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The nature marine ecosystems and 
strength of biological productivity 
and remineralization affects:

 Oceanic macros nutrient inventories, 

esp. P and the form of fixed N.

 Ocean oxygenation and hence micro 

nutrient inventories, esp. Fe – scavanged 
in an oxic ocean, and Mo – scavenged 
in a sulphidic ocean.

 Atmospheric pCO  and climate.2
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In turn, changes in the physical and 
biogeochemial (nutrient) environment 
will affect ecosystem composition and 
drive selection.

The approximate coincidence between 
plankton evolutionary time-scales and 
the residence time of many of the key 
ocean and atmospheric tracers raises 
the possibility of interesting dynamical 
behaviours of the full system.
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Marine ecosystems in silico:

 The MIT ‘Darwin’ model typically 
considered ca. n = 76 randomly-
generated trait vectors (’plankton’).

 Plankton trait vectors set 
according to physiological ‘rules’, 
e.g. larger cells have a higher nutrient 
limitation threshold, the ability to fixed 
N  comes at the expense of reduced 2

growth rate, etc.

 Plankton compete and the 
ecosystem is an emergent rather 
than prescribed property.
But ...
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Marine ecosystems in silico:

 The MIT ‘Darwin’ model typically 
considered ca. n = 76 randomly-
generated trait vectors (’plankton’).

 Plankton trait vectors set 
according to physiological ‘rules’, 
e.g. larger cells have a higher nutrient 
limitation threshold, the ability to fixed 
N  comes at the expense of reduced 2

growth rate, etc.

 Plankton compete and the 
ecosystem is an emergent rather 
than prescribed property.
But ...
... the geochemical environment 
and climate co-evolves as global 
nutrient cycles are modified.
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Marine ecosystems in silico:

 n = 1,000-10,000 randomly-
generated trait vectors (’plankton’).

 Plankton trait vectors set 
according to physiological ‘rules’, 
e.g. larger cells have a higher nutrient 
limitation threshold, the ability to fixed 
N  comes at the expense of reduced 2

growth rate, etc.

 Plankton compete and the 
ecosystem is an emergent rather 
than prescribed property.
But ...
... the geochemical environment 
and climate co-evolves as global 
nutrient cycles are modified.

 At very high resolved diversity, we 
can explore questions of adaptation 
and rates of evolutionary change by 
spawning new plankton with 
perturbed characteristics.
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In traditional ‘functional 
type’ ecosystem models, 
diversity is not resolved, 
but instead its effects 
highly parameterized 
(e.g. the ‘Epply curve’).

The response to a 
change in climate is then 
instantaneous and fully 
reversible.
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Instead, in a highly 
diverse model, the 
environmental response 
of individual ‘species’ 
can be resolved ...

‘PALEOGENiE’



environmental variable (e.g. temperature)

g
ro

w
th

 r
a

te

.......s
p

e
c
ie

s
 #

1

s
p

e
c
ie

s
 #

2

s
p

e
c
ie

s
 #

2

s
p

e
c
ie

s
 #

2

s
p

e
c
ie

s
 #

2

s
p

e
c
ie

s
 #

2

s
p

e
c
ie

s
 #

1

s
p

e
c
ie

s
 #

1

s
p

e
c
ie

s
 #

1

s
p

e
c
ie

s
 #

1

....... s
p

e
c
ie

s
 #

3

Instead, in a highly 
diverse model, the 
environmental response 
of individual ‘species’ 
can be resolved ...

... or instead, the 
capability for adaptation 
(environmental selection 
within existing genetic 
diversity) can be 
represented(?)
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If climate cools, the low 
SST optimized 
species/varients no 
longer exist. Ecosystem 
dynamics are 
presumably different.

Niches are unfilled, so ...
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Allow non-viable 
plankton to be replaced 
with ‘mutations’ of 
surviving species, using 
the trait based trade-offs.

Q. How ‘frequently’ to 
mutate, and as a 
function of what?

Q. What ‘step size’ to 
take for mutation?

‘PALEOGENiE’



#1 #2 #3 #4 #n#5 .......

terrestrial
weathering

terrestrial
biosphere

s
e

d
im

e
n

t
b

u
ri

a
l3D 

circulation
ocean

sea-ice

‘paleo
assembledge

model’

‘PALEOGENiE’:
 A radical paleo model-data 

concept for theoretically exploring 
questions of marine plankton 
adaptation and evolution.

 Specific questions:
Cause(s) of the delayed recovery 
(100s of kyr) from end Cretaceous 
extinction
Determining which factor(s) best 
explain ecological responses to 
PETM carbon release.

 A tool for gaining understanding 
about future ecosystem stability (+ 
proof concepts for future models).
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Marine ecosystems in silico:

 n =  randomly-
generated trait vectors (’plankton’).
...
...

 At very high resolved diversity, we 
can explore questions of adaptation 
and rates of evolutionary change by 
spawning new plankton with 

­

­

1,000-10,000

There is clearly a very significant 
computational expense involved, 
even if using low resolution/efficient 
Earth system models such as ‘GENIE’.

‘PALEOGENiE’ – computational strategies
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‘Color’ tracer pattern to unambiguously diagnose surface ocean transport

‘PALEOGENiE’ – computational strategies

=> Diagnose full 3D circulation, 
and employ (sparse) parallelized 
matrix multiplication.

=> Calculate plankton transport 
separately from nutrients (and 
other dissolved tracers)?
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‘PALEOGENiE’ – computational strategies

=> Diagnose full 3D circulation, 
and employ (sparse) parallelized 
matrix multiplication.

=> Calculate plankton transport 
separately from nutrients (and 
other dissolved tracers)?



Activity

Ia. Research and define tradeoffs
Ib. Encalsulate tradeoffs in phytoplankton model
Ic. Explore basic zoonplankton scheme & dynamics

IIa. Collate existing data
IIb. New new K-Pg data

IIIa. Assessment vs. observations + Darwin model

IVa. PhD #1: Diatom adaptation and evolution
IVb. PhD #2: Zooplankton diversity

Va. Ocean physics development, parallelization
Vb. Development of interface and teaching materials
Vc. Release model as open source; documentation

VIIa. Earth system modelling workshops
VIIb. International Summer-school

IIIb. Paleo event hypothesis testing
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Activity

Ia. R&D cell structure/resource alllocation model
Ib. Ben to couple Ben's model
Ic. Adaptation/evolution developments & testing

IIa. Collate existing data
IIb. New new K-Pg data

IIIa. Assessment vs. observations + Ben's model
IIIb. Paleo event hypothesis testing

IVa. PhD #1: Diatom adaptation and evolution
IVb. PhD #2: Zooplankton diversity

Va. Ocean physics development, parallelization
Vb. Development of interface and teaching materials
Vc. Release model as open source; documentation

VIIa. Earth system modelling workshops
VIIb. International Summer-school

MANGEMENT: AR based in UoB
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