Snowball Earth

The Neoproterozoic: Gateway to a metazoan-dominated, oxygenated, 'modern-like' biosphere?

	Neop	rotero	Mesoproterozoic					Paleoproterozoic									Achean						
		ļ	l				II			I	I		I	U	I				I	I			
500	1000				1500			2000						2500						300			
								Т	ïme	e (My	∕r B.	P.)											

The Neoproterozoic: Gateway to a metazoan-dominated, oxygenated, 'modern-like' biosphere?

Evidence for glaciation

From: Hoffman and Schrag [2002]

From: Fairchild and Kennedy [2007]

Evidence for glaciation

From: Hoffman and Schrag [2002]

From: Fairchild and Kennedy [2007]

From: Hoffman and Schrag [2002]

'snowball Earth'

Hoffman et al. [1998] (Science 281)

SNNW THE STORY OF THE GREAT GLOBAL CATASTROPHE THAT SPAWNED LIFE AS WE KNOW IT

GABRIELLE WALKER

The snowball Earth hypothesis [Hoffman and Schrag, 2002] (Terra Nova 14, 129-155)

The snowball Earth hypothesis

Temperature

Snow cover

positive "ice-albedo" feedback

Snow cover

= -1/2°C

Temperature

Snow cover

TOTAL CHANGE = -1/2°C

Temperature

Snow cover

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C$

Temperature

Snow cover

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C$

Temperature

Snow cover

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C - 1/8^{\circ}C$

TOTAL CHANGE = $-1/2^{\circ}C - 1/4^{\circ}C - 1/8^{\circ}C - 1/16^{\circ}$ -

Temperature

Snow cover

TOTAL CHANGE = $-1^{\circ}C - 2^{\circ}C - 4^{\circ}C - 8^{\circ}C$

The snowball Earth hypothesis

The global carbon cycle (modern)

Long-term controls on atmospheric pCO_2

Terrestrial weathering can be (approximately equally) divided into carbonate (CaCO₃) and calcium-silicate ('CaSiO₃') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

(3) $\operatorname{Ca}^{2+} + 2\operatorname{HCO}_{3}^{-} \rightarrow \operatorname{CO}_{2(aq)} + \operatorname{H}_{2}O + \operatorname{CaCO}_{3}$

It can be seen that in (2) + (3), that the CO₂ removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO₂ is permanently removed to the geological reservoir. This CO₂ must be balanced by mantle (/volcanic) out-gassing on the very long term.

Long-term controls on atmospheric pCO_2

Terrestrial weathering can be (approximately equally) divided into carbonate (CaCO₃) and calcium-silicate ('CaSiO₃') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{-1}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

(3) $Ca^{2+} + 2HCO_3^{-} \rightarrow CO_{2(aq)} + H_2O + CaCO_3$

It can be seen that in (2) + (3), that the CO₂ removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO₂ is permanently removed to the geological reservoir. This CO₂ must be balanced by mantle (/volcanic) out-gassing on the very long term.

Long-term controls on atmospheric pCO_2

Terrestrial weathering can be (approximately equally) divided into carbonate (CaCO₃) and calcium-silicate ('CaSiO₃') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

(3) $Ca^{2+} + 2HCO_3^{-} \rightarrow CO_{2(aq)} + H_2O + CaCO_3$

It can be seen that in (2) + (3), that the CO₂ removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO₂ is permanently removed to the geological reservoir. This CO₂ must be balanced by mantle (/volcanic) out-gassing on the very long term.

The snowball Earth hypothesis

The snowball Earth hypothesis

The enigma of the 'cap carbonates'

CO₂ chemistry in seawater

From: Barker and Ridgwell [2012]

ocean

http://www.nature.com/scitable/knowledge/library/ ocean-acidification-25822734

CO₂ chemistry in seawater

CO₂ chemistry in seawater

ocean

carbonate ion

CO₂ chemistry in seawater

ocean

CO₂ chemistry & mineral phases

Aragonite: less stable orthorhombic polymorph (e.g., many corals, pteropods)

Calcite: more stable

(and more abundant) trigonal polymorph (e.g., coccolithophorides, foraminifera)

CO₂ chemistry & mineral phases

The addition of CO_2 to seawater results in a decrease in carbonate ion (CO_3^{2-}) concentration and 'ocean acidification'. A decrease in CO_3^{2-} , in turn, suppresses the stability of $CaCO_3$, defined by its saturation state:

 $\Omega = [Ca^{2+}] \times [CO_3^{2-}]/k$

⇒ The thermodynamic efficiency of precipitating $CaCO_3$ is a function of $[CO_3^{2-}]$ (and carbonate 'saturation').

The enigma of the 'cap carbonates'

The enigma of the 'cap carbonates'

Potential evolution of ocean saturation during a 'snowball'

NOTE: ocean composition format; [mean alkalinity, mean DIC] (µmol kg⁻¹)

Potential evolution of ocean saturation during a 'snowball'

NOTE: ocean composition format; [mean alkalinity, mean DIC] (µmol kg⁻¹)

Evolution of the Biological Pump

Archean

Time (Ma)

Major changes in plankton assembledge

Evolution of the Biological Pump:

Dissolved organic matter

Terrestrial DOC in put (?)

Evolution of the Biological Pump:

Dissolved organic matter

High atmospheric pO_2

Low atmospheric pO_2

Ridgwell and Arndt [submitted]

Evolution of the Biological Pump:

Dissolved organic matter

Contours of carbon release vs. source isotopic signature for a global -4‰ carbon isotopic excursion. Contours differ according to the initial mean global δ^{13} C.

Ridgwell and Arndt [submitted]

Evolution of the Biological Pump: Dissolved organic matter

In the Rothman et al. [2003] model, the RDOC reservoir is assumed to have been at least 10 times the size of the inorganic (ocean DIC + atmospheric pCO_2) reservoir. For a modern DIC + pCO2reservoir of 39,000 PgC, this mean 390,000 PgC of DOC – more than 500 times larger than modern). For a higher late Precambrian DIC reservoir, the minimum DOC reservoir becomes 1.6×10^6 PgC, equivalent to concentration of a little over 1000 mgC per L of seawater and becoming the third most dominant dissolved species in the ocean after CI⁻.

Ridgwell and Arndt [submitted]

Sanchez-Baracaldo et al. [2014]

Low fixed N supply to the open ocean Low open ocean primary production

Sanchez-Baracaldo et al. [2014]

Sanchez-Baracaldo et al. [2014]

