Past transitions and perturbations in global carbon cycling

(what can we learn about Earth system function and the interpretation of paleoenvironmental proxies?)

Andy Ridgwell

OR: Not the PETM (almost)

There will be a 1 EUR fine for saying 'PETM' out loud

Ocean carbon cycling

Ocean carbon cycling

What are the ocean carbon 'pumps'?

Ocean carbon cycling

Modern vs. ancient carbon cycling

Early Earth: Low atmospheric pO_2

[Best • Proxy • Ever]

1A

1 1s ¹ hydrogen															<i>.</i> .		2 He ^{1s²}
1.008 2	$\frac{2A}{\Lambda}$											3A	4A	5A	6A		4.003
Li Li	Be											B	Č	Ń	Ŏ	Ĕ	Ne
[He]2s ¹ lithium 6.941	[He]2 s² beryllium 9.012											[He]2s ² 2p ¹ boron 10.81	[He]2s ² 2p ² carbon 12.01	[He]2s ² 2p ³ nitrogen 14.01	[He]2s ² 2p ⁴ oxygen 16.00	[He]2s ² 2p ⁵ fluorine 10.00	[He]2s ² 2p ⁶ neon 20.18
	12											13	14	15	16	17	18
Na	Mg												Si	\mathbf{P}	S		
[Ne]3s' sodium 22.99	[Ne]3 s' magnesium 24.31	3B	4B	5B	6B	7B		—8B -		11B	12B	aluminum 26.98	silicon 28.09	[NeJ3 5 3p ^o phosphorus 30.97	sulfur 32.07	[Ne]35 ⁻ 3p ⁻³ chlorine 35-45	[Ne]35-3p ^o argon 39.95
19	20	21	22	<u>2</u> 3	24	25	<u>2</u> 6	27	28	29	_30	31	32	33	34	35	36
K	Ca	Sc		V		Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
potassium 39.10	[Ar]45 ⁻ calcium 40.08	[Ar]4s ^{-3d} scandium 44.96	[Ar]45 ⁻ 30 ² titanium 47.88	[Ar]4s=3d ³ vanadium 50.94	chromium 52.00	[Ar]4 s² 3d ³ manganese 54.94	[Ar]4s ⁻ 3d ^o iron 55.85	[Ar]4 5' 3d' cobalt 58.93	[Ar]4s ² 3d ⁸ nickel 58.69	[Ar]4s ¹ 3d ¹⁰ copper 63.55	[Ar]4s ² 3d ¹⁰ zinc 65.39	[Ar]4s ² 3d ¹⁰ 4p ¹ gallium 69.72	[Ar]4s ² 3d ¹⁰ 4p ² germanium 72.58	[Ar]4s ² 3d ¹⁰ 4p ³ arsenic 74.92	[Ar]45 ² 3d ¹⁰ 4p ⁴ selenium 7 8.96	[Ar]45 ² 3d ¹⁰ 4p ⁵ bromine 79.90	[Ar]45 ⁻ 3d ¹⁰ 4p ⁶ krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	5 <u>3</u>	54
Kb	Sr		Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag		ln	Sn	Sb	Te		Xe
[Kr]5s ¹ rubidium 85.4 7	[Kr]5s ² strontium 87.62	[Kr]5 ² 4d ¹ yttrium 88.91	[Kr]55 ² 4d ² zirconium 91.22	[Kr]5s ¹ 4d ⁴ niobium 92.91	[Kr]55 ¹ 4d ⁵ molybdenum 95.94	[Kr]5s ² 4d ⁵ technetium (98)	[Kr]5s ¹ 4d ⁷ ruthenium 101.1	[Kr]5s []] 4d ⁸ rhodium 102.9	[Kr]4d ¹⁰ palladium 106.4	[Kr]5s ¹ 4d ¹⁰ silver 107.9	[Kr]55-4d ¹⁰ cadmium 112.4	[Kr]55 ² 4d ¹⁰ 5p ¹ indium 114.8	[Kr]5s ² 4d ¹⁰ 5p ² tin 118.7	[Kr]55€4d ¹⁰ 5p ³ antimony 121.8	[Kr]5 5²4d¹⁰5p⁴ tellurium 127.6	[Kr]55 ² 4d ¹⁰ 5p ⁵ iodine 126.9	[Kr]5s-4d ¹⁰ 5p ⁶ xenon 131.3
55	_56	_57	72	73	74	75	76	77	78	79	_80	81	82	83	_84	85	86
Cs	Ba	La*	Hf	'l'a	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	PO	At	Rn
[Xe]6s ¹ cesium 132.9	[Xe]6 s² barium 137.3	[Xe]6 ² 5d ¹ lanthanum 138.9	[Xe]6 ² 4f ¹⁴ 5d ² hafnium 178.5	[Xe]6 ² 4f ¹⁴ 5d ³ tantalum 180.9	[Xe]6s ² 4f ¹⁴ 5d ⁴ tungsten 183.9	[Xe]6 ² 4f ¹⁴ 5d ⁵ rhenium 186.2	[Xe]6 ² 4f ¹⁴ 5d ⁶ osmium 190.2	[Xe]6s ² 4f ¹⁴ 5d ⁷ iridium 190.2	[Xe]6s ¹ 4f ¹⁴ 5d ⁹ platinum 195.1	[Xe]6s ¹ 4f ¹⁴ 5d ¹⁰ gold 197.0	[Xe]6 ² 4f ¹⁴ 5d ¹⁰ mercury 200.5	Xej6s ² 4f ¹⁴ 5d ¹⁰ 6p ¹ thallium 204.4	Xej6s ² 4f ¹⁴ 5d ¹⁰ 6p ² lead 207.2	Xej6s ² 4f ¹⁴ 5d ¹⁰ 6p ³ bismuth 208.9	[Xe]6s 4f ¹⁴ 5d ^{1U} 6p ⁴ polonium (200)	[Xe]6s 4f ¹⁴ 5d ¹⁰ 6p ⁵ astatine (210)	^{[Xe]65²4f¹⁴5d¹⁰6p⁶ radon (222)}
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac~	R f	DD	Sg	Bh	Hs	Mt	Ds	Uuu	Uub						
[Rn]7s francium (223)	[Rn]7 s' radium (226)	[Rn]7 \$ 6d ¹ actinium (227)	[Rn]7\$5f ¹⁴ 6d ² rutherfordium (2 57)	[Rn]7\$5f ¹⁴ 6d ³ dubnium (260)	[Rn]7€5f ¹⁴ 6d ⁴ seaborgium (263)	[Rn]7\$5f ¹⁴ 6d ⁵ bohrium (262)	[Rn]7\$ ² 5f ¹⁴ 6d ⁶ hassium (265)	[Rn]7\$ ² 5f ¹⁴ 6d ⁷ meitnerium (266)	[Rn]7\$5f ¹⁴ 6d ⁹ darmstadtium (271)	(272)	(277)						

[Best • Proxy • Ever]

1A

1 Is ¹ hydrogen 1.008	2A											3 4	4 A	5A	6A	74	2 He ^{15²} helium 4.003
3 L1 ^{[He]2s¹ lithium 6.941}	4 Be ^{[He]2s² beryllium 9.012}											5 B [He]2s ² 2p ¹ boron 10.81	6 C [He]2 ² 2p ² carbon 12.01	7 N _{[He]2s²2p³ nitrogen 14.01}	8 0 (He]2 ² 2p ⁴ oxygen 16.00	9 [He]2s ² 2p ⁵ fluorine 19.00	10 Ne ^{[Hej2\$2p⁶ псоп 20.18}
11 Na ^{[Ne]35¹ sodium 22.99}	12 Mg ^{[Ne]35} magnesium 24.31	3B	4B	_5B	6B	7B		—8B -		11B	12B	13 Al ^{[Ne]3\$3p¹ aluminum 26.98}	14 S1 ^{[Ne]3\$3p² silicon 28.09}	15 P [Ne]3\$ ² 3p ³ phosphorus 30.97	16 S ^{[Ne]3s²3p⁴ sulfur 32.07}	17 Cl ^{[Ne]3\$3p⁵ chlorine 35.45}	18 Ar ^{[Ne]3s²3p⁶ argon 39.95}
19 K _{[Ar]45¹ potassium 39.10}	20 Ca [Ar]4 ² calcium 40.08	21 Sc [Ar]4s ² 3d ¹ scandium 44.96	22 Ti [Ar]4 ² 3d ² titanium 47.88	23 V [Ar]4s ² 3d ³ vanadium 50.94	24 Cr [Ar]4s ¹ 3d ⁵ chromium 52.00	25 Mn [Ar]4 ² 3d ⁵ manganese 54·94	26 Fe [Arj4s ² 3d ⁶ iron 55.85	27 C0 [Ar]4 ² 3d ⁷ cobalt 58.93	28 Ni _{[Ar]45²3d⁸ nickel 58.69}	29 Cu [Ar]4s ¹ 3d ¹⁰ copper 63.55	30 Zn ^{[A7]45²3d¹⁰ zinc 65.39}	$\underset{\substack{[Ar]4s^23d^{10}4p^1\\gallium}{69.72}}{31}$	32 Ge _{[Ar]45²3d¹⁰4p² germanium 72.58}	33 AS [Ar]4s ² 3d ¹⁰ 4p ³ arsenic 74.92	34 Se [Ar]4 ² 3d ¹⁰ 4p ⁴ sclenium 78.96	35 Br [Ar]4s ² 3d ¹⁰ 4p ⁵ bromine 79.90	36 Kr ^{[Ar]45²3d¹⁰4p⁶ krypton 83.80}
37 Rb ^{[Kr]55¹ rubidium 85.47}	38 Sr strontium 87.62	$\underset{\substack{[Kr]5s^24d^1\\yttrium\\ 88.91}}{39}$	40 Zr ^{[Kr]55²4d² zirconium 91.22}	41 Nb [Kr]55 ¹ 4d ⁴ niobium 92.91	42 Mo ^{[Kr]55¹4d⁵ molybdenum 95.94}	43 Tc ^{[Kr]5²4d⁵ technetium (98)}	44 Ru ^{[Kr]5s¹4d⁷ ruthenium 101.1}	45 Rh ^{[Kr]55¹4d⁸ rhodium 102.9}	46 Pd _{[Kr]4d¹⁰ palladium 106.4}	47 Ag [Krj5s ¹ 4d ¹⁰ silver 107.9	48 Cd [Kr]5 ² 4d ¹⁰ cadmium 112.4	$\underset{{}_{IKr J5s^{2}4d}^{I0}5p^{1}}{Indium}_{114.8}$	${ {50 \atop {Sn}} \atop {}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_$	51 Sb ^{[Kr]5s²4d¹⁰5p³ antimony 121.8}	52 Te ^{[Kr]55²4d¹⁰5p⁴ tellurium 127.6}	53 I [Kr]5 ² 4d ¹⁰ 5p ⁵ iodine 126.9	54 Xe ^{[Kr]5s²4d¹⁰5p⁶ xenon 131.3}
55 Cs [Xej6d cesium 132.9	56 Ba ^{[Xe]6² barium 137.3}	57 La* ^{[Xe]62⁵5d¹ lanthanum 138.9}	72 Hf ^{[Xe]6²4f¹⁴5d² hafnium 178.5}	73 Ta ^{[Xe]6²41¹⁴5d³ tantalum 180.9}	74 W ^{[Xej624f¹⁴5d⁴ tungsten 183.9}	75 Re ^{[Xe]624f^{145d5} rhenium 186.2}	76 OS (Xej6 ² 4f ¹⁴ 5d ⁶ osmium 190.2	77 Ir _{[Xe]6s²4i¹⁴5d⁷ iridium 190.2}	78 Pt [Xe]6 ³ 4f ¹⁴ 5d ⁹ platinum 195.1	$\begin{matrix} 79 \\ Au \\ {}_{[Xe]6s^{1}4f^{14}5d^{10}} \\ {}_{gold} \\ 197.0 \end{matrix}$	80 Hg [Xej6 ² 4f ¹⁴ 5d ¹⁰ mercury 200.5	$[1]_{\substack{x_{ej6}^{2}4t^{14}5d^{10}6p^{1}\\thallium\\204.4}}$	82 Pb _{xej6²4f¹⁴5d¹⁰6p² lead 207.2}	83 B1 _{Xej6241} ^{145d106p3} bismuth 208.9	84 Po _{[Xe]65²41¹⁴5d¹⁰6p⁴ polonium (209)}	85 At _{Xej6\$4f} ¹⁴ 5d ¹⁰ 6p ⁵ astatine (210)	86 Rn _{[Xe]65²4f¹⁴50¹⁰6p⁶ radon (222)}
87 Fr ^{[Rn]7§} francium (223)	88 Ra [Rn]7 ² radium (226)	89 Ac~ [Rn]7\$661 actinium (227)	104 Rf [Rn]7\$5f ¹⁴ 6d ² rutherfordium (257)	105 Db (Rn]7 ² 55 ¹⁴ 6d ³ dubnium (260)	106 Sg [Rn]7 ² 55 ¹⁴ 6d ⁴ seaborgium (263)	107 Bh [Rn]7 ² 5f ¹⁴ 6d ⁵ bolhrium (262)	108 HS [Rn]7 ² 5f ¹⁴ 6d ⁶ hassium (265)	109 Mt [Rn]7 ² 5f ¹⁴ 6d ⁷ meitnerium (266)	110 DS [Rn]7\$5f ¹⁴ 6d ⁹ darmstadtium (271)	111 Uuu (272)	112 Uub						

Ridgwell and Arndt [submitted]

Ocean Carbon Cycling and Models

! calculate carbonate alkalinity loc ALK DIC = dum ALK & & - loc H4BO4 - loc OH - loc HPO4 - 2.0*loc PO4 - loc H3SiO4 - loc NH3 - loc HS & & + loc H + loc HSO4 + loc HF + loc H3PO4 ! estimate the partitioning between the aqueous carbonate species loc zed = (& (4.0*loc ALK DIC + dum DIC*dum carbconst(icc k) loc ALK DIC*dum carbconst(icc k))**2 + & 4.0*(dum carbconst(icc k) - 4.0)*loc ALK DIC**2 & loc conc HCO3 = (dum DIC*dum carbconst(icc k) -&)**0.5 loc zed)/(dum carbconst(icc k) - 4.0) loc conc CO3 = & & (& loc ALK DIC*dum carbconst(icc k) - dum DIC*dum carbconst(icc k) - & 4.0*loc ALK DIC + loc zed & &) & & / (2.0*(dum carbconst(icc k) - 4.0))loc conc CO2 = dum DIC - loc ALK DIC + & & (& loc ALK DIC*dum carbconst(icc k) - dum DIC*dum carbconst(icc k) - & & 4.0*loc ALK DIC + loc zed & & &) & & / (2.0*(dum carbconst(icc k) - 4.0))loc H1 = dum carbconst(icc k1)*loc conc CO2/loc conc HCO3 loc H2 = dum carbconst(icc k2)*loc conc HCO3/loc conc CO3

www.seao2.info/misc_harvard2014.html

Not the PETM ...

Not the PETM

CaCO₃ cycling through time

Major changes in plankton assembledge Dinoflagellates _____ Acritarchs Diatoms Coccolithophorids Radiolaria Foraminifera Neoproterozoic Mesoproterozoic Period Era Κ Cm С Ng Pg J Ρ D S 0 Т Paleoproterozoic Cenozoic Mesozoic Paleozoic Eon Phanerozoic Archean **Proterozoic** 300 1000 2000 2500 3500 400 500 1500 3000 0 100 200 Time (Ma)

CaCO₃ cycling through time

CaCO₃ cycling through time

What do we not 'have' prior to about ~180 Ma?

3500

decreasing calcification rates (% compared to Preindustrial conditions)

Pandolfi et al. [2011] (Science)

Major changes in plankton assembledge

Major changes in plankton assembledge Dinoflagellates Acritarchs Diatoms Coccolithophorids Radiolaria Foraminifera Neoproterozoic Mesoproterozoic Period <mark>Ng Pg</mark> Era ^{Cenozoir} Κ С Cm J Ρ D S 0 т Cenozoic Mesozoic Paleozoic Paleoproterozoic Eon Phanerozoic **Proterozoic** Archean 300 1000 400 500 1500 2000 2500 3000 3500 100 200 0 Time (Ma)

Planktic carbonate production and 'ballasting'

Compilation of sediment trap observations: depths >= 2000 m (to exclude hydrodynamically distorted fluxes and relationships) and differentiated by basin: cyan == Atl, yellow == Ind, green == Pac, magenta == SO.

[Wlison et al., 2012; GBC 26, doi:10.1029/2012GB004398]

CaCO₃ cycling through time: Planktic carbonate production and 'ballasting'

Spatial distribution of carrying capacity (ballasting) coefficients calculated using geographically weighted regression analysis for CaCO₃.

Wilson et al. [2012]

(warm == stratified) && (stratified == anoxic) == .true. ???

('stratified' || 'sluggish' || 'stagnant')

Not quite PETM ...

Planktic foraminiferal δ^{13} C from early Eocene Tanzania

Open ocean $\delta^{13}C_{\text{DIC}}$ adjacent to modern Tanzania

Planktic foraminiferal δ^{13} C from early Eocene Tanzania

Open ocean $\delta^{\mbox{\tiny I3}}C_{\mbox{\tiny DIC}}$ adjacent to modern Tanzania

Open ocean $\delta^{\mbox{\tiny I3}}C_{\mbox{\tiny DIC}}$ adjacent to modern Tanzania

modern Tanzania early Eocene Tanzania 90 -90-0 0 -90 -90 -260 -180 100 180 0 0 Ocean depth (km) 2-2 3-3 blue == model $\delta^{13}C_{DIC}$ 4 4 (Eocene config) 5-5 -1.0 0.0 2.0 3.0 -1.0 0.0 2.0 3.0 1.0 1.0 $\delta^{13} C_{\text{DIC}}$ (‰) $\delta^{13} \overline{C}_{DIC}$ (‰)

Planktic foraminiferal δ^{13} C from

Open ocean $\delta^{13}C_{DIC}$ adjacent to

More, not-the-PETM ...

Ridgwell et al. [in prep]

Ridgwell et al. [in prep]

Modern Pacific zonal $\delta^{13}C_{(DC)}$ profile

increasing fractionation between pCO_2 and $[CO_2]$ with decreasing temperature towards to poles

Contours of carbon release vs. source isotopic signature for a global -4‰ carbon isotopic excursion. Contours differ according to the initial mean global δ^{13} C.

Ridgwell and Arndt [submitted]

In the Rothman et al. [2003] model, the RDOC reservoir is assumed to have been at least 10 times the size of the inorganic (ocean DIC + atmospheric pCO_2) reservoir. For a modern DIC + pCO2reservoir of 39,000 PgC, this mean 390,000 PgC of DOC – more than 500 times larger than modern). For a higher late Precambrian DIC reservoir, the minimum DOC reservoir becomes 1.6×10^6 PgC, equivalent to concentration of a little over 1000 mgC per L of seawater and becoming the third most dominant dissolved species in the ocean after CI⁻.

A DOC-dominated carbon cycle?

Sexton et al. [2011]

In the Eocene hyperthermal RDOC hypothesis, difficulties include envisioning a sufficiently stratified deep ocean (even when ignoring the lack of any evidence for widespread anoxia) that could partition RDOC away from the upper ocean and destruction by oxidation/photodedregation.

One possibility might be a biotic change that resulted in a drastic reduction in RDOC production. Notably: the (modern) decay time of RDOC – ca. 10 kyr – is consistent with the time-scale of PETM onset.

models ...

! calculate carbonate alkalinity

loc_ALK_DIC = dum_ALK &
& - loc_H4BO4 - loc_OH - loc_HPO4 - 2.0*loc_PO4 - loc_H3SiO4 - loc_NH3 - loc_HS &
& + loc H + loc HSO4 + loc HF + loc H3PO4

! estimate the partitioning between the aqueous carbonate species

```
loc zed = ( \&
& (4.0*loc ALK DIC + dum DIC*dum carbconst(icc k) -
loc ALK DIC*dum carbconst(icc k))**2 + &
& 4.0*(dum carbconst(icc k) - 4.0)*loc ALK DIC**2 &
& )**0.5
              loc conc HCO3 = (dum DIC*dum carbconst(icc k) -
loc zed)/(dum carbconst(icc k) - 4.0)
loc conc CO3 = \&
& (&
   loc ALK DIC*dum carbconst(icc k) - dum DIC*dum carbconst(icc k) - &
&
    4.0*loc ALK DIC + loc zed &
&
& ) &
\& / (2.0*(dum carbconst(icc k) - 4.0))
loc conc CO2 = dum DIC - loc ALK DIC + &
& ( &
& loc ALK DIC*dum carbconst(icc k) - dum DIC*dum carbconst(icc k) - &
& 4.0*loc ALK DIC + loc zed &
& ) &
\& / (2.0*(dum carbconst(icc k) - 4.0))
loc H1 = dum carbconst(icc k1)*loc conc CO2/loc conc HCO3
loc H2 = dum carbconst(icc k2)*loc conc HCO3/loc conc CO3
```


www.seao2.info/misc_harvard2014.html

cGENIE ClimaTea 2014 version: README

Andy Ridgwell

April 23, 2014

 To get an exact (read-only) copy of the ('mu □n' development branch)cGENIE source code used for the ClimaTea presentation – in linux, (ideally from your home directory) type: svn co https://svn.ggy.bris.ac.uk/subversion/genie/tags/cgenie.Harvard2014
 --username=genie-user cgenie.muffin NOTE: All this must be typed continuously on ONE LINE, with a S PACE before '--username',

and before 'cgenie'. You will be asked for a password – it isg3n1e-user.

2. You need to set a couple of environment variables – the coniller name, netCDF library name, and netCDF path. These are specified in the fileuser.mak (genie-main directory). If the cgenie code tree (cgenie.muffin) and output directory (cgenie output) are installed anywhere other than in your account HOME directory, paths specifying this will have to be edited in: user.mak anduser.sh (genie-main directory). Installing the model code under the default directory name (cgenie.mu□n) in your HOME directory is hence by far the simplest and avoids incurring additional/unnecessary pain (configuration complexity) ...

You will also need to have installed or linked to an appropriate FORTRAN compiler and netCDF library (built with the same FORTRAN compiler). The GNU FORT RAN compiler (gfort) version 4.4.4 or later is recommended. The netCDF version needs to be 4.0 (more recent versions require a little work-around, not documented here ...).

3. To test the code installation – change directory tocgenie.muffin/genie-main and type: make testbiogem

This compiles a carbon cycle enabled configuration of GENIE and runs a short test, comparing the results against those of a pre-run experiment (also downloaded alongside the model source code). It serves to check that you have the software environment correctly configured. If you are unsuccessful here ... double-check the software and directory environment settings in user.mak (or user.sh) and for a netCDF error, check the value of theNETCDF DIRenvironment variable. (Refer to the User Manual for addition fault-finding tips.) If environment variables are changed: before re-trying the test, you will need to type:

make cleanall

That is is for the basic installation. To run the model it is a simple matter of calling the 'runmuffin.sh' shell script fromgenie-main and supplying a couple of parameter values, e.g.:

./runmuffin.sh cgenie.eb_go_gs_ac_bg.worjh2.ANTH / EXAMPLE.worjh2.Caoetal2009.SPIN 10000

Refer to thecGENIE User manualfor more information regarding installing, running, and analyzing model output, and cGENIE Examplesfor more information on this specific example.¹ Also read the cGENIE README

Highly recommended ... is in order to have a working appreciation of the structure of the model and output, plus the format of the model output and how to visualize it – to read through:

http://www.seao2.info/cgenie/labs/EC4.2013/GEOGM1110andM1404.2013-14.cGENIE_LAB.0000.pdf

(which serves as a basic introduction to the model and how to use it).

models ...

	Fil	e Edit Plot Window Help			
		🧠 <new plot="" window=""> 🗸</new>			, 💌 🔛
	Cre	eate Plot			Remove Remove All Hide CD
		Datasets & Variables		🔏 ocn_PO4 in fields_biogem_3d (872)	
		Name		File Edit Plot Window Help	<u>^</u>
		🖃 🛅 fields_biogem_3d (872).nc	fields_biogem_3		
		🙆 bio_fpart_CaCO3	particulate flux -	Plot 1: ocn_PO4	
			particulate flux -	dissolved phosphate (PO4));
		io_fpart_POP	particulate flux -		
		in bio_fpart_ash	particulate flux -		double
		bio_fpart_det	particulate flux -		
		bio_rpartnorm_CaCO3	export-normalize		
		bio_partnorm_ach	export-normalize		
■ 1:almond.ggy,bris.ac.uk - mushroom@almond - SSH Secure Shell		bio_partnorm_det	export-normalize		
File Edit View Window Help		Carb H	carbonate chemi		
🔛 🎒 💁 🖳 📕 🗱 🛱 🦰 構 💋 🎾 🦓 🛷 🎌		carb_RF0	carbonate chemi		
Filename for restart input : atchem		CO2	carbonate chemi		
Filename for restart output : atchem		🤤 carb_conc_CO3	carbonate chemi		
Initialisation of ATCHEM module complete		- Carb_conc_HCO3	carbonate chemi		
·····		carb_dCO3_arg	carbonate chemi		
Check for weightings from genie atm = 0.99999999999999		🙋 carb_dCO3_cal	carbonate chemi		
Check for weightings from genie ocn = 0.99999999999999		carb_fug_CO2	carbonate chemi		
*****		carb_ohm_arg	carbonate chemi		
Initialisation complete, simulation starting		carb_ohm_cal	carbonate chemi		
***************************************		gnd_A	ocean cell surfac		
do the looping		grid_do	arid definition		
model vear * nCO2(uatm) d13CO2 * AWO(Sv) ice(%) <sst> <sss> * «DTC»)</sss></sst>	(uM) <alk>(uM)</alk>	ging_over	land-sea mask		
		arid topo	ocean depth	dissolved phosphate (PO4) (mol kg-1)	
>>> SAVING BIUGEN TIME-SERIES 0 year 0.50 285.160 -6.812 17.359 0.211 1.393 34.901 2242. temp / min = 0.2713E+03 (19.36, 8) / max = 0.2774E+03 (27.20, 8)	.457 2363.077	misc_pH	ocean pH		
sal / min = 0.3488E+02 (6,18, 8) / max = 0.3496E+02 (19,36, 8)		misc_rCaCO3toPOC	CaCO3 to POC r	0 2.01E-07 4.02E-07 6.03E-07 8.04E-07 1.005E-06 1.206E-06 1.407E-08 1.806E-08 1.806E-08 2.01E-08	
DIC / min = 0.2203E-02 (34,12, 8) / max = 0.2249E-02 (4,16, 7) DIC 13C / min = 0.3334E+00 (4.16, 7) / max = 0.8790E+00 (35,12, 8)		🔄 misc_rPO4toCa	PO4:Ca ratio (oc	Aitolf projection centered on 0.0°E Data Min = 4.12629E-09, Max = 1.71647E-06	
DIC_14C / min =1917E+00 (4,16, 7) / max = 0.1239E+01 (35,12, 8)		misc_rho	ocean density	Array(c) SCAR Contours Man Mice	
P04 / min = 0.1968E-05 (36,19, 8) / max = 0.2203E-05 (4,16, 7)		- 🙆 ocn_ALK	alkalinity (ALK)	Array(s) sow concours map mist.	
ALK / min = 0.2363E-02 (4,16, 7) / max = 0.2365E-02 (21,22, 8)		- 🙋 ocn_Ca	dissolved calcium	Min.: 0E-06 Max.: 2.01E-06 Fit to Data Center on 0 Always Fit Units: mol kg-1 🗸	
DOM_C / nin = $3166E-07$ (17,25, 6) / max = $0.1155E-04$ (31,20, 8)		ocn_DIC	dissolved inorgar	Color Table: Table rainbow_diff PAL-2 V, Invert Table Scaling Factor: 10^ 0 🗘	
DOM_C_14C / min =1000E+20 (1,13, 1) / max =2505E+02 (21,25, 4)		ocn_DOM_C	dissolved organic	Invalid/Missing: Gray V, Outlier Shape: Triangle V Divisions, Major: 10 🗘, Minor: 2 🖒	
DOM_P / min =3006E-09 (17,25, 6) / max = 0.1090E-06 (31,20, 8)		ocn_DOM_P	dissolved organic	Scale Caption: Default Other SCALE CAPTION	
CFC11 / min = 0.0000E+00 (1, 3, 2) / max = 0.000E+00 (1, 3, 2)		ocn_mg	dissolved Magne		
CFC12 / min = 0.0000E+00 (1, 3, 2) / max = 0.0000E+00 (1, 3, 2)			dissolved oxyger		
ng / min = 0.5281E-01 (0,33, 8) / max = 0.5283E-01 (19,35, 8) >>> SAVING BIOGEN TIME-SLICE @ year 0.5000000000000			salinity		
>>> SAVING BIOGEM TIME-SERIES @ year 1.50 295.241 -7.277 17.955 2.247 3.545 34.901 2240.	.918 2363.122		temperature	[lon][lat][vert]	
<pre>temp / min = 0.2712E+03 (19.36, 8) / max = 0.2831E+03 (27,20, 8) sal / min = 0.3483E+02 (25,21, 8) / max = 0.3516E+02 (19.36, 8)</pre>		phys u	ocean velocity - u		
DIC / min = 0.2168E-02 (31,19, 8) / max = 0.2258E-02 (4,16, 7)		phys_v	ocean velocity - v	[lon][lat][vert]	
DIU_13U / min = 0.2156E+00 (4,16, 7) / max = 0.1296E+01 (34,11, 8) DIC 14C / min =5418E+00 (4.16, 7) / max = 0.2424E+01 (34,11, 8)		phys_w	ocean velocity - w	v [lon][lat][vert]	
P04 / min = 0.1736E-05 (3,16, 8) / max = 0.2288E-05 (4,16, 7)					
02 / min = 0.1543E-03 (4,16, 7) / max = 0.3343E-03 (13,29, 8) ALK / min = 0.2362E-02 (10.34, 8) / max = 0.2369E-02 (18.36, 8)			jim o	al- Dhaidh ()	×
DOM_C / min =1272E-06 (17,25, 6) / max = 0.1772E-04 (31,20, 8)			Date Of		2
$DOM_{C} = \frac{130}{120} / \min =1000E+20 (1,12, 1) / \max = 0.6137E+01 (27,16, 1)$ $DOM_{C} = \frac{140}{120} / \min =1000E+20 (1,12, 1) / \max = 0.3613E+02 (27,16, 1)$					
DOM_P / min =1200E-08 (17,25, 6) / max = 0.1672E-06 (31,20, 8)					
Ca / min = 0.1024E-01 (25,21, 8) / max = 0.1028E-01 (18,36, 8)					
CFC12 / min = 0.0000E+00 (1, 3, 2) / max = 0.0000E+00 (1, 3, 2) CFC12 / min = 0.0000E+00 (1, 3, 2) / max = 0.0000E+00 (1, 3, 2)					
Mg / min = 0.5276E-01 (25,21, 8) / max = 0.5296E-01 (18,36, 8)	016 0060 147				
>>> SAVING BIUGEN TIME-SERIES @ year 2.50 302.269 -7.580 17.161 4.377 5.279 34.901 2240. temp / min = 0.2712E+03 (19,36, 8) / max = 0.2857E+03 (31,20, 8)	.016 2363.147				
sal / min = 0.3479E+02 (25,21, 8) / max = 0.3526E+02 (19,36, 8)			-		
DIU / min = 0.2143E-02 (31,19, 8) / max = 0.2265E-02 (4,16, 7) DIC 13C / min = 0.1340E+00 (4.16, 7) / max = 0.1540E+01 (22,25, 8)					
DIC_14C / min =8203E+00 (4,16, 7) / max = 0.3046E+01 (11,27, 8)					
P04 / min = 0.1575E-05 (3,16, 8) / max = 0.2352E-05 (26,29, 7) 02 / min = 0.1463E-03 (4.16, 7) / max = 0.3331E-03 (13,30, 8)					
ALK / min = 0.2360E-02 (25,21, 8) / max = 0.2371E-02 (18,36, 8)			v		

🍰 D

_ = X

Remove All Hide CDL

models ...

Simulation running. You can change what the map or graph display using the drop-down lists.

Thanks to:

Jamie Wilson & Steve Barker, Eleanor John, Paul Pearson [Cardiff] Patricia Sanchez-Baracaldo, Sandra Arndt, Daniela Schmidt [Bristol] Ellen Thomas [Yale] The Royal Society, Natural Environmental Research Council, EU ERC

