the variable beforehand and assign it a type. MATLAB allows
you to define and assign a value to a variable all at the same time,
and it will kindly work out the correct type based on the value you
assign to it. You assign a value using the assignment operator =9. For

9 This is NOT ’equals’ in MATLAB. We
will see the equality operator shortly. =
assigns the value or variable on its right
the variable on the left.

example:

A = 10

will assign the value 10 to the variable A. If you type this at the com-
mand line, MATLAB will kindly repeat what you have just told it
and report the value of A back to you:

A =

10

Note that you do not need to add a space before and/or after the as-
signment operator (=). This is something of a personal programming
and aesthetics preference, i.e. whether to pad things out with spaces
or not. (Chose what you feel happiest with and later on, whatever
leads to the fewest programming mistakes ...)

MATLAB will also report in the Workspace window, the name
and value, type (called Class), etc of all your current variables (just
one currently?). Actually, it is not all quite so simple. If you take
a look at the Class of the variable A in the display window – it is
listed as double (a real number) rather than an integer. So by default,
if MATLAB does not know what you really want, it defines A as a
double precision real number10. 10 If you genuinely wanted an integer,

there are ways to do this, such as using
a type conversion function form real to
integer (see above).

The next complication comes when assigning a string (a sequence
of characters) to a variable. For example, try:

B = apple

and MATLAB is far from happy. As it turns out, a sequence of char-
acters can also refer to a function11 in MATLAB, and this is what 11 You will see functions shortly. For now

– note that they are ’special’ (reserved)
words that perform some action and
hence cannot also be used for a variable
name.

MATLAB looks for (i.e. a match to apple in the list or variable (and
function) names). To delineate apple as a string, you need to encase it
in (single12) quotation marks:

12 Double "" quotation marks will not
work.B = ’apple’

elements of ... matlab and data visualization 27

Just as MATLAB creates new variables on the fly, you can re-
assigned values to an existing variable, even if this means changing
the type, e.g.

A = ’banana’

has now replaced the real number 10 with the character string ba-
nana in variable A. This is reflected in the updated variable list details
given in the Workspace window (and a Class now listed as char).

Finally, it is possible to suppress output to the Command Window
when making assignments – simply an a semi-colon (;) to the end of
the assignment statement, i.e.

C = ’banana’;

now does not results in anything being echoed to the command line
(but the Workspace is still updated to reflect this variable assignment).
If you wish to see the contents of the variable, you can either just
type its name at the command line, or view its value as listed in the
Workspace window.

2.2.2 Numerical expressions

You can do normal maths in MATLAB. Or at least, something that
looks at least a little intuitive. (In fact, I often use MATLAB as a cal-
culator.) The primary/common numerical expressions are:

• exponentiation — ∧ — raises one number of variable to the
power of a second, e.g. ab, a to the power b, which is written in
MATLAB as a∧b.
• multiplication — × — e.g. a×b, written in MATLAB as a∗b.
• division — / — (written as you would expect).13 13 Entertainly, it turs out that if you

write the reverse, backslash character
(\) in the equation, you divide the
over way (i.e. denominator divided by
numerator).

• addition — + — (guess).
• subtraction — - — again, obvious/intuitive.

The order in which the numerical operators are written down is
important and MATLAB will execute them in a specific order (op-
erators higher up the list, executed first), i.e. first ^, then ∗,/, and
last +,-. There is also ’negation’, when you change the sign of a vari-
able, and which is executed immediately after exponentiation. The
assignment operator (=)14 comes last. If you are unclear about the 14 This is NOT ’equals to’, as you’ll see

shortly.order numerical operators are carried out, then place parentheses
() around the component of the calculation you wish to be carried
out first to enforce a particular order (this can also help in making
an equation easier to read and ultimately, easier to debug code). For
example, consider:

A = 3;

28 geo111 – numerical skills in geoscience

B = 6;

C = 2;

D = C*(A/B+1)

E = C*A/(B+1)

F = C*A/B+1

G = A*C/B+1

Try these out (and make up your own combinations) and confirm
that the answers are what you would expecty them to be.

2.2.3 Relational and logical operators

We will see more of relational and logical operators later when we start
to get into some proper coding. For now, you only need to know that
a relational operator is one of:

• greater than — MATLAB symbol >

• less than — MATLAB symbol <

• greater than or equal to — MATLAB symbol >=
• less than or equal to — MATLAB symbol <=
• equality — MATLAB symbol ==
• inequality — MATLAB symbol ∼=

and test the relationship between 2 variables. Note in particular,
that the equality symbol (that tests the equivalence between two
variables) is represented by TWO = characters (==), and remember
that a single = character is the assignment operator.

In everyday language, the answer to any one of these relational
tests would be a ’yes’ or a ’no’. But in MATLAB (and other computer
languages), the answer is given as the binary (logical) equivalent
where ’yes’ is represented by 1 and ’no’ by 0. You can also use true

(1) and false (0), e.g. A = true returns:

A =

1

Finally, the logical operators (again, more on this later) are:

• or — symbol ||
• and — symbol &&
• not — symbol ∼

For now – be familiar with how numerical expressions are written
in MATLAB (you’ll need to be using these from the outset), and keep
in mind the existence of relational and logical operators.

elements of ... matlab and data visualization 29

2.2.4 Functions (built-in)

MATLAB provides numerous built-in functions15. These functions 15 We will be constructing our own
later, at which point it should become
apparent that there is nothing particular
special about them.

have specific names assigned to them, so care needs to be take not to
give a variable the same name as a function to avoid getting confused
further down the road. Giving an exhaustive list (and brief descrip-
tion) is outside the scope of this document16. Common functions 16 A full list of functions can be found

in the MATLAB Help Documentation
under functions.

will be progressively introduced as this text progress. Note that in
addition to the on-line Help documentation, information on how to
use a function and example uses is provided by typing help and
then the function name (separated by a space) at the command line.

MATLAB also provides several built-in mathematical constants
(saving having to define a variable with the appropriate number).
This are simply variables that have been already defined and as-
signed values, but which you cannot change (hence the term ’con-
stant’). For instance, the value of π, is assigned to a built-in variable
with the name pi. You can access (display) its value by typing its
name at the command line:

» pi

ans =

3.1416

In this example, the use of the function is rather trivial – you need
to tell the pi absolutely nothing, and it spits back the same thing
(the value of π) each and every time. In most other functions, you
will find that you have to pass some information, and the return
value will depend on the input. (This will all become apparent in due
course ...)

2.2.5 Miscellaneous commands

Related to what you have seen so far and will see soon, useful miscel-
laneous commands include:

• clear — Removes all variables from the workspace.
• clear all — (Removes all information from the workspace.)
• close — Closes the current figure window.
• clear all — (Closes all figure windows.)
• exit — Exits MATLAB and hence enables additional drinking
time in the bar.

Note that a useful trick – if you want to re-use a previously used
command but don’t want to type it in all over again, or want to issue
a command very similar to a previously-used one – is to hit the UP
arrow key until the command you want appears. This can also be
edited (navigate with LEFT and RIGHT arrow keys, and use Delete

30 geo111 – numerical skills in geoscience

and Backspace to get rid of characters) if needs be. Hit Enter to make
it all happen.

2.3 Vectors and arrays #1

So far, your variables have all be what are known as scalars – i.e.
single numbers (or strings). One of the most powerful things about
MATLAB is its ability to represent vectors (1D columns or rows of
numbers or strings) and arrays – 2D and higher dimensional regular
grids of numbers or strings. (matrix17 is the name commonly given to 17 Not to be confused with the film

starting Keanu Reeves.a 2-D array.)

2.3.1 Creating vectors The colon operator can be used to
much more rapidy create vectors (as
long as the elements form a simple
sequence in value) as compared to
typing in the list of values explicitly.
There are two variants to the syntax:

A = j:k

and

A = j:i:k

In the first example, j and k and
the minimum and maximum values
in the sequence of numbers in the
vector. MALAB completes the se-
quence by assuming that the values
monotonically increase and that the
elements are separated by one (1.0)
in value. e.g.

» A = 0:3

A =

0 1 2 3

Note that MATLAB is not inclined
to let you directly create a vector
of elements that decrease in value
(you’ll need to flip this puppy about
to re-order it if that is what you want
– see later).

In the second example, i is the
increment MATLAB will use to
complete the sequence from j to k.
In the example in the text, you could
have created the array B by typing:

» B = 0.5:0.5:2.5

B =

0.5000 1.0000 1.5000

2.0000 2.5000

(More commonly, you might
place the colon operator and its
min/(/increment)/max values
inside a pair of brackets, i.e. A =

[0:3]. so that it is unambiguous
that you are creating an array

Vectors are 1-D arrangements of numbers (or strings). You can enter
them into MATLAB as a list of space-separated value, encased in
(square) brackets, [], e.g.

B = [0.5 1.0 1.5 2.0 2.5]

or with the value comma-separated:

B = [0.5, 1.0, 1.5, 2.0, 2.5]

Either way, you end up with a vector on its side as a single row of
numbers which in math-speak would look like:

B =
(

0.5 1.0 1.5 2.0 2.5
)

You can also create the equivalent, upright orientated vector (as
a single column of numbers) by separating the elements by a semi-
colon:

C = [0.5; 1.0; 1.5; 2.0; 2.5]

which gives the maths-speak representation:

C =










0.5
1.0
1.5
2.0
2.5










2.3.2 Basic vector manipulation

There are several basic and very useful ways of manipulating vectors
(and as we’ll see later – matrices). To start with, you might want to
determine the orientation and length of a vector. There are several
different ways to go about this, which in order of grown-up-ness are:

elements of ... matlab and data visualization 31

1. Display the contents of the vector in the command window by
typing its name at the command line. Obviously, this will quickly
become useless for very large vectors18.

18 Try creating a vector from 1 to 100,000
and then displaying it ...

2. Refer to the Workspace window, although this also ends up a
total Fail for long vectors.
3. Use the length or size function (see Box).

length

You can determine the length of a
vector A with ...

length(A)

returning its integer length, and
which could in turn be assigned to a
variable, e.g. B = length(A). (Tech-
nically, length returns the largest
dimension of an array.)

size (use #1)
Returns both dimensions, even

though for a vector, one of them
always has a value of 1. This does
allow you to determine its orienta-
tion though, as for the example of A
= [1:10]:

» size(A)

ans =

1 10

(1 row and 10 columns). For A = A’:

» size(A)

ans =

10 1

(10 rows and 1 column).

If you find that you want a different orientation (row vs. column)
of the a vector, the vector can be flipped around (converting row-to-
column and column-to-row) using the transpose operator (.’), e.g.:

D = B’

will turn the vector B into one (assigned to the variable D) with he
same orientation as C.

You can also re-order the values in a vector (hence addressing
the restriction in using the colon operator to create a vector that the
values must be monotonically increasing rather than decreasing).
Depending on the orientation of the vector, you can use either the
flipud (for column vectors), or fliplr (for row vectors), functions to
re-order the elements.

flipud, fliplr
These two functions allow you to

re-order a vector. Their use is simple:

» B = flipud(A)

will invert the order of elements of a
column vector, and:

» B = fliplr(A)

will invert the order of elements of a
raw vector. Simples! Lesson over.

2.3.3 Addressing elements in vectors

Values can be extracted from a vector by specifying the index (tech-
nically, this should be an integer, but MATLAB is pretty forgiving
and you can get away with using a real number when specifying
an index) of the element required (counting along, left-to-right, or
top-to-bottom, depending on the vector orientation), e.g.

» B(5)

ans =

2.5000

or:

» C(3)

ans =

1.5000

The transpose operator, in
MATLAB-speak, "returns the
nonconjugate transpose of A". Who
knows what that means. In slightly
more everyday (i.e. down here on
Earth) language, it: "interchanges
the row and column index for each
element". Or sort of, just inter-
changes the rows and columns. The
operation can be written:

» B = A.’

or

» B = transpose(A)

In practice, you can get away with
being lazy (and in fact this is how it
was in the old days, and just write):

» B = A’

(but get into the habit of using the
formally correct, Mathworks official
and UN-approved, syntax of .’).

(In this text, I will refer to accessing a particular element (or ele-
ments) of a vector (or array) via its index as addressing. Unless I
forget, then I might say something else. You’ll have to keep on your
toes – don’t expect consistency here!)

There is a MATLAB function end (see Box) that enables you to
easily address (accessing via its index) the very last value in a vector
(in MATLAB, the index of the first position is always 1).

32 geo111 – numerical skills in geoscience

For addressing more than one element of a vector at a time, you
can use the colon operator (see Box).

As well as reading out an existing value of a vector, you can also
replace an existing value by assigning the new value to the appro-
priate index position. e.g. to replace the first element with a value of
0.0:

B(1) = 0.0

(Here, you are saying that you would like to assign the value of 0.5
to the element in the vector given by the index 1. The previous con-
tent of the array at index position 1 is simply over-written.)

You can access more than a single
element of a vector at a time, by
means of the colon operator, : to
define a min, max range of indices.
For example:

» B(2:4)

ans =

1.0000

1.5000

2.0000

To select all elements:

» B(:)

ans =

0.5000

1.0000

1.5000

2.0000

2.5000

end

Represents the largest index in
a vector when addressing it, or in
MATLAB-speak: "end can ... serve
as the last index in an indexing
expression".

2.4 Basic graphing (aka. ’data visualization’)

So far ... I suspect this is heavy-going and there is a lot to try and
remember, such as command names, although knowing just that cer-
tain commands exist, is enough to start with and MATLAB Help can
be used later tot find out the exact name (and usage syntax). All this,
and we have not even gotten on to matrices (2-D arrays) yet ... So,
we’ll take a diversion to look at some basic plotting techniques that
will make sense now that you can create vectors of numbers to plot
(and later, important some ’real’ data). Unless you have forgotten
how to create vectors already ... :(

2.4.1 Plotting

The command figure creates a figure window, which is where MAT-
LAB displays its graphical output ... but on its own, without any-
thing in it ... useless. So, lets put something in it, with the simplest
possible graphical way of displaying data called plot. But first – cre-
ate yourself a dummy dataset to plot. You are going to need to create
yourself a pair of vectors – these can have any values (all numbers
though) in them that you like, but perhaps aim for 1 vector with val-
ues counting up from 1 to 10 – this will form your x-axis, and the 2nd
column ... whatever you like. 19

19 Looking ahead – you could create a
y-axis vector formed of the squares of
the numbers in the x-axis vector:

» Y = X.∧2

(The .∧ bit says to square the value of
each and every element in the vector.)

plot

The MATLAB function plot ...
plots. More specifically, it plots pairs
of (x,y) data and by default, does not
plot the points explicitly but joins
the(x,y) locations up by straight line
segments. MATLAB calls these a
’2D line plot’, although there are
plotting options that allow you only
to display the individual (x,y) points
(making it like the scatter function,
which we’ll see later).

Its most basic usage is:

plot(X,Y)

where X and Y are vectors – of the
same length (important), but not
necessarily of the same orientation
(i.e. if one was a row vector and
one a column vector, MATLAB
would work it out, although it is per-
haps best to avoid such a situation
arising).

There are many options that go
with this function, some of which
we’ll see and use later. You can also
input matrixes as X and Y apparently.
But I have absolutely no clue as to
what might happen. I suspect that
the plot will end up looking like a
bad acid trip.

As always, refer to the MATLAB help text on plot before using it
(also refer to Box). The key information that will get you started is at
the very top:

PLOT(X,Y) plots vector Y versus vector X.

So, you need to pass it your x-axis data vector (by its variable name),
followed by your y-axis data vector (by its variable name) – comma
separated. Do this, and depending on just what or how random your
y-axis data was, you should end up with something like Figure 2.1 in
a window captioned "Figure 1".20

20 If you cannot see the figure window
... check that the window is not hidden
behind the main MATLAB program
window!

elements of ... matlab and data visualization 33

This ... is easily the least professional plot ever. And one that
breaks all the most basic rules of scientific presentation, such as an
absence of any labelling axes. There is also no title, although here in
the course text I have added a figure caption in the document so I
can sort of get away with it. But this is the default state of the basic
plot function and you’ll just have to deal with it (i.e. add a series of
commands to add missing elements of the plot).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 2.1: Default output of plot.

Note that by default, MATLAB also scales both axes to reason-
ably closely match the range of values. In the example here, the
default min and max axes limits in fact turn out to be the min and
max values in the x and y-axis data because the data is composed of
relatively simply/whole numbers. If however the maximum y value
was vary slightly larger, you’d see that MATLAB would adjust the
maximum y-axis limit to the next convenient value so as to preserve
a relatively simple series of labelled tick marks in the axis scale. In
fact, why not try that – replace your maximum data value, with a
value that is very slightly larger (an example is given in Figure 2.2).
21 Then re-plot and note how it has changed (if at all – it will depend

21 If you have created a dummy dataset
in which the value in the last row is
the largest, replacing it is simple –
remember the use of end in addressing
an element in an array. If your dataset
does not monotonically increase and
the largest value falls somewhere in the
middle ... you could cheat’ and open
the array in the variable editor and
discover which row it occurs on.

somewhat on what data you invented in the first place).

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Figure 2.2: A plot illustrating axis
auto-scaling (maximum x and y values
now slightly larger than 10 and 100,
respectively).

2.4.2 Graph labelling

You have two options for editing the figure and e.g. adding axis
labels. Firstly, you can use the GUI and the series of menu items
and icons at the top of the Figure window to manipulate the figure.
I suspect you’ll prefer this ... but it is not very flexible, or rather, it
requires your input each and every time you want to make changes
or additions to a figure. The second possibility is to issue a series of
commands at the command line. (The advantage with the latter we’ll
see later when we introduce m-files.) For now, I’ll illustrate a few
basic commands:

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Whatever values

W
ha

te
ve

r
va

lu
es

 s
qu

ar
ed

A plot of some values vs. their squares

Figure 2.3: A (only very slightly)
improved plot.

1. The first, obvious thing to do is to add axis labels. The com-
mands are simple – xlabel and ylabel. They each take a string as
an input, which is the text you would like to appear on the axis. If
you change your mind, simply re-issue the command with the text
you would like instead.
2. The command for title, perhaps unsurprisingly, is title. Again,
pass the test you would like to appear as a string (in inverted
commas ”), or pass a the name of variable that contains a string
(no ’’ then needed).
3. You might want to specify the axis limits. The command is
axis and it takes a vector of 4 values as its input – in order: min-
imum x, maximum x, minimum y, and maximum y value. e.g.
axis([0 10 -100 100]) would specify an x-axis running from 0 to

34 geo111 – numerical skills in geoscience

10, and a y-axis from -100 to 100.

Information as to how to use all of these commands can be found
via MATLAB help. But a typical sequence, that gives rise to the im-
proved plot shown in Figure 2.3, is given in the margin.

Example of adding axis labels and a
plot title ...

» xlabel ...

(’Whatever values’);

» ylabel ...

(’Whatever values

squared’);

» title ...

(’A plot of some ...

values vs. their ...

squares’);

2.4.3 Sub-plots

You can also have more than one plot in a single Figure window. As
an example, create some sine waves using the sin function (see help)
over the range 0 < x < 2π, e.g.:

» x = 0:0.1:2*pi;

» y = sin(x);

» y2 = sin(2*x);

(Note how in the first line, the colon operator is used to create an
x vector from 0 to 2π, in steps of 0.1. The second and third lines
calculate the sine of all the x values, and sine of 2 times the x values,
respectively, and assign the results to a pair of new vectors, y and y2.)

To place several different plots on the same figure uses the subplot

command 22. The subplot command is used as: subplot(m,n,p) 22 » help subplot

where m is the number of rows of plots you want to have in your
figure, n is the number of columns of plots in your figure, and p is
the index of the plot you wish to create (see: Figure 2.4).

Figure 2.4: Arrangement of subplots.

The basic code then goes something like:

» figure(1);

» subplot(2,2,1);

» plot(x,y);

» subplot(2,2,2);

» plot(x,y2);

» subplot(2,2,3);

» plot(x,-y);

» subplot(2,2,4);

» plot(x,-y2);

In this case, the 3rd and 4th subplots simply display the inverse of
the curves in the subplots above.

2.4.4 Saving graphics and figures

You might just want to save the figure. (Why create it in the first
place in fact if you are just going to throw it away ... ?) Again, you
can do this via the GUI or at the command line 23. From the GUI,

23 To export a graphic at the command
line, use the print function. To cut a
long story short (see: help print), to
print to a postscript file:
print(’-dpsc2’, FILENAME)

where FILENAME is the filename as a
string or a variable containing a string.

you have the option to save the figure in a way that can be loaded
later and re-edited – this is the .fig format option. Or you can save
(export) in a variety of common graphics formats (although once

elements of ... matlab and data visualization 35

saved in this format, the graphics can only be edited later using a
graphics package).

You can also close figure windows (see Box). No seriously. They
are not forever. ;)

To close the current (active) Figure
window, the command is:
» close

To close all currently open Figure
windows:
» close all2.5 Vectors and arrays #2

A matrix is another special case of an array – this time 2-D (rather
than 1-D in the case of a vector). MATLAB totally hearts them.

2.5.1 Creating matrices and arrays

You can enter matrices (2-D arrays) into MATLAB in several different
ways:

1. Enter an explicit list of elements. To enter the elements of a
matrix, there are only a few basic conventions:

• Separate the elements of a row with blanks or commas.
• Use a semicolon, ; , to indicate the end of each row.
• Surround the entire list of elements with brackets, [].

2. Load matrices from external data files.
3. Generate matrices using built-in functions.

As an example, type in the following at the command prompt:

A = [15 7 11 6; 13 1 6 10; 21 17 5 3; 5 15 20 9]

MATLAB then displays the matrix you just entered24: 24 Remember that you can add an ; to
the end would prevent the assignment
being displayed.A =

15 7 11 6

13 1 6 10

21 17 5 3

5 15 20 9

Once you have entered the matrix, it is automatically remembered in
the MATLAB workspace. You can refer to it simply as A.

Now go find the array you have just created in the Workspace win-
dow. Double-click on its name icon and see what goodies appear on
the screen. This is a fancy array editor which looks a bit like one of
those dreadful spreadsheet things. You can see that this might be
handy to edit, view, and keep track of at least moderate quantities
of data. This is a useful facility to have. However, we are going to
concentrate on the command-line operation of MATLAB in the Lab
because that will give you far more power and flexibility in applying
numerical techniques to problem solving, and will form the basis
of scripting (computer programming by another name) that we will

36 geo111 – numerical skills in geoscience

see in a few lectures time. Close down this nice toy to leave just the
original windows.

Elements in the matrix can be addressed using the syntax:

A(i,j)

where i is the row number, and j is the column number. It is very
very easy to keep forgetting in which order the rows and columns are
indexed., but I’ll tell you here and now before I forget:

rows, columns

(You can always create a test matrix and access a specific element to
check if in doubt!) In the example above:

» A(1,3)

ans =

11

(i.e. the value of the element in the 1st row, 3rd column, is 11).
In general, the same functions and operators that applied to vec-

tors and you saw earlier, also apply to matrixes (or specific dimen-
sions of matrices). (See Boxes.)

Similarly as for vectors, you can
access more than a single element
of a matrix by means of the colon

operator, :. For example:
A(:,1) – selects the 1st column
A(3,:) – selects the 3rd row
A(2:3,2:3) – selects the 2×2 ma-

trix of values lying in the centre of A,
while A(1:2,:) selects the top half
(first 2 rows) of the matrix.

Finally – a fundamental way of accessing data that you need to
learn and be familiar with, is to employ the color operator to select
specific columns (or rows) of data. You’ll find that this skill ends up
inherent to many of your attempts to process and graph data. For
instance, if your (x,y) data to plot ended up in MATLAB workspace
in matrix form (it very commonly does) rather than as 2 sperate vec-
tors (as you had when you first plotted anything), you will need to
select separately the x (e.g. 1st column) data, and the y (2nd column)
data, and pass these to the plot function. For the example of matrix
A above, all the first column data can be selected by typing A(:,1)25, 25 Remembering the HUGE hint above

in 100 pt font as to the order of rows
and columns ...

which says all the rows (:) in the first column. Similarly, all the 2nd
column data alone can be selected by A(:,2). (You’ll practice this
endlessly later on and hopefully get it!) You can also determine the shape of

your array using the size function.
For a 2D array (matrix), when you
pass it the name of your array, it
returns the number of rows followed
by the number of columns (in that
order).

2.5.2 Basic matrix manipulation

You can treat vectors and matrices (or parts of vectors and matrices),
mathematically, as you would treat single values (i.e. scalars) but
unlike a scalar, the transformation is applied to all specified elements
of the array. This applies for all the basic numerical operators26. For 26 Technically ... or at least to be consis-

tent with other operations, you might
write multiplication as .* rather than
just plain old *. The preceding dot tells
MATLAB not to treat this as matrix
multiplication but to carry out the
operation on each element in turn. In
this case, it is the same thing (and both
notations work the same), but later, is
not. (This will make more sense when
you get to see it in action, later.)

example, for vector B in the earlier example,

» 2*B

ans =

0 2 3 4 5

elements of ... matlab and data visualization 37

and

» B-1.5

ans =

-1.5000 -0.5000 0 0.5000 1.0000

Question: Multiply all the elements of A by the number 17. As-
sign the answer to a 3rd array (C). What is the value of the element
C(2,3)? How would you ask for the 4th row, 2nd column element of
the array C, and what is its value?

Question: What is the sum of the 4th column of C ? (Sure – you

The function sum ... sums things. The
MATLAB Help documentation (help
sum) says:

’If A is a vector, sum(A)

returns the sum of the

elements.’
’If A is a matrix, sum(A)

treats the columns of A as

vectors, returning a row vector

of the sums of each column.’

also do it by using a calculator, but you will not always have such a
small data-set as here. Perhaps you’ll get a much larger data-set in
the assessed exercise ;) So, practice doing it properly.)

Question: What is the sum of the 2nd row of C? sum gives returns
the sums of each column, and so on its own;

» C

C =

255 119 187 102

221 17 102 170

357 289 85 51

85 255 340 153

» sum(C)

ans =

918 680 714 476

gives you a row vector consisting of the sums of the individual
columns of the matrix C above.

This is where the transpose function (’) comes in handy (see
earlier). In this case, it flips a (2D) matrix around its leading diagonal
(columns become rows, and rows, columns)27 .

27 This is almost true. Technically the
function you want is .’, as ’ will
change the sign of any imaginary
components. For real numbers, they are
the same.

In addition to transpose, other
useful array manipulation functions
include:
flipup – flips the matrix in the
up/down direction
fliplr – flips the matrix in the
left/right direction
rotate – rotates the matrix
(As always, refer to the help on
specific functions.)

» C’

ans =

255 221 357 85

119 17 289 255

187 102 85 340

102 170 51 153

(transposing the matrix turns the rows into columns)

» sum(C’)

ans =

663 510 782 833

Now you get a row vector consisting of the sums of the individual
columns of the matrix C, but since you have transposed the matrix C

first, these four values are actually equal to the row sums.
Finally, you could transpose the answer:

38 geo111 – numerical skills in geoscience

» sum(C’)’

ans = 663

510

782

833

now with a row vector gives you a format that looks like the row
sums of the original matrix C. 28

28 Note how you can combine multiple
functions in the same statement to
create sum(C’)’. However, to start
with, it is much safer to do each step
separately and hence be sure what you
are doing.2.5.3 Some matrix math :(

We will not concern ourselves with multiplying vectors and matrices
together ... just yet ...

2.6 Loading and saving data

There are a number of different ways to load/import data into the
MATLAB Workspace. Rather than try and tediously list and describe
the commands and syntax and blah blah, we’ll be going through a
couple of (hopefully) slightly-less tedious data-based examples as
we progress through the course text. In this way, if nothing else, you
might accidently learn some ’science’ even if nothing much about
MATLAB ...

2.6.1 Where am I?

Before anything – you need to know where you are. If your file to
load is not in the directory MATLAB us using, it will not find it. And
if you save something and have no idea where it is being saved ...
that can hardly go well.

By default, MATLAB looks to a file directory located within its
installation directory ($MATLAB/data). So, where the load command
requires a filename to be passed, you will need to enter either the
full location of the file; i.e., starting with the drive letter (e.g. as per
displayed in the Windows Filemanger address bar, or the relative
path to where the file is located (e.g. if there is a subdirectory called
data, you will pass data/sediment_core_d18O.txt29). Alternatively, 29 Remember that this is a string type.

you can change the MATLAB directory that you are working in. (This
works similar to UNIX/LINUX for those of you who are familiar
with navigating your way around these operating systems.) You can
make the download directory the default directory for working from
by typing:

» cd DIRECTORY_PATH

where DIRECTORY_PATH is the path to the directory in which the data
file has been saved30, remembering that DIRECTORY_PATH is a string 30 You can view the files that are present

in the directory that you are working in
by typing (more LINUX-speak): ls.

elements of ... matlab and data visualization 39

(i.e. enclosed in ”). Or ... you can add a ’search path’ (addpath) so
that MATLAB knows where to look. (Note that both these alternative
possibilities can be implemented from the GUI.)

The command addpath will add a
search path to the MATLAB workspace.
e.g.
addpath DIRECTORY_PATH

There is also, of course, the GUI – from the File menu the option
Import Data... will run the data import Wizard – note that you
might have to select All Files (*.*) from the file type option box in
order to find the file. I’ll leave you to work the rest out for yourselves
... Maybe try importing the data into MATLAB this way once you
have done it successfully using the load function at the command
line.

2.6.2 Loading and importing data

load

Loads variable from a file into the
workspace. The syntax is:

» load(filename)

where filename is the name of the
file (remember: as a string, it needs
to be enclosed in quotation marks).
The file might be plain text (ASCII)
or a MATLAB workspace file (see
below), in which case it should have
the file extension .mat. To force
MATLAB to treat the file input as
ASCII or a MATLAB workspace file,
pass a second parameter (separated
from the filename by a comma) –
’-ascii’ for ascii, and ’-mat’ for a
MATLAB workspace file.

Note that in loading an ASCII
data file, any line starting with a %

is ignored. Also note that the data
must be in a column format with no
missing data.

For an ASCII file, the name of the
variable created to hold the data
being imported is automatically gen-
erated. So in the example of the data
file being called ’twilight.txt’,
the variable generated will be called
twilight. You cna instead chose
to assign the imported data to a
variable name of your choice, by e.g.:

» sparkle =

load(’twilight.txt’);

The simplest way (other than via the MATLAB GUI and the beautiful
green Import Data icon) is to use the load function (see Box)31.

31 There is also a much more flexible
way of loading text-based data using
the function textscan, but that also
requires files to be explicitly opened
and closed using fprintf. We’ll see a
little of this later.)

As a brief exercise and practice using load – first download the
data file etheridge_etal_1996.txt from the course webpage of
www.seao2.org. You might start by viewing the contents of the file by
opening it in any text viewer. This is always a good place to start as it
enables you to see what you are getting yourself in to (i.e. format of
the file, any potential formatting issues, approximate size and com-
plexity of the dataset, etc). Then import the data into the MATLAB
workspace using the load command. Try simply typing the name of
the variable that was automatically created (or the one you chose, if
you assigned the imported data to a specific variable name – see Box)
to provide a crude view of the data. Then double click on the name
of the variable in the MATLAB Workspace window. This should
open up a spreadsheet-like window in which the data can be viewed,
sorted, and even edited. Finally, plot the data and remember to label
it appropriately32. You should end up with something like Figure 2.5.

32 FYI: the x-axis data is year, and the
y-axis data is the mixing ratio of CO2 in
air in units of ppm.

2.6.3 Saving and exporting data

Arrays of numbers can be saved in a plain text (ASCII format) by
means of the save function in a simple reverse of the use of load (see
Box).

save

Saves variables from the workspace
to a file. There are two main forms
(syntaxes) of the command:

» save(filename)

which saves the entire workspace to
a .mat file (with the filename given
by the string filename (in quotation
marks), and:

» ...

save(filename,A,’-ascii’)

saves the data in the variable A

(which must be given as a string, i.e.
also enclosed in quotation marks) in
plain text (ASCII) format.

2.6.4 Loading and saving the workspace

The entire workspace (including all variables and their values, or
just the values in a single variable if you wish) can be saved to a file
and then later re-opened. The file format is specific to the MATLAB
program and the file-name extension by default is .mat. You might
find this very helpful to use in long lab exercise or large modelling
projects, particularly if you do not come back to work at the exact

40 geo111 – numerical skills in geoscience

same computer each time or wish to use continue the same piece of
work on a laptop elsewhere.

1820 1840 1860 1880 1900 1920 1940 1960 1980
Year

280

290

300

310

320

330

340

C
O

2 m
ix

in
g

ra
tio

Figure 2.5: Spline fit to measured
changes in CO2 concentration in Law
Done ice core, following Etheridge et al.
[1996].

2.7 Basic data processing

As an example to kick-off some data-processing tricks, load in the
Phanerozoic CO2 dataset: paleo_CO2_data.txt. You can just im-
port it into MATLAB using the load function. However, there is a
complication here – unlike the ice core CO2 dataset, you now have 4
columns in the array33. The first column is age (Ma), the second the

33 Remember that you can diagnose
its size with ... size (or refer to the
Workspace window)

mean CO2 value, and the 3d and 4th are the low and high, respec-
tively, uncertainty limits. Remembering (I hope!) how to reference
specific columns of data in a matrix34 – plot the mean paleo CO2

34 HINT: the colon operator (see
earlier).

value as a function of age (in Ma). If you closed the previous Figure
window (see earlier), it is not essential to explicitly open one (using
the Figure command) – when you use the plot command, if there
is no open Figure window, MATLAB will kindly open one for you.
How thoughtful. The result should be something like 2.6. O dear ...

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.6: proxy reconstructed past
variability in atmospheric CO2.

So ... that was not so successful. What is happening in the default
behaviour of plot, is that the location defined by each subsequent
row of data is being joined to the previous one with a line. This was
fine for the ice-core CO2 example dataset because time progressed
monotonically in the first column, e.g. the data was ordered as a
function of time. If you view the paleo CO2 data, this is not the case.
(In fact, in the original, full version of the data, ordering is by proxy
type first, and then study citation, and only then age ...).

Your options are then:

1. You could import the data into Excel, then re-order (sort) it,
then export it, then re-load it ...

2. You could sort it in MATLAB using the GUI variable view
window. But lets not cheat for now.

3. You could sort it in MATLAB at the command line. How? Well,
a reasonable gamble, which actually turns out to be a total win, is
to try:

» help sort

Actually ... not quite. Reading the help text carefully (and you can
always try it out and see what exactly it does if you are not sure),
sort will sort all columns independently of each other, whereas
we want the first column sorted and the remaining columns linked
to this order. Under see also, MATLAB lists sortrows as a possi-
bilty. The help text on this looks a little more promising. It is still

elements of ... matlab and data visualization 41

slightly opaque, so the best thing to do is to try it (and view the
results)! This looks rather better. The resulting of plot-ting this is
2.7. (This is a good illustration of a guess of a function that was
not quite what was needed, but following up on the help sug-
gestions leads to a more appropriate function.) At least now the
curve is reminiscent of past changes in global temperature and
the geological Wilson cycle, with high values in the Cretaceous
and Jurassic and then lower again in the Carboniferous (roughly
matching the progression of ice and hot house (and then back to
recent ice ages) climates).

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.7: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

As a second example and to get you familiar with some additional
very basic data processing, we are going to transform a sediment
core δ18O time-series into an estimated history of glacial-interglacial
changes in sea-level. The scientific backstory is ...

Throughout the late Neogene35, sea level has risen and fallen as 35 23.03 millions years ago (end of the
Oligocene) to present is the Neogene
Period in Earth history.

continental ice sheets have waned and waxed. The main cause of
sea-level change has been variation in the total volume of continental
ice and resulting change in the fraction of the Earth surface H2O
contained in the ocean. Today more than 97% of the Earth surface
H2O is in the ocean and less than 2% is stored as ice in continental
glaciers, with groundwater making up the bulk of the remainder. Of
the total continental ice (ice above sea level), 80% is contained in the
east Antarctic ice sheet, 10% in the west Antarctic ice sheet, and the
final 10% in the Greenland ice sheet. (If all present-day continental
ice were to melt, sea level would rise by 70 m.) During the last glacial
maximum (LGM), sea level was about 125 m lower than present,
equivalent to 3% more surface H2O stored as continental ice. Because
of its relationship to continental ice volume, an accurate late Neogene
sea-level curve has been a long-term goal of scientists interested in
ice-age cycles and their causes.

Glacial ice has a lower 18O/16O isotopic ratio than mean seawa-
ter36. When ice volume is high, seawater has relatively high 18O/16O 36 Basically – as moisture derived from

the tropical ocean (and land) surface
moves to high latitudes, condensation
occurs and some of the moisture is lost
as rain. In condensating water vapor,
18O is preferentially incorporated into
the liquid phase, meaning that the
remaining water vapour has lower
18O/16O. Eventually, the residual water
vapour might fall as snow on an ice
sheet. Hence why ice sheets at the LGM
will have a lower 18O/16O than mean
seawater.

ratio. When ice volume is low, seawater has relatively low 18O/16O
ratio. If the average 18O/16O ratio of glacial ice is constant with time,
then changes in the average 18O/16O ratio of seawater will linearly
approximate changes in the total volume of ice and by inference, sea-
level. We (at least, I am) are interested in all this because knowing
how ice volume and sea-level changed over the glacial-interglacial cy-
cles has all sorts of important implications for understanding how cli-
mate change (e.g. via ice sheet albedo) and global carbon cycling and
atmospheric CO2 (e.g. via changes in the area of exposed continental
shelves and carbon stored in soils and above-ground vegetation).

To start with we need to reconstruct past changes in the oxygen

42 geo111 – numerical skills in geoscience

isotopic composition of the ocean. Handily, the 18O/16O ratio of
foraminiferal calcite isolated from marine sediments is primarily a
function of the 18O/16O ratio of the water together with the tempera-
ture of the water37. By measuring the 18O/16O value of calcite down-

37 We we will not concern ourselves
with temperature corrections here (in
any case, it turns out that the tempera-
ture effect has the same sign as and is
closely related to the ice volume effect)
but instead assume that foraminiferal
calcite δ18O only reflect changes in
(global) ice volume and sea-level.

core we are sampling 18O/16O with a progressively older age. In this
way we can reconstruct how ocean 18O/16O has changed over time.
These measurements are reported in units of parts per thousand (‰)
and written as δ18O.

How to turn (scale) changes in δ18O into sea-level change? Ev-
idence from dated coral reef terraces suggest that sea-level was
around 117 m lower at the peak of the last glacial (ca. 19 ka). We
could then assume that the change in δ18O from modern (preindus-
trial) to LGM equates to 117 m sea-level change, and hence create a
continuous past sea-level curve from all the δ18O data by applying a
simple scaling factor38. So:

38 Conceptually, this is no different
from saying that the difference between
the freezing and boiling point of pure
water (at 1 atm pressure) on the Celsius
scale – 100°C, maps onto the equivalent
interval on the Fahrenheit scale – 180°F
(212-32 °F), and hence providing a
means of converting a record of past
changes in Fahrenheit, inot degrees
Celsius (and vice versa).

• You first need the foraminiferal calcite δ18O data. (Unless you
want to go drill a long cylinder of mud from 3000 m down in the
Atlantic Ocean, pick out all the microscopic foraminifera of a sin-
gle species from samples of mud that you have carefully washed,
blah blah blah ...) So, from the course web page; download the file
sediment_core_d18O.txt and save it locally.

• Load this file into MATLAB.

• If you have successfully loaded in the data-file, you should see
a named icon for the array appear in the Workspace window. Try
viewing the file in the two different ways:

1. At the Command line (»), type in the array name.
Because of the length of the data-file we imported, the contents
of the array should have whizzed past you on the screen in a
highly inconvenient fashion. You can use the scroll bar on the
right of the Command Window window to move up and view
the data that you can’t see (the younger age δ18O numbers).
Note that as MATLAB imports data into an array from a file,
it names the array it creates following that of the filename, but
without the extension (the ’.txt’ bit).

2. Double-click on the array’s icon in the Workspace window.
Marvel at the fancy spreadsheet-like things that appear. Note
that you can edit the data, add and delete rows and columns,
and all sorts of stuff in this window, just like you can in Excel.
Amuse yourself by scrolling down to the end of the data-set in
the Array Editor and adding a new piece of data on line 784;
age (column 1); 783 (ka); sea-level (column 2); 0.0 (m).

elements of ... matlab and data visualization 43

At the command line, list the contents of the array again to view
the change you have at the end of the data-set. Use the up arrow
to bring up the command you want rather than typing it in again.
Now delete this new row. Note that it is easy to get confused with
which row number you need to address – although the data starts
from year 0, MATLAB always counts the index (the sequential
integer counting of the row or column number) of a location from
1 (one). (So age 10 ka is on line 11, and age 200 on line 201, etc.)

Reminder: for a n×m array data, the
first row is:
data(1,:).

The last row is:
data(end,:).

To find out the number of rows is:
» length(data).

The total size, in rows×columns, can
be found by:
» size(data)

(and also by referring to the Value
column in the Workspace window)

• So far everything has been in δ18O units and time as kyr. As a
warm-up – try converting the units of time to years by multiplying
the first column of the data array by 1000.0 and assigning it back
into itself (this is not as weird and nonsensical as it sounds).

To estimate past changes in sea-level we need to scale the δ18O
values to reflect the equivalent changes in sea-level rather than
changes in isotopic composition. We know that sea-level is 0 m
(relative to modern) at 0 years ago and -117 m at 19,000 years ago.
Try the following (you are going to have to *think*, but maybe also
use the HINT in the margin):

Scale the δ18O so that it represents changes in sealevel, relative
to modern (0 m)39. 39 HINT – first determine the difference

in δ18O between time zero and 19 ka.
This gives you the range of δ18O that
maps onto a sea-level change of 117 m.
You also might transform the δ18O data
such that it has a value of zero at 0 ka
(but retains the original amplitude of
variability.

• Plot it (changes in sea-level compared to modern, vs. time).
And nicely.

2.8 Further graphing (aka. ’data visualization’)

This section covers how to create slightly fancier plots in MATLAB
and combines this with some more data loading practice.

2.8.1 Modifying lines/symbols in plot

The first deviant activity you can engage in with plot, it to graph
the data without the line joining the points. Scrolling a little the way
down » help plot, it turns out that there are a number of options for
color, line style, and marker symbol that you list together as a single
parameter, straight after the parameters for x and y vectors. By de-
fault, MATLAB plots a solid line in blue with no marker points. Ob-
viously, we could forego the sorting and plot a sane graphic (hope-
fully) by plotting just points and having no line between them. Hell,
you could even be radical and use a different color ... Or, you could
specify a symbol and no line. The choice of colors is your oyster, as
they (almost don’t) say. e.g. Figure 2.8.

The main (i.e. not an exhaustive list)
data display options for the plot

function are:
(1) point style

. – point, o – circle, x – x-mark,
+ – plus, * – star, s – square, d –
diamond, v – triangle (down).

(2) line style
- – solid, : – dotted, - – dashed, and
when specifying a point style, not
specifying a line style results in no
line.

(3) color
b – blue, g – green, r – red, y –
yellow, k – black, w – white.

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.8: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

44 geo111 – numerical skills in geoscience

2.8.2 Plotting multiple data-sets

So far, so good. But so boring, although simple marker-only and
joined-by-line plots have their place. For a start, the original data-set
included an estimate of the uncertainty in the CO2 reconstructions
in the form of the min and max plausible value for each ’central’
(best guess?) estimate. Excel can make plots incorporating errors,
including non-symmetric errors, relatively easily. What about in
MATLAB? Actually, I have absolutely no idea. (This would make
such a good exercise for the reader, as they (do) say.)

Personally, I might have been tempted to draw vertical bars along-
side the data (most likely). Or plotted in different symbols, the min
and max values as points. Or plotted min and max lines as a bound-
ing envelope. All of these require sone further little trick in MATLAB,
which involves the command hold. This is nice and simple and can
be on, or off.

» hold on – will enable you to add additional elements to a
graphic,

» hold off – returns to the default in which a new graphic re-
places the current on in a Figure window.

As an example – set » hold on, and then plot the minimum and
maximum CO2 values (columns #3 and #4) in different symbols and
different colors, on top of your existing plot. If you want to then label
what different lines or sets of points are, you can add a legend with
the legend command. For instance you have managed to successfully
plot the mean CO2 values as discrete black circles, and the minimum
and maximum uncertainty limits as blue and red lines, respectively,
you could call:

» legend(’Mean CO_2’,’Lower uncertainty limit’,’Upper uncertainty

limit’);

and it should end up looking like Figure 2.9.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Mean CO
2

Lower uncertainty limit
Upper uncertainty limit

Figure 2.9: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

2.8.3 Scatter plots

We’ll stay with the Phanerozoic proxy (CO2) data, but put a different
(graphical) spin on it.

Consider ... scatter. In fact, don’t just considered it, help on it.
The simplest possible usage is, apparently:

SCATTER(X,Y) draws the markers in the default size and color.

(where X and Y are vectors). This almost could not be more straight-
forward. Make yourself an X and Y vector out of the loaded-in dataset
(or if you are feeling brave, you can pass in directly the appropriate

elements of ... matlab and data visualization 45

parts of the dataset array), close the existing Figure window40, and 40 See earlier.

scatter-plot the (mean) CO2 data.

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.10: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Perhaps a little disappointingly, the default (Figure 2.10) (plus
added labels) looks a little like one of the plots before. However,
scatter can plot color-filled symbols, but more powerfully, can scale
the fill color to a 3rd data value (vector), in a sort of pseudo 3D x-y-z
plot. For instance, it will be duplicating information that is already
presented (y-axis), but you could color-code the points, by the y-
value, i.e. the atmospheric CO2 value. e.g.

SCATTER(data(:,1),data(:,2),20,data(:,2))

draws the markers with an (area) size of 20 (points), in different
colors. Coloring just the outlines of the circles is perhaps not ideal
(difficult to see all of the color differences), so the circles can be filled
in instead (and you could make them a little larger too):

SCATTER(data(:,1),data(:,2),40,data(:,2),’filled’)

resulting in Figure 2.11.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 2.11: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

One final example in this section to introduce some new plotting
functions, but also to quickly go back over some basic array manip-
ulation and processing. The data we will be analysing is s series of
seismic readings from the USGS. The quake data are extracted be-
tween -5 and 20 lat, and between 90 and 105 lon, starting Dec 26,
2004 and ending June 30, 2005. The data file can be found on the
course webpage (data_USGS.txt). The columns are: (1) day, (2) lat-
itude, (3) longitude, (4) depth, and (5) magnitude. Carry out the
following:

1. The first earthquake in the list is the Sumatra earthquake of
December 26, 2004. The magnitude of this earthquake has been
revised upward since the data was downloaded. Actually, most
energy released in large earthquakes is in very low frequency
shaking that most seismometers do not record. The real magni-
tude had to come from a special analysis of "normal modes", or
standing waves on the Earth’s surface with periods of up to 54
minutes! When the media said that the Sumatra earthquake made
the Earth ring like a gong, these are the waves they were talking
about. So since we know that the magnitude was really 9.3, first
off, replace the value of the magnitude of the first earthquake in
the array.

2. Identify the smallest magnitude of recorded earthquake. You
should find that the minimum earthquake size on this list is 3.5.
For an earthquake in California, the minimum magnitude would

46 geo111 – numerical skills in geoscience

be more like 1. This is because this particular seismograph net-
work did not have many instruments around Sumatra. Another
problem is that the earthquakes are offshore. If the nearest seis-
mograph is far from a small earthquake, that earthquakes may not
be detected. This means that the data are artificially truncated.
Since everything below 3.5 is missing, some of the M=3.5 to 4
earthquakes may have been missed, too.

3. Identify the minimum and maximum earthquake depths. The
really deep ones (>40 km) are probably in the subducted slab that
goes beneath Sumatra. The zero depth means that it could not
be resolved - most hypocentres are 4 km or deeper. (hypocentre
= like epicentre, but at depth: the point on the fault where the
earthquake rupture starts)

4. How many earth quakes in total were recorded?41 41 Recall how to find the size of an array.
The number of earthquakes is then
simply the number of rows (assuming
that you have not flipped the array
around ...).

The number of quakes bigger than
each magnitude should go up by
about a factor of 10 for unit decrease
in magnitude (Gutenberg-Richter
relationship, a power law). This fails
for the hugest quakes (>7 in this
case) and where the catalogue is
incomplete (not many between 3 and
4 due to detection threshold in this
part of the world).

There is only just so much looking at and processing raw data
you can do before your eyes start ... to droop and
... ... Zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz. OK – so now to visualize
what is going on. Plot using the scatter function the locations of all
the quakes from day 0 to day 91 (inclusive), and in a second plot the
locations from day 92 onwards. The first area covers the area that
ruptured in the M 9.3 quake (1200 km long and 100 km wide) and
the second, to the South, is smaller. This is important because the
aftershock distribution made people very wary of the (low) early
magnitude estimates - the area of dense aftershocks often delineates
the part of the fault that ruptured, and scaling laws relate rupture
length to magnitude.

Create a figure with multiple panels, showing:

• In the top LH corner plot the day 0-91 quakes, and color-code
(or size-code) the markers for their magnitude.
• In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their magnitude.
• In the bottom LH corner plot day 0-91 quakes, and color-code
(or size-code) the markers for their depth.
• In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their depth.

2.8.4 Histograms

We could also visually analyse the data as a histogram. Type help

hist in the Command Window for a description of the hist function.
The histogram must be supplied with a vector defining the ’bins’ in
which to sum the data. Here is your chance to use the colon operator
again. O happy day.

elements of ... matlab and data visualization 47

1. To plot the frequency distribution of quakes as a function of
their magnitude we need to create a series of bins to define the
different magnitude ranges. How about bins with boundaries at
magnitude; 1.0, 2.0, 3.0, Ě 10.0. One complication is that the values
in the vector M define the middle of the bins in the hist function
and not the boundaries. The mid-points of this will be; 1.5, 2.5,
3.5, ... 9.5, and this is the vector you need to create and assign to a
vector M (i.e., a vector array starting at 1.5, ending at 9.5, and with
increments of 1.0).

2. Having created M, plot the histogram of quake frequency vs.
quake magnitude by issuing:

» hist(data_USGS(:,5),M);

Question: what is the most frequent magnitude range of ’quake?

3. Now plot the histogram of quake frequency against time (i.e.,
day number) up to day number 186. You will have to assign a
new vector of values to M, one that starts at 0.5 and ends at 185.5.
Omori’s Law says that the number of aftershocks per day should
decrease following a power law – does this look to be the case
(approximately)? (One problem is that the small earthquakes are
missing which makes it appear not to work so well!)

4. Try this again (i.e., frequency of quakes vs. time), but investi-
gate the effect of changing the bin size – try making the bins about
1 month (30 days) in duration. Note that now M must start at 15.0
(the mid-point of the first monthly bin). Sometimes changing the
bin size can help if the data is noisy, but sometimes you lose im-
portant information. Which was better do you think – can you still
see a power-law decay in quake frequency following each major
event with the data in monthly bins? If you want, experiment with
other bin sizes to see how the data comes out. There is not always
a ’right’ answer in plotting data and sometimes you just have to
experiment a little to see what looks good.

Don’t forget that all the plots you make should be appropriately
labelled ... Save them as a fig file if you think you might want to edit
them again, and/or export as an image.

2.8.5 Simple 2D data and bitmap visualization

There are 2 different simple MATLAB commands for visualizing a
2D dataset (i.e. a matrix) as a bitmap image (and via a 3rd command,
viewing various bitmap photo and image format files too). As some-
thing (2D data) to play with – load in the matrix model_grid.txt.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 2.12: A 2D plot of some random
gridded model data.

48 geo111 – numerical skills in geoscience

First off – as before, view the data in the array viewer, just to get a
feel for what you are dealing with here (although you are unlikely to
be much wiser after doing so). So go ahead and employ the pcolor

function in its simplest possible usage (see Box). You can see (Figure
2.12) that it is ... something. Maybe a little like the continents, but
up-side-down at the very least. What to do?

Well, it is a good job that you remember how to re-orientate arrays,
right?42 If you guess right first time (three different basic transforma- 42 You don’t? See earlier in the Chapter

...tions of a matrix were described), you get Figure 2.13.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 2.13: A 2D plot of some random
gridded model data ... but with the
underlying data matrix re-orientated
before plotting.

pcolor

MATLAB claims that pcolor(C)
plots; "a rectangular array of cells
with colors determined by C. Ac-
tually, I believe MATLAB on this.
So if you have a matrix, MATLAB
will plot a regular arrays of cells,
with each cell representing one of
the elements in the matrix, and will
color that cell according to the value.
(pcolor will by default, autoscale
how the color scale maps onto the
data in the matrix such that both
extreme ends of the color scale are
used.)

Next try something very similar. but using the image function.
Now the model grid is the correct way around! I have absolutely no
idea why and why it is reading the matrix dimensions differently
from pcolor. I am sure you could Google and find out. But you
would have to actually care first.

image

You can import an image, such as
in .jpg, .tiff, or .png format, using
imread – simply pass it the name
of an image file (as a string, this
variable name needs to be encased
in inverted commas) and assign the
results to a variable name of your
choice. Then plot (using image) that
variable.

What is the point of this? So you have the ability to simply visu-
alise a gridded dataset. Later, we’ll be doing it properly and it gets
rather more involved when you have to create matrixes to describe
the grid dimensions (e.g. lon and lat) for yourself.

As your very last exercise – find an image on the internet that
amuses you, download it, load it into MATLAB (using imread), visu-
alize it using image, and then ... well, that depends on how amusing
it is. Maybe try plotting something on top of it (using hold on) or
simply go home.

	Elements of ... Computers and software
	Elements of ... MATLAB and data visualization
	Using the MATLAB software
	Basic concepts
	Vectors and arrays #1
	Basic graphing (aka. 'data visualization')
	Vectors and arrays #2
	Loading and saving data
	Basic data processing
	Further graphing (aka. 'data visualization')

	Elements of ... programming
	Introduction to scripting in MATLAB
	Loops
	Sub-programs (scripts)
	Conditional statements
	Functions
	Algorithms and problem-solving

	Further ... Computers and software
	Further ... MATLAB and data visualization
	Further data input #1 (ASCII)
	Further data processing
	x,y,z (spatial) plotting
	Further data input #2 (netCDF)

	Further ... Programming
	Algorithms

	Introduction to numerical modelling
	Introduction
	Box models

	Climate (energy balance) modelling
	0-D Energy-balance climate modelling
	1-D Energy-balance climate modelling

	Biogeochemical modelling
	1-D reaction-transport modelling

	Modelling feedbacks in the Earth system
	Example system: 'Daisy World'
	Example system: 'Ice-albedo climate feedback'
	Example system: Iron and dust and climate

	Bibliography
	Index

