The long-term fate of fossil fuel CO_2

year

Short-term fate #2

From: Sabine et al. [2004] (Science 305)

The global carbon cycle: 'natural'

The global carbon cycle: modern

Currently (2000-2005) some 2.2 PgC yr⁻¹ CO₂ dissolves in the ocean. From 1800 to 1994, the ocean has taken up 118±19 PgC (below), accounting for 48% of the total fossil-fuel and cementmanufacturing emissions during that period (or about one third when including releases from land use change) [Sabine et al., 2004].

From: Sabine et al. [2004] (Science 305)

year

From: Ridgwell and Hargreaves [2007] (GBC)

see; Ridgwell and Zeebe [2005] (EPSL 234) for a review of global carbonate cycling through Earth history

Sediments and global biogeochemical cycles

From: Archer [1996] (GBC)

year

From: Ridgwell and Hargreaves [2007] (GBC)

Sediments spanning the Palaeocene-Eocene boundary recovered from ODP Leg 208 (Walvis Ridge) Picture courtesy of Dani Schmidt (University of Bristol)

Deep-sea sedimentary buffering

What comes in ... must go out ...I

 $\mathsf{CO}_{2(aq)} + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{H}^+ + \mathsf{HCO}_3^- \leftrightarrow 2\mathsf{H}^+ + \mathsf{CO}_3^2$

 $pCO_{2(g)}$

An imbalance is induced between inputs to the ocean from (mainly carbonate rock) weathering and carbonate burial losses. Because the carbonate weathering reaction consumes CO₂:

 $Ca^{2+} + CO_3^{2}$

 $(CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3)$ on a time-scale of 10^4 years, fossil fuel CO_2 is further removed from the atmosphere and locked up in the ocean.

From: Ridgwell and Hargreaves [2007] (GBC)

wt% CaCO₃

Terrestrial weathering can be (approximately equally) divided into carbonate ($CaCO_3$) and calcium-silicate (' $CaSiO_3$ ') weathering:

(1) $2CO_{2(aq)} + H_2O + CaSiO_3 \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2$

(2) $CO_{2(aq)} + H_2O + CaCO_3 \rightarrow Ca^{2+} + 2HCO_3^{--}$

Ultimately, the (alkalinity: Ca²⁺) weathering products must be removed through carbonate precipitation and burial in marine sediments:

$(3) \qquad Ca^{2+} + 2HCO_{3-} \rightarrow CO_{2(aq)} + H_2O + CaCO_{3-}$

It can be seen that in (2) + (3), that the CO₂ removed (from the atmosphere) during weathering, is returned upon carbonate precipitation (and burial). In (1) + (3) (silicate weathering) CO₂ is permanently removed to the geological reservoir. This CO₂ must be balanced by mantle (/volcanic) out-gassing on the very long term.

Silicate weathering is a ca. 100 kyr process. Hence, anthropogenic carbon 'pollution' and climate perturbation will persist for hundreds of thousands of years ...

The curious case of glacial CO_2 that was low

Extraction carried out by crushing (rather than melting) ice under vacuum eliminated previous contamination problems. This gave the first reliable evidence for a substantially (ca. 50%) lower glacial CO_2 concentration compared to the modern

The curious case of glacial CO_2 that was low

Combined Dome C and Vostok ice core data

The curious case of glacial CO_2 that was low

Age (kyr BP)

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
	glacial→interglacial amplitude (20–	<mark>→0 ka)</mark>	
O ₂ change	deglacial transition (17 \rightarrow 11 ka)		
(ppm) _2	0-30-20-10 0 10 20 30 40 50 60 7	0 80 90 1	00

Lower ocean surface temperatures suppress the solubility of CO₂, increasing the sequestration of CO₂ in the ocean interior. *Siegenthaler and Wenk* [1994] (*Nature* **308**) *Keir* [1993] (*JGR* **98**)

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
	glacial→interglacial amplitude (20–	<mark>>0 ka)</mark>	
O ₂ change	deglacial transition (17→11 ka)		
(ppm)	40-30-20-10 0 10 20 30 40 50 60 7	0 80 90 10	0C

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level		-6 (-7/-5) -7 (-9/-6)	High
D ₂ change	$\begin{array}{c c} glacial \rightarrow interglacial amplitude (20-deglacial transition (17 \rightarrow 11 ka) \\ \hline 0 30 20 10 0 10 20 30 40 50 60 7 \end{array}$	<mark>>0 ka)</mark> ∩ 8∩ 9∩ 1	

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST	salinity	+26 (21/30)	High
sea-level	non-solinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
	glacial→interglacial amplitude (20-	<mark>→0 ka)</mark>	
O_2 change	deglacial transition (17 \rightarrow 11 ka)		
(ppm)2	40-30-20-10 0 10 20 30 40 50 60 7	70 80 90 1	00

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-salinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
	deglacial transition $(17 \rightarrow 11 \text{ kg})$		
<u> (ppm) -</u>	40-30-20-10 0 10 20 30 40 50 60 /	0 80 90 1	JU

Changes in ocean circulation, particularly wind-driven upwelling, stratification, Atlantic meridional overturning; variously affecting biological and solubility pumps of CO₂. *Sarmiento and Toggweiler* [1984] (*Nature* **308**) *Toggweiler* [1999] (*PO* **14**)

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-salinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
AMOC strength SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med- Low
	glacial→interglacial amplitude (20–	<mark>>0 ka)</mark>	
D ₂ change	$\frac{1}{2} = \frac{1}{2} $		
(ppm) -2	40-30-20-10 0 10 20 30 40 50 60 7	0 80 90 1	00

Higher marine biological (organic matter) productivity, because of ... increased dustiness and aeolian iron supply to phytoplankton. *Martin* [1994] (*PO* **5**) *Watson et al.* [2000] (*Nature* **407**)

Fe

The 'biological pump' in the ocean

In oxic (oxygenated) seawater, Fe is only sparingly soluble, and tends to be 'scavenged' by particles and Global distribution of near-surface (30 m depth) ocean nitrate concentrations [Conkright et al., 1994]

The 'biological pump' in the ocean

Orbital Imaging Corps C/GSI ASA Sea and Global distribution of near-surface (30 m depth) ocean nitrate concentrations [Conkright et al., 1994]

Dust concentration (blue, top) and CO₂ content of air bubbles (green, bottom) trapped in the ice, both from the Vostok ice core, Antarctica. [*Petit et al.*, 1999]

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST	salinity	+26 (21/30)	High
sea-level	non-salinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
AMOC strength SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med- Low
iron fertilization		15 (5/28)	Med- Low
D ₂ change	glacial→interglacial amplitude (20– deglacial transition (17→11 ka)	<mark>>0 ka)</mark>	
(ppm) -2	40- <u>30-</u> 20-10 0 10 20 30 40 50 60 7	0 80 90 1	00

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-selinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
SO stratification		12 (7/15) 33 (31/35) 27 (3/57)	Med- Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
	glacial→interglacial amplitude (20-	<mark>→0 ka)</mark>	
D_2 change	deglacial transition (17 \rightarrow 11 ka)		
(ppm) -4	40-30-20-10 0 10 20 30 40 50 60 7	70 80 90 1	00

Erosion of carbonates on exposed continental shelves increased the ocean alkalinity inventory.

Berger [1982]

CaCO³

Conversely; increased area available for shallow water carbonate deposition during interglacials and sea-level high stands.

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-solinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
Generation SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
coral-reef re-growth		12 (6/20)	
O_2 change	glacial→interglacial amplitude (20– deglacial transition (17→11 ka)	<mark>>0 ka)</mark>	
(ppm) -2	40-30-20-10 0 10 20 30 40 50 60 7	0 80 90 1	00

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-salinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
AMOC strength o Content SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med- Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
coral-reef re-growth		12 (6/20)	
silica fertilization	aeolian shelf	4 (1/8)	Low
O_2 change	glacial→interglacial amplitude (20– deglacial transition (17→11 ka)	<mark>→0 ka)</mark>	
(ppm) -4	40-30-20-10 0 10 20 30 40 50 60 7	0 80 90 1	00

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST	salinity	+26 (21/30)	High
sea-level	non-salinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
Gite CAMOC strength SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med- Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
coral-reef re-growth		12 (6/20)	
silica fertilization	aeoli¢n	4 (1/8)	Low
wind-speed		0 (0/5)	Med
D_2 change	glacial→interglacial amplitude (20– deglacial transition (17→11 ka)	<mark>>0 ka)</mark>	
(ppm) -4	10-30-20-10 0 10 20 30 40 50 60 7	0 80 90 1	00

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-solinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
AMOC strength SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
coral-reef re-growth		12 (6/20)	
silica fertilization	aeolian shelf	4 (1/8)	Low
wind-speed		0 (0/5)	Med
weathering		0 (-5/5)	Med
	glacial→interglacial amplitude (20	<mark>)→0 ka)</mark>	
D ₂ change	deglacial transition (17 \rightarrow 11 ka)		
(ppm) _4	40-30-20-10 0 10 20 30 40 50 60	70 80 90 1	00

Glacial sea-ice coverage in the Southern Ocean was greater and caused less efficient ventilation of CO₂ sequestered in the deep ocean. Stephens and Keeling [2000] (Nature **404**)

sea ice

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-solinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
AMOC strength O SO stratification SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
coral-reef re-growth		12 (6/20)	
silica fertilization	aeolian shelf	4 (1/8)	Low
wind-speed		0 (0/5)	Med
weathering		0 (-5/5)	Med
sea-ice cover		-5 (-5/0)	Med- Low
D_2 change	glacial→interglacial amplitude (20– deglacial transition (17→11 ka)	<mark>>0 ka)</mark>	
(ppm) _2	40-30-20-10 0 10 20 30 40 50 60 7	0 80 90 1	00

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-salinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
AMOC strength		12 (7/15) 33 (31/35) 27 (3/57)	Med- Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
coral-reef re-growth		12 (6/20)	
silica fertilization	aeolián l	4 (1/8)	Low
wind-speed		0 (0/5)	Med
weathering		0 (-5/5)	Med
sea-ice cover		-5 (-5/0)	Med- Low
partial linear sum: Med/Low LOSU		68 (-4 / 153)	Med/ Low
	glacial→interglacial amplitude (20– deglacial transition (17→11 ka)	<mark>→0 ka)</mark>	
— (ppm) -4	10-30-20-10 0 10 20 30 40 50 60 /	0 80 90 10	JU

CO ₂ terms	Glacial-interglacial CO ₂ audit	CO ₂ (ppm)	LOSU
SST		+26 (21/30)	High
sea-level	non-salinity effects	-6 (-7/-5) -7 (-9/-6)	High
terrestrial biosphere		-22 (-35/-12)	High
partial linear sum: High LOSU terms		-9 (-30/6)	High
AMOC strength SO stratification whole ocean		12 (7/15) 33 (31/35) 27 (3/57)	Med- Low
iron fertilization		15 (5/28)	Med- Low
metabolic rate		15 (0/30)	Low
coral-reef re-growth		12 (6/20)	
silica fertilization	aeolian shelf	4 (1/8)	Low
wind-speed		0 (0/5)	Med
weathering		0 (-5/5)	Med
sea-ice cover		-5 (-5/0)	Med- Low
partial linear sum: Med/Low LOSU		- 68 (-4 / 153)	Med/ Low
TOTAL LINEAR SUM	'fast' + 'slow' terms	59	
BY TIME-SCALE	fast' terms	43	
D ₂ change	glacial→interglacial amplitude (20- deglacial transition (17→11 ka)	<mark>→0 ka)</mark>	
(ppm) -2	10-30-20-10 0 10 20 30 40 50 60 7	70 80 90 1	00

