S1. Ocean acidification output supplement

S1.0 Variables relevant to ocean acidification are saved in the 'usual' formats – *time-series* (.res) files, 3D netCDF, and also 2D netCDF *time-slice* files. The most relevant ones of interest are as follows (although this is not an exhaustive list of what might be relevant to look at ...) Refer to the lecture for a refresher on ocean acidification ...

S1.1 *Time-series* files:

biogem_series_misc_surpH.res - mean ocean surface pH - mean ocean surface carbonate saturation (calcite) - mean ocean surface carbonate saturation (aragonite) - global CaCO3 export (from planktic calcifiers) - global organic matter export (from all plankton)

And of course, time-series of temperature (e.g. mean surface ocean or air), Atlantic meridional overturning strength, and sea-ice cover.

S1.2 3D netCDF time-slice file (fields_biogem_3d.nc):

misc_pH- ocean pHcarb_ohm_cal- carbonate saturation (calcite)carb_ohm_arg- carbonate saturation (aragonite)bio_fpart_CaCO3- CaCO3 export flux (from planktic calcifiers)bio_fpart_POC- organic export flux (from all plankton)

And of course, temperature and salinity, perhaps also dissolved oxygen (ocn_o2) that decreases in a warming ocean and also if the organic carbon flux increases.

S1.3 2D netCDF time-slice file (fields biogem 2d.nc):

ocn_int_DIC

- is the water-column integrated inventory of dissolved carbon (refer to hand-out)

misc_sur_rCaCO3toPOC

- is the water-column integrated inventory of dissolved carbon (refer to hand-out)

- is the ratio between CaCO₃ and POC export – i.e. comparatively, how much CaCO₃ is exported

And of course, the overturning streamfunction.