
ANDY RIDGWELL

STR = ’DO YOU LIKE BANANAS?’

UNIVERSITY OF CALIFORNIA, RIVERSIDE / DEPT. OF EARTH SCIENCES 2018/9

Copyright © 2018 Andy Ridgwell

http://www.seao2.info/teaching.html

Except where otherwise noted, content of this document is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license (CC BY-NC-SA 3.0)
(http://creativecommons.org/licenses/by-nc-sa/3.0/)

Current printing, November 2018

http://www.seao2.info/teaching.html

Contents

How to use this Textbook 17

0.1 Fonts and highlighting 17

0.2 Help(!) and keyword definitions 17

0.3 Sidenotes and other distractions from the main text 18

0.4 What and when to type 18

0.5 Code structure 19

1 Elements of ... MATLAB and data visualization 21

1.1 Using the MATLAB software 22

1.1.1 Starting MATLAB 22

1.1.2 The command line 22

1.1.3 MATLAB GUI 23

1.1.4 Help(!) 23

1.2 Basic concepts 24

1.2.1 Variables 24

1.2.2 Numerical expressions and Arithmetic operators 27

1.2.3 Relational and logical operators 28

1.2.4 Functions (built-in) 28

1.2.5 Miscellaneous commands 29

1.3 Vectors and arrays #1 30

1.3.1 Creating vectors 30

1.3.2 Basic vector manipulation 31

1.3.3 Addressing elements in vectors 31

4

1.4 Basic graphing (aka. ’data visualization’) 33

1.4.1 Plotting 33

1.4.2 Graph labelling 34

1.4.3 Sub-plots 35

1.4.4 Saving graphics and figures 35

1.5 Vectors and arrays #2 37

1.5.1 Creating matrices and arrays 37

1.5.2 Basic matrix manipulation 38

1.5.3 Some matrix math :(40

1.6 Loading and saving data 42

1.6.1 Where am I? 42

1.6.2 Loading and importing data 43

1.6.3 Saving and exporting data 44

1.6.4 Loading and saving the workspace 44

1.7 Basic data processing (and yet more plotting) 45

1.7.1 Sorting data (in arrays) 45

1.7.2 Data scaling 46

1.7.3 Data (row) deletion 47

1.8 Nicer graphing 50

1.8.1 Modifying lines/symbols in plot 50

1.8.2 Plotting multiple data-sets 50

1.8.3 Changing label font size (and type) 51

1.8.4 Scatter plots 52

1.8.5 Simple 2D data and bitmap visualization 52

1.9 Further matrix math (systems of equations) 54

2 Elements of ... programming 57

2.1 Introduction to scripting (programming!) in MATLAB 58

2.1.1 Programming good practice 59

2.1.2 Debugging the bugs in buggy code 61

5

2.2 Functions 64

2.3 Conditionals ’101’ 67

2.3.1 if ... 67

2.3.2 switch ... 72

2.4 Loops ’101’ 74

2.4.1 for ... 74

2.4.2 Other loop configurations and usages 78

2.4.3 Fun(!) worked examples 79

2.5 Loops and conditionals ... together(!) 85

2.5.1 for ... and conditionals 85

2.5.2 while ... 87

2.6 Even more (and loopier) loops 90

3 Further ... MATLAB and data visualization 93

3.1 Further data input 94

3.1.1 Formatted text (ASCII) input 94

3.1.2 Importing ... Excel spreadsheets 97

3.1.3 Importing ... netCDF format data 98

3.2 Further (spatial / (x,y,z)) plotting 103

3.2.1 Contour plotting 103

3.2.2 Using the MATLAB Mapping toolbox 110

3.3 Further data processing 111

3.3.1 find! 112

3.3.2 Other data filtering 117

3.3.3 Basic (pretend) ’stats’ 118

3.3.4 Some useful data manipulations techniques 120

3.3.5 Data interpolation 122

3.4 Even nicer graphing and graphics 126

3.4.1 Drawing lines and shapes 127

3.4.2 Colors 131

3.4.3 Creating color maps 131

3.4.4 Placing and making text nice 133

6

4 Further ... Programming 135

4.1 Nested loops 136

4.2 Algorithms and problem-solving 142

4.2.1 Example #1: max(!) 142

4.2.2 Example #2: sort(!!) 146

4.2.3 Example #3: a gridded problem 148

4.3 Interpreting equations (0) – Basics 161

4.4 Interpreting equations (1) – Population models 162

4.4.1 Exponential (and unrestricted) growth 162

4.4.2 Restricted growth (and an equilibrium state) 163

4.5 Interpreting equations (2) – Pure lovely maths 166

4.5.1 Sequence convergence (in 1D) 166

4.5.2 Sequence convergence (in 2D) 169

5 Programming applications – games! 177

5.1 Tic-tac-toe 178

5.1.1 Mouse behavior 180

5.1.2 Drawing the ’objects’ 181

5.1.3 Identifying specific boxes 182

5.1.4 Remembering turns (and arrays!) 183

5.1.5 Putting it all together 184

6 Numerical modelling – zero-D / equilibrium 189

6.1 Zero-D Energy-balance model of the climate system 190

6.1.1 The basic EBM 191

6.1.2 The EBM as a function 192

6.1.3 Creating a function for the evolution of solar constant through geological time 192

6.1.4 Using multiple functions and calculating global surface temperature as a function of geological
time 193

6.1.5 Parameter sensitivity experiments using the EBM – #1 194

6.1.6 Parameter sensitivity experiments using the EBM – #2 197

7

6.2 ’Daisy World’ 200

6.2.1 ’fixed daisy’ daisy-world 201

6.2.2 ’dumb daisy’ daisy-world 203

6.2.3 ’clever daisy’ daisy-world 207

6.2.4 Efficient and ’clever daisy’ daisy-world 208

7 Numerical modelling – Dynamic (time-stepping) 209

7.1 Catch the ball (ballistics and simulating trajectories) 213

7.2 Dynamics in the zero-D Energy-balance climate model 221

8 Numerical modelling – To infinity (1D) and beyond(!) 227

8.1 1-D energy-balance climate model 228

8.2 1-D reaction-transport model 234

9 Graphical User Interfaces (GUI) 245

9.1 MATLAB GUI basics 246

9.1.1 Hello, World [Static Text (box)] 247

9.1.2 Simple GUI responses [Push Button] 249

9.1.3 Updating object properties (do you like bananas?) 252

9.1.4 Simple GUI responses [Sliders] 255

9.2 MATLAB apps 257

10 Numerical modelling meets GUI (prettier games!) 259

10.1 GUI Pokémon game 260

Bibliography 277

Index 279

List of Figures

1 Schematic for a generic script. 19
2 Schematic for a generic function. 19

1.1 Example of the default output of the plot function. 33
1.2 A plot illustrating axis auto-scaling (maximum x and y values now

slightly larger than 10 and 100, respectively). 34
1.3 A (only very slightly) improved plot. 34
1.4 Arrangement of subplots. 35
1.5 Result of simply throwing the entire data matrix at plot 43
1.6 Spline fit to measured changes in CO2 concentration in Law Done

ice core, following Etheridge et al. [1996]. 44
1.7 proxy reconstructed past variability in atmospheric CO2. 45
1.8 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 46
1.9 Observed annual global mean surface temperature anomaly (com-

pared to year 1910 to 2000 average). 46
1.10 Observed annual global mean surface temperature. 47
1.11 Observed annual mean surface temperature in Riverside. 48
1.12 Observed global annual mean surface temperature anomaly, relative

to the mean of 1910 through 2000. 48
1.13 Observed annual mean surface temperature anomaly, relative to the

mean of 1910 through 2000, at Riverside. 48
1.14 Observed annual mean surface temperature anomaly, relative to the

mean of 1910 through 2000, at Riverside, filtered to remove years with
missing monthly data. 49

1.15 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 50
1.16 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 51
1.17 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 52
1.18 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 52
1.19 A 2D plot of some random gridded model data. 52
1.20 A 2D plot of some random gridded model data ... but with the un-

derlying data matrix re-orientated before plotting. 53
1.21 Lake volumes and river flow rates in the Great Lakes system. 54

2.1 Schematic of the example program. 60

10

2.2 Schematic of the Hello World program. 61
2.3 Output from the (bug-fixed version of) plot_some_dull_stuff m-file. 63
2.4 Schematic structure of the simple bananas question program. 68
2.5 Schematic structure of the extended bananas question program. 69
2.6 A slight variant on the schematic structure of the extended bananas

question program. 70
2.7 Schematic of the bananas program using the if ... else ... con-

struct (and displaying alternative messages). 70
2.8 Extremely unappealing blocky plot of Earth surface temperature (who

cares with month? – the graphics are too poor to matter ...). 83
2.9 Continental outline (of sorts). 90
2.10 Another continental outline (of sorts). 90
2.11 Another go at the continental outline! 92

3.1 Very basic imaging (image) of an array (2D) of data – here, global bathymetry. 104
3.2 Slightly improved very basic imaging (imagesc) of bathymetry data. 104
3.3 Example result of basic usage of the contour function. 105
3.4 Example usage of contourf, with the hot colormap (giving dark/brown

colors as deep ocean, and light/white as high altitude). 106
3.5 Example usage of contour, contouring only the zero height isoline,

and providing a label. 106
3.6 Usage of contour but with lon/lat values created by meshgrid func-

tion and passed in (and with the hot colormap (giving dark/brown
colors as deep ocean, and light/white as high altitude). 108

3.7 Example contour plot including meshgrid-generated lon/lat values.
Result of contourf(lon,lat,temp7,30), where the data file was temp7.tsv,
with some embellishments. 110

3.8 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 115
3.9 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 117
3.10 Figure window with axes. 127
3.11 Figure window with single line segment (via plot). 128
3.12 Figure window with a second line segment (via line). 128
3.13 (no comment). 128
3.14 Square. 130
3.15 Alt square. 130
3.16 Random polygon. 130
3.17 RGB scale. By SharkD - Own work, GFDL, https://commons.wikimedia.org/

w/index.php?curid=3375025 131
3.18 Global topography plotted with the default MALTAB color scheme. 132
3.19 Global topography plotted with hot. 132
3.20 Global topography plotted with a basic black+white dual color scheme. 132
3.21 Comparison of sparsely sampled data (points) compared with a more

finely spaced spline interpolation (solid line). (x-axis and y-axis are
both unit-less.) 133

11

3.22 Global topography plotted with a user-defined grey-scale. 133

4.1 Tic-tac-toe game grid. 136
4.2 Tic-tac-toe game grid with numerical codes overlain. 136
4.3 Tic-tac-toe game grid – numerical representation. 136
4.4 Tic-tac-toe game grid – search order: columns then rows. 137
4.5 Tic-tac-toe game grid – search order: rows then columns. 137
4.6 3x3 grid of black squares ... 140
4.7 3x3 grid of colored squares. 140
4.8 (yawn) 140
4.9 Chess board grid pattern. 141
4.10 Ocean topography (blues through red) in the ’GENIE’ Earth system

model. Land is shown in brown. 148
4.11 The ’GENIE’ mode land grid, with land points assigned a sequen-

tial integer (working across and dow the grid – from West to East,
and then North to South). 154

4.12 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier ... almost ... (!) 158

4.13 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier (color). 158

4.14 The ’GENIE’ mode land grid, with land points (almost) assigned a
unique identifier (color). 159

4.15 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier (color). 159

4.16 The Mandelbrot Set – points representing complex numbers that are
members of the set, are shown in black. Complex numbers for which
the sequence does not converge, are graphically represented by the
white locations in the plotted domain. 166

4.17 ×50 (-ish) zoom in on the Mandelbrot Set illustrating self-similarity
and the fractal nature of the set boundary. 166

4.18 Solution space (blue points) for the simple sequence. 168
4.19 Solution space (blue points) for the simple sequence, with the rate

of divergence forming the color scale of light blue (slowest) through
yellow (fastest divergence). 169

4.20 Simple, low resolution Mandelbrot set rendition. 173
4.21 Simple, low resolution Mandelbrot set rendition (now highlighting

points that are members of the solution set (black) vs. not (white). 173
4.22 Initial Mandelbrot Set magnification. 174
4.23 Example Mandelbrot Set zoom. 174
4.24 Example Mandelbrot Set zoom. 174

5.1 Tic-tac-toe. By Symode09 - Own work, Public Domain, https://commons.wikimedia.org/
w/index.php?curid=2064271. 178

5.2 Schematic structure of the complete code. 179

12

5.3 Tic-tac-toe game grid drawn. 180
5.4 Tic-tac-toe game – object drawing test. 182
5.5 Tic-tac-toe game – object drawing + mouse button test. 182
5.6 Tic-tac-toe game – object drawing now arranged in a grid. 183
5.7 Tic-tac-toe game grid with numerical codes overlain. 184
5.8 Tic-tac-toe game – object drawing now arranged in a grid and with

forced turn alternation. 185
5.9 Linear indices of a 3 × 3 matrix. 186

6.1 The pattern of absorption bands generated by various greenhouse
gases and aerosols (lower panel) and how they impact both incom-
ing solar radiation (upper left) and outgoing thermal radiation from
the Earths surface (upper right). (Figure prepared by Robert A. Ro-
hde for the Global Warming Art project.). 191

6.2 Form of the basic EBM model. 191
6.3 Form of the basic EBM model as a function. 192
6.4 Schematic structure of code for calculating the solar constant (out-

put) as a function of time (input). 192
6.5 Schematic of the evolution of surface temperature over geological

time program, and relationship between main program script, and
solar constant and EBM functions. 193

6.6 Simple EBM projection of the evolution of Earth surface tempera-
ture with time. Time at the present-day is highlighted by a vertical
line (drawn using the MATLAB line function). 194

6.7 Schematic structure of the model configured to carry out a single pa-
rameter sensitivity study. 197

6.8 Sensitivity of global mean surface temperature vs. solar constant (mean
surface albedo held constant at an albedo value of 0.3). 197

6.9 Schematic structure of the model configured to carry out a double
(in terms of solar constant AND now albedo) parameter sensitivity
study. 198

6.10 Global mean surface temperature (°C) as a function of solar constant
and surface albedo grid point number. 198

6.11 Global mean surface temperature (°C) as a function of the value of
solar constant and surface albedo. 198

6.12 Daisy World 200
6.13 Schematic of the evolution of surface temperature over geological

time program, and relationship between main program script, the
solar constant and EBM functions, and now the ’daisy’ albedo func-
tion. 201

13

6.14 Evolution of global surface temperature and the two populations of
daisies with time ... but with no change allowed in the daisy pop-
ulations (d’uh!). The fractional coverage of white daisies is shown
by large empty circles, and for black, by small filled black circles. Data
points for mean surface temperature are color-coded by temperature
(color scale not shown). 202

6.15 Schematic of the evolution of surface temperature over geological
time program, and relationship between main program script, the
solar constant, EBM, and ’daisy’ albedo functions. Note the creation
of an inner loop, with EBM, and ’daisy’ albedo functions called from
within this, while the solar constant remains called form the start of
the outer loop as before. 205

6.16 Evolution of global surface temperature and the two populations of
daisies with time ... but now assuming that the growth of each de-
pends on the global mean surface temperature. 206

6.17 Evolution of global surface temperature and the two populations of
daisies with time. 208

7.1 Schematic of the thrown-ball system. 213
7.2 Schematic of the code for simulating the horizontal movement of a

ball. 213
7.3 Schematic of the code for simulating the vertical movement of a ball. 215
7.4 Trajectory of a ball!! 219
7.5 Trajectory of a ball (with a poor time-step choice). 219
7.6 Trajectory of a ball (even poorer time-step choice). 219
7.7 Schematic of the dynamic EBM. 221
7.8 Schematic of the script for the basic dynamic EBM 221
7.9 100 yr spin-up of the basic EBM. 222
7.10 Schematic of the script for the basic dynamic EBM – now with added

loop count(!) 222
7.11 100 yr spin-up of the basic EBM, but with a poor choice of time-step

... 223
7.12 Schematic of the dynamic EBM driven by a history of CO2 (read in

from a file). 224
7.13 Transient EBM response to observed changes in atmospheric CO2.

For reference, the pre-industrial equilibrium global temperature is
shown as a horizontal black line. 225

7.14 Transient EBM response to (fake) changes in atmospheric CO2. 225

8.1 Basic 1-D EBM with no latitudinal heat transport and for a single hemi-
sphere only. 230

8.2 Basic 1-D EBM with no latitudinal heat transport (red filled circles).
Overlain is the zonal mean observational data for January (blue cir-
cles). 231

14

8.3 As per Figure 8.2 but for July. 231
8.4 1D EBM with an initial guess as to the value of k. 233
8.5 1D EBM with a x10 larger value of k. 233
8.6 Idealized schematic of the soil-CH4 system. 234
8.7 Slightly less idealized schematic of the soil-CH4 system. 234
8.8 Even less idealized and almost realistic, schematic of the soil-CH4

system. 234
8.9 Soil profile of CH4 after 10.0s of simulation. 241
8.10 Soil profile of CH4 after 100.0s of simulation. 241
8.11 Soil profile of CH4 after 100.0s of simulation with an extremely marginal

choice of time-step length. 242
8.12 Soil profile of CH4 after 100.0s of simulation, with CH4 uptake at

the base of the profile with a rate constant of 1.0 per s. 243
8.13 Equilibrium soil profile of CH4, with CH4 uptake throughout the

soil column with a rate constant of 0.1 per s. 243
8.14 Example equilibrium soil profile of CH4 with production at depth. 244

9.1 Starting GUI window of the MATLAB GUIDE, GUI design tool. 246
9.2 (Blank) GUI window editor GUI window. 247
9.3 Design of the Hello, World window! 248
9.4 Design window with a default push button object. 249
9.5 (completely) Bananas design window. 252
9.6 (completely) Bananas GUI in action. 254

10.1 Screen-shot of he Pokémon game App. 260
10.2 Trajectory model, with a Pokéball image replacing the scatter point.

Here show without deleting the image once displayed. 262
10.3 Trajectory model (exactly the same trajectory as per the Figure 10.2),

frozen mid-flight at t = 1s with the Pokéball passing over UC-Riverside. 263
10.4 Template App with background image. 268
10.5 Template App with background image plus Pokémon. 268
10.6 Template App with background image plus small Pokémon at bot-

tom right. 269
10.7 Template App with background image plus small Pokémon at bot-

tom right, now with its transparency applied. 269
10.8 App with ball trajectory trail. 271

List of Tables

1.1 Pollution input input rates to each of the 5 lakes. 54

4.1 Examples of applying the equation iteratively (different starting val-
ues). 167

How to use this Textbook

A brief guide as to how to interpret and make best use of this book,
follows.

0.1 Fonts and highlighting

Throughout ... but be aware, because it is probably not implemented
particularly consistently: the following formatting in the text is used
to distinguish the specific context of the word:

• Bold – indicates program/software names (e.g. MATLAB).
• Italics – indicates technical/jargon words, particularly specific
to MATLAB (but not command words or functions themselves) or
programming concepts, e.g. loop.
• Sans-serif font family typeface – indicates keyboard keys (e.g. F5),
program menu items (e.g. Save as ...), program window names,
and filenames (except where used in MATLAB).
• Typewriter font family typeface – indicates MATLAB com-
mands and functions, and lines of code (see examples below).
• Color highlights in the text are used to reflect the colors em-
ployed by MATLAB at the command line, or in the code editor.
• Math is hi-lighted in a slightly different font (and in blue), e.g:
a = 10 × b + c2

and hence differs from the MATLAB code version:
a = 10*b + c∧2

0.2 Help(!) and keyword definitions

MATLAB help is not always especially helpful! In the course text, for
each function that MATLAB provides a comprehensive help text on,
such as help, a simple summary version will be displayed in the right
hand margin in a grey box. For example – the box headed FUNCTION.

FUNCTION

A simple and/or summary usage
of particular MATLAB commands
and functions is provided in a grey-
background box in the margin.

...

...

Also appearing in grey boxes in the margin are overviews and
summaries of MATLAB commands or functions as well as ways to
do things in MATLAB. For example – the box headed loops.

loops
There are a number of differ-

ent ways of constructing loops in
MATLAB ...

...

...

18

0.3 Sidenotes and other distractions from the main text

1 sort of things will appear in the text – sidenotes2. There will be 1 I am a Sidenote!
2 I am also a Sidenote!some corresponding text or comment in the margin. Most are helpful

and offer additional guidance or suggestions and you should read.3 3 Some are trivial and worthless, but
you wont know which is which until
you have read them ...

In fact, the format of the book gives over substantial space for Side-
notes, explanation boxes, and figures, so be prepared that important
information may appear in the margins.

0.4 What and when to type

Examples of MATLAB code/commands are indicated by text in a
’Typwriter’ font, e.g.

A = [1 2 3 4]

When the given examples additionally illustrate how they are typed
in plus the ’result’ OR, requires you to type in the lines at the com-
mand line, the text is again highlighted text in a ’Typwriter’ font but
in addition, the command line prompt (») is shown at the start of a
line (you do not type in the prompt ...), e.g.

» hello

is asking you to type in hello at the command line, and

» hello

Undefined function or variable ’hello’.

is then showing you what happens!

When you see a string or variable name in all CAPITAL LETTERS –
this is a ’placeholder’ and is indicating that you should substitute in
an appropriate string or variable name in its place, e.g.

load(’FILENAME’,’-ascii’);

is indicating that you substitute the name of your actual file in
place of FILENAME. Alternatively:

plot(MYARRAY(:,1),MYARRAY(:,2));

would indicate that you should substitute your actual variable
name (holding the data to plot in this example) in place of MYARRAY.

19

0.5 Code structure

A visual guide to the structure of your programs is given by schematic
figures in the page margin. For example, a generic script (yellow box)
is shown by Figure 1, and a generic function (green box) by Figure 2.

Figure 1: Schematic for a generic script.

Figure 2: Schematic for a generic
function.

In these schematics, the flow (sequence) of the code is indicated by
the red arrow.

For the function, that information is passed into the function, and
then returned back to where the function was called from, is indi-
cated by the red arrows entering the top of the box and leaving the
bottom of the box, respectively. (But note that there is no line of code
at the end that tells the model to return values ... this is simply to
illustrate the flow of the program, particularly when things get more
complicated and there are multiple scripts and functions involved.)4

4 Don’t worry for now ... it should
hopefully all become apparent later.

For the script, the code file starts with a comment (%program
description) summarizing what the script does, although after the
function definition header line, so to should the function (somewhere
have comment lines describing what it does).

The black left-pointing filled triangles and associated text to the
right, indicate categories of code content, and occurring in what
order, that the programs might contain.

The purpose of these cartoons is to help you when faced with a
blank page and the question: ’Where do I start’ or ’What do I write’
appears prominently in your mind5. It is to give you some sort of 5 Also surrounded by flashing neon

lights.idea what bits might go where, and what general content is required
in the file. The cartoons do not (and are not intended) to show the
exact details of the code content. Nor do they necessarily indicate
all the different sections needed. Conversely, not all the sections
illustrated may be strictly necessary and in come examples there
may be nothing to ’initalize’ and there may be no constants of local
parameters to define the values of at the program start.

So please – use the cartoons as a simple visual guide to the ap-
proximate structure of your program and do not over-interpret them.

1

Elements of ... MATLAB and data visualization

Hello Newbies! This first lab’s porpoise is to start to get you familiar with what MATLAB ’is’ and what
the heck you’d actually do with it. Specifically, you are going to learn about variables and arrays and do-
ing some very basic/simple math in MATLAB, and how to import and manipulate (array) data in this
software environment and then do some basic plotting (aka ’data visualization’). If your are clever, you
might find menu items or buttons to click that will do the same thing as typing in boring commands at the
command line. In fact, you would have to be pretty dumb not to notice all that brightly colored eye-candy
in the GUI (Graphical User Interface – i.e., menus, buttons, and stuff) at the top of the screen. However,
you will get to grips with programming much quicker if you stick with the instructions and do almost
everything that is asked of you using the command line (rather than doing stuff via the GUI), at least to
start with. You’ll just have to trust me for now ... We’ll start with the very basics and things that you could
easily do in Excel instead, and build up.

Graphics is one of the important strengths of MATLAB. Although other software packages and scripting
languages exist that perhaps have the edge on MATLAB in terms of visually appealing plots and graphs,
MATLAB is worlds apart from e.g. Excel. And way way better than potato printing. (Excepting the contin-
ually broken MATLAB postscript rendering.)

22 str = ’do you like bananas?’

1.1 Using the MATLAB software

1.1.1 Starting MATLAB

To start with: find the MATLAB icon on the desktop; run the pro-
gram. You should see a number of sub-windows arranged within the
main MATLAB window, hopefully including at the very least, the
Command Window1. Depending on whether you have used MATLAB 1 Conveniently labelled Command Window

– you cannot possibly fail to identify it
...

before and it has remembered your settings, windows may also in-
clude: Command History, Workspace, Current Folder. If instead you see;
’Tetris’, ’Grand Theft Auto: San Andreas’, and ’World Championship
Pool’, then you have the wrong software running and are going to
find learning MATLAB rather hard. However, there is big $$$ to be
made in on-line gaming tournaments these days. Would you really
rather be a graduate and spend the rest of your days doing a proper
job? If so, read on ...

1.1.2 The command line

When MATLAB initially starts up, the Command Window should
display the following text:

Academic License

»

or in order versions of the software:

To get started, select MATLAB Help or Demos from the Help

menu.

»

but in either case, with a vertical blinking line (cursor) following the
double ’greater than’ symbols2. 2 Note that in nerd-speak the » is

called the command ’prompt’ and is
prompting you to type some input
(Commands, swear words, etc.). See –
the computer is just sat there waiting
for you to command it to go do some-
thing (stupid?). If one does not appear
at the bottom of whatever is in the Com-
mand Window is means that MATLAB
is busy doing something extremely
important. Or perhaps, MATLAB may
have completely died. Either way, it will
not accept any new/further commands
until it is done calculating/dying.

If you are unfamiliar with using command-line driven software ...
Don’t Panic!3 Nothing bad can happen, regardless of what you do.

3 Douglas Adams. The Hitchhiker’s Guide
to the Galaxy. Pocket Books, 1979. ISBN
0-671-46149-4

Well, almost. It is possible to accidently clear MATLAB’s memory
of the results of calculations and data processing and close plots and
graphs before you have saved them, but MATLAB remembers all the
commands you type, so in theory it is perfectly possible to quickly
reproduce anything lost. (Later on we will be placing the sequence
of commands into a file (that is saved) and so ultimately, MATLAB
should turn out to be mostly fool-proof.)

To convince yourself that nothing dreadfull will happen ... type ...
anything. Actually ’anything’ will do.

» anything

Undefined function or variable ’anything’.

elements of ... matlab and data visualization 23

Well ... not so exciting. But not so disastrous. MATLAB simply has
no clue what you are talking about, or rather, anything is not a ’key
word’4 that MATLAB recognises. In the specific error message, MAT- 4 i.e. a word, or sequence of characters

that has a special meaning to MATLAB
and it will act upon, as opposed to
a sequence of characters that has
not special meaning and MATLAB
completely ignores.

LAB could not find that anything was a built-in (or user-defined)
function, nor a listed variable, both of which you’ll learn about in due
course.

1.1.3 MATLAB GUI

There are lots of fancy looking icons and pretty colors and you could
spend all day staring at them and not getting any work done. Or
you could learn some good programming practice. Which is why we
mostly will ignore the eye-candy and little (if any) guidance will be
given as to the functionality of the Graphical User Interface (GUI).
Look at this as a lesson for the user (to read the Help, textbook, on-
line documentation, or simple go Google for an answer5). 5 i.e. Internet fishing

1.1.4 Help(!)

If stuck at any point – you can press the F1 key or click on the ques-
tion mark icon on the tool-bar, to bring up the indexed and search-
able MATLAB documentation.6 6 It is also possible to obtain context-

specific help, e.g. on a specific (built-in)
function, which we’ll see in due course.

You can also type help at the command line (and press the Return

key).

» help

The result is perhaps not especially helpful. The typical usage is to
provide the name of a function7 you require help on. Perversely, help 7 Don’t worry about what a function is

yet.is a function and MATLAB provides help on help. The initial output
to which is as follows:

» help help

help Display help text in Command Window.

In the course text, for each function that MATLAB provides a com-
prehensive help on, such as help, a simple summary version will be
displayed in the right hand margin in a grey box.8 8 Refer to the section on ’How to use

this Textbook’.

help

Typically takes a single param-
eter – the name of a function, and
returns an entirely incomprehensible
description of that function and its
usage at the command line.

24 str = ’do you like bananas?’

1.2 Basic concepts

1.2.1 Variables

A variable is, in a sense, a pointer to a location in computer memory
where a piece of information is stored9. For instance – open up a 9 In the bad old days, this pointer was

the actual address in memory and
might have looked something like
f04da105.

blank worksheet in Excel, and in the very top left hand cell, enter the
number 10. You can see visually, that Excel is referencing this loca-
tion as column A, and row ’1’. In fact, this location (’A1’) is indicated
in the Name Box to the left of the Formula Bar.

In MATLAB, a variable is associated a name to make things rather
more easy and convenient. The name can be any sequence of char-
acters you like in MATLAB, regardless of whether it is a real or fake
word, as long as it does not contain numbers or special characters or
spaces. So actually, you are only left with continuous sequences of
letters (otherwise knows as ’words’). But you can also create a vari-
able name based on 2 (or more) words, separated by an underscore
(_). Valid variable names include:

A

B

cat

derpyhooves

this_is_boring_stuff

BIG

big10 10 Note that MATLAB distinguishes
between lower and UPPER case letters
in a variable (i.e. BIG and big would
represent two different and distinct
variables). I would strongly advise to
stick to all lower case, or all upper case,
to avoid possible future confusion. (or
come up with a naming convention, of
whatever sort (e.g. capital first letter),
and stick to it.)

Variables are entirely useless unless they have some information
assigned to them. In fact, you can type in any of the variable names
above (at the command line) and MATLAB will deny it knows what
you are talking about11.

11 Technically, MATLAB reports:
Undefined function or variable

which tells you it is neither a func-
tion name (more on this later), nor is
defined as having any information
associated with it.

So far so useless – you need to assign something to it. (When you
first open an Excel spreadsheet and it is completely blank – you can
still reference cell A1, but there is nothing in it.) Which brings us to
quite ’what’ and ’how’. First of, you need to know that variables can
have the following types of things assigned to them:

• Integer – An integer number is a counting number, i.e. 1, 2,

3, ... and including zero and negative integers. MATLAB has
different representations for integer numbers, depending on how
large a number you need to represent (and how much memory it
will need to allocated to storing it). This is something of a throw-
back to the days when computers only had 1/10000000th of the
memory of your iPhone and were slower than half a lemon nailed
to the floor.

• Real (floating point)12 – A real number can have a non-integer 12 The distinction (sort of) is that floating
point is a specific representation of a
real number.

elements of ... matlab and data visualization 25

component, e.g. 1.5 or 6.022140857 × 1023. Real numbers also
come in different precisions in MATLAB (also to do with memory
allocation and speed), determining not just the number of decimal
places that can be represented, but also the maximum size.

• String (character) – One or more characters, but now allowing
spaces (unlike in the case of naming variables).

• Logical – the variable can be true or false13 – we’ll come to 13 As opposed to a Trump variable, that
can have many different alternative
states of ’true’, although generally, a
Trump ’true’ is in fact ’false’. An entire
new branch of mathematics and logical
deduction has been created just to
process al this.

quite what this means later.

• etc – No, not a real type, but to note that MATLAB defines
and recognises a whole bunch of other types, including Complex
(MATLAB can handle complex numbers) and Object (we will also
not worry about objects, which can incorporate a combination of
types. At least, not yet ...). The MATLAB documentation contains
a full list (and/or go Internet Fishing).

To come back to Excel – if you select Format Cells (right-mouse-
button-click over cell A1), you get to chose from a long list of ’for-
mats’, including Number and Text, and which have a loose correspon-
dence with types in MATLAB.

The next thing to learn is ... to ideally, not attempt to mix up (com-
bine) variables of different types. MATLAB is very forgiving when
it comes to combining an integer and a real number in the same cal-
culation, but in some other programming languages, this should be
avoided. However, even in MATLAB, strings and reals (or integers) are
very different things.14 When necessary, different variable types can

14 Again – in the Excel example, Excel
will not let you add a Number and a
Text value together, for instance. (Try it!
You should see #VALUE! reported.)

be converted between (see Variable Type Conversion Box).

Variable Type Conversion
MATLAB provides a variety of

functions (see later) for converting
between different types of variables.
The most commonly-used/useful
ones are as follows:

1. converting from a number to a
string (s)

• s = num2str(N), where N is
any number type variable

• s = int2str(I), where I is
an integer

2. converting from a string (s) to a
number

• x = str2num(s), where N is
(generally) a double precision
(real) number

Case #1 (num2str) is generally the
most useful, e.g. in adding specific
captions to plots (with caption text
based on the value of a numerical
variable) – examples are given later.

The second and perhaps rather more important thing, is how to
assign a value to a variable (and in fact, create the variable in the
first place). Programming languages such as FORTRAN require you
to define the variable beforehand and assign it a type.15 MATLAB

15 Partially true. An Alternative Fact of
sorts.

allows you to define and assign a value to a variable all at the same
time, and it will kindly work out the correct type based on the value
you assign to it. You assign a value using the assignment operator
=16. For example:

16 This is NOT ’equals’ in MATLAB.
Or any sane programming language.
We will see the equality operator shortly.
= assigns the value or variable on its
right, to the variable on the left.

A = 10

will assign the value 10 to the variable A. If you type this at the com-
mand line, MATLAB will kindly repeat what you have just told it
and report the value of A back to you directly under the line you
typed the command in at:

A =

10

Note that you do not need to add a space before and/or after the as-
signment operator (=). This is something of a personal programming

26 str = ’do you like bananas?’

and aesthetics preference, i.e. whether to pad things out with spaces
or not. (Chose what you feel happiest with and later on, whatever
leads to the fewest programming mistakes ...)

Pause ... this is sort of fundamental (to using MATLAB), what
you have just done here. It is the equivalent of typing ’10’ into the
cell A1 in Excel (assuming we can equate the Excel location A1 with
the MATLAB variable A). In doing this, you have both: (a) created a
variable A, and (b) assigned it a value of 10.

MATLAB will also report in the Workspace window, the name and
value, type (unhelpfully called Class), etc of all your current variables
(just one currently?). Actually, it is not all quite so simple. If you
take a look at the Class of the variable A in the display window – it is
listed as double (a real number) rather than an integer. So by default,
if MATLAB does not know what you really want, it defines A as a
double precision real number17. 17 If you genuinely wanted an integer,

there are ways to do this, such as using
a type conversion function form real to
integer (see above).

Pausing again – if you want to remind yourself of the variables
that you (or a program) have created – you can refer to the Workspace

window.18 Also lister here is its value (and type etc). Another way 18 There is a command line command
for listing current variables (whos), but
lets not bother with it.

to access the value of a variable, is to simply type in its name at the
command line:

» A

A =

10

The next complication comes when assigning a string (a sequence
of characters) to a variable. For example, try:

B = apple

and MATLAB is far from happy. As it turns out, a sequence of char-
acters can also refer to a function19 in MATLAB, and this is what 19 You will see functions shortly. For now

– note that they are ’special’ (reserved)
words that perform some action and
hence cannot also be used for a variable
name.

MATLAB looks for (i.e. a match to apple in the list or variable (and
function) names). In other words, MATLAB does not know whether
you intend apple to be a string or a function. It assumes function ...
but cannot find one with that name. To delineate apple as a string,
you need to encase it in (single20) quotation marks: 20 Double "" quotation marks will not

work.
B = ’apple’

Just as MATLAB creates new variables on the fly, you can re-
assigned values to an existing variable, even if this means changing
the type, e.g.

A = ’banana’

has now replaced the real number 10 with the character string ba-
nana in variable A. This is reflected in the updated variable list details
given in the Workspace window (and a Class now listed as char).21 21 Equally in Excel, you can simply type

over a pre-existing value to replace it.
e.g. you could type banana over the
contents of cell A1 (that previous held
the number 10).

elements of ... matlab and data visualization 27

Finally, it is possible to suppress output to the Command Window

when making variable assignments – simply add a semi-colon (;) to
the end of the assignment statement22, i.e. 22 Again – your personal choice as

to whether to include spaces or not
between the C, =, ’banana’, and ;

(Maybe try it both ways to convince
yourself at least in this context, spaces
do not matter.)

C = ’banana’;

now does not results in anything being echoed to the command line
(but the Workspace is still updated to reflect this variable assignment).

1.2.2 Numerical expressions and Arithmetic operators

You can do normal maths in MATLAB. Or at least, something that
looks at least a little intuitive. (In fact, I often use MATLAB as a
calculator.) The primary/common numerical expressions are:

• exponentiation — ∧ — raises one number of variable to the
power of a second, e.g. ab, a to the power b, which is written in
MATLAB as a∧b.
• multiplication — × — e.g. a×b, written in MATLAB as a∗b.
• division — / — (written as you would expect).23 23 Entertainingly, it turns out that if you

write the reverse, backslash character
(\) in the equation, you divide the
over way (i.e. denominator divided by
numerator).

• addition — + — (guess).
• subtraction — - — again, obvious/intuitive.

These symbols are called (arithmetic) operators.
The order in which the arithmetic operators are written down is

important and will execute them in a specific order (operators higher
up the list, executed first), i.e. first ^, then ∗,/, and last +,-. There
is also negation, when you change the sign of a variable, and which
is executed immediately after exponentiation. The assignment oper-
ator (=)24 comes last. If you are unclear about the order numerical 24 This is NOT ’equals to’.

operators are carried out, then place parentheses () around the
component of the calculation you wish to be carried out first to
enforce a particular order (this can also help in making an equation
easier to read and ultimately, easier to debug code). For example,
consider:

A = 3;

B = 6;

C = 2;

D = C*(A/B+1)

E = C*A/(B+1)

F = C*A/B+1

G = A*C/B+1

Try these out (and make up your own combinations) and confirm
that the answers are what you would expect them to be.

28 str = ’do you like bananas?’

1.2.3 Relational and logical operators

We will see more of relational and logical operators later when we start
to get into some proper coding. For now, you only need to know that
a relational operator is one of:

• greater than — MATLAB symbol >

• less than — MATLAB symbol <

• greater than or equal to — MATLAB symbol >=
• less than or equal to — MATLAB symbol <=
• equality — MATLAB symbol ==
• inequality — MATLAB symbol ∼=

and test the relationship between 2 variables. Note in particular,
that the equality symbol (that tests the equivalence between two
variables) is represented by TWO = characters (==), and remember
that a single = character is the assignment operator.

In everyday language, the answer to any one of these relational
tests would be a ’yes’ or a ’no’. But in MATLAB (and other computer
languages), the answer is given as the binary (logical) equivalent
where ’yes’ is represented by 1 and ’no’ by 0. You can also use true

(1) and false (0), e.g. A = true returns:

A =

1

Finally, the logical operators (again, more on this later) are:

• or — symbol ||
• and — symbol &&
• not — symbol ∼

For now – simply keep mind the existence of relational and logical
operators and what they look like and we’ll look into them some more
later.

1.2.4 Functions (built-in)

MATLAB provides numerous built-in functions25. These functions 25 We will be constructing our own
later, at which point it should become
apparent that there is nothing particular
special about them.

have specific names assigned to them, so care needs to be take not to
give a variable the same name as a function to avoid getting confused
further down the road. Giving an exhaustive list (and brief descrip-
tion) is outside the scope of this document26. Common functions will 26 A full list of functions can be found

in the MATLAB Help Documentation
under functions.

be progressively introduced as this text progress. Note that in addi-
tion to the on-line Help documentation, information on how to use a
function and example uses is provided by typing help and then the
function name (separated by a space) at the command line.

elements of ... matlab and data visualization 29

MATLAB also provides several built-in mathematical constants
(saving having to define a variable with the appropriate number).
This are simply variables that have been already defined and as-
signed values, but which you cannot change (hence the term ’con-
stant’). For instance, the value of π, is assigned to a built-in variable
with the name pi. You can access (display) its value by typing its
name at the command line:

» pi

ans =

3.1416

In this example, the use of the function is rather trivial – you need
to tell the pi absolutely nothing, and it spits back the same thing
(the value of π) each and every time. In most other functions, you
will find that you have to pass some information, and the return
value will depend on the input. (This will all become apparent in due
course ...)

1.2.5 Miscellaneous commands

Related to what you have seen so far and will see soon, useful miscel-
laneous commands include:

• clear — Removes all variables from the workspace.
• clear all — (Removes all information from the workspace.)
• close — Closes the current figure window.
• clear all — (Closes all figure windows.)
• exit — Exits MATLAB and hence enables an additional trip to
Starbucks to be made.

Note that a useful trick – if you want to re-use a previously used
command but don’t want to type it in all over again, or want to issue
a command very similar to a previously-used one – is to hit the UP
arrow key until the command you want appears. This can also be
edited (navigate with LEFT and RIGHT arrow keys, and use Delete

and Backspace keys to get rid of characters) if needs be. Hit Enter to
make it all happen.

For example – try assigning a value of 2.14159 to the variable
my_pie. Having noted your mistake27, correct it. Do this by bring 27 An ’alternative’ pi?

back the previous command, and editing the 2 to a 3 (and hit return).
If you refer to the Workspace window, you can see that you have
indeed successfully changed the value of my_pie.28 28 The point is that this is much quicker

than typing the entire line in again.
Although later, when we start to put
lines of code into files rather than
typing everything at the command line,
fixing mistakes becomes easier.

Note that there is also a Command History window that list all the
previously issued commands and allows commands to be re-run
by double-clicking on them. Copy-paste and re-running of single or
multiple commands is also possible.

30 str = ’do you like bananas?’

1.3 Vectors and arrays #1

So far, most of your variables have all be what are known as scalars
– i.e. single numbers (real or integer)29. One of the most powerful 29 An exception are when you assigned

a string, which technically is a vector
(assuming multiple characters in the
string)

things about MATLAB is its ability to represent vectors (1D columns
or rows of numbers or strings) and arrays – 2D and higher dimen-
sional regular grids of numbers or strings. (matrix30 is the name 30 Not to be confused with the film

containing bad acting by Keanu Reeves.commonly given to a 2-D array.)

1.3.1 Creating vectors The colon operator can be used to
much more rapidy create vectors (as
long as the elements form a simple
sequence in value) as compared to
typing in the list of values explicitly.
There are two variants to the syntax:

A = j:k

and

A = j:i:k

In the first example, j and k and
the minimum and maximum values
in the sequence of numbers in the
vector. MATLAB completes the se-
quence by assuming that the values
monotonically increase and that the
elements are separated by one (1.0)
in value. e.g.

» A = 0:3

A =

0 1 2 3

Note that MATLAB is not inclined
to let you directly create a vector
of elements that decrease in value
(you’ll need to flip this puppy about
to re-order it if that is what you want
– see later).

In the second example, i is the
increment MATLAB will use to
complete the sequence from j to k.
In the example in the text, you could
have created the array B by typing:

» B = 0.5:0.5:2.5

B =

0.5000 1.0000 1.5000

2.0000 2.5000

(More commonly, you might
place the colon operator and its
min/(/increment)/max values
inside a pair of brackets, i.e. A =

[0:3]. so that it is unambiguous
that you are creating an array

Vectors are 1-D arrangements of numbers (or characters or strings).
You can enter them into MATLAB as a list of space-separated value,
encased in (square) brackets, [], e.g.

B = [0.5 1.0 1.5 2.0 2.5]

or with the value comma-separated:

B = [0.5, 1.0, 1.5, 2.0, 2.5]

Either way, you end up with a vector on its side as a single row of
numbers which in math-speak would look like:

B =
(

0.5 1.0 1.5 2.0 2.5
)

You can also create the equivalent, upright orientated vector (as
a single column of numbers) by separating the elements by a semi-
colon:

C = [0.5; 1.0; 1.5; 2.0; 2.5]

which gives the maths-speak representation:

C =










0.5
1.0
1.5
2.0
2.5










You might ponder on (or even try out) how you would create
equivalent arrangements of numbers in an Excel sheet. From here
on, it will rapidly become apparent why you would not want to be
doing all this in Excel, although it remains a presumably familiar
place to start from and makes links to the weirdness of MATLAB
from.31

31 As such, I encourage you to still think
in Excel world as far as possible for a
little while yet, because I think it will
help get to grips with MATLAB array
notation more quickly. And indeed,
MATLAB has a very Excel-like array
editor window to help bridge the gap.

elements of ... matlab and data visualization 31

1.3.2 Basic vector manipulation

There are several basic and very useful ways of manipulating vectors
(and as we’ll see later – matrices). To start with, you might want to
determine the orientation and length of a vector. There are several
different ways to go about this, which in order of grown-up-ness are:

1. Display the contents of the vector in the command window by
typing its name at the command line. Obviously, this will quickly
become useless for very large vectors32. 32 Try creating a vector from 1 to 100,000

and then displaying it ...2. Refer to the Workspace window, – initially, the contents of the
vector are displayed (under column Value) and you have to count,
but after a certain point, the size (and not contents) of the vector is
displayed.
3. Use the length or size function (see Box).
4. Refer to the Workspace window ... but ... by default, the Size of
variables is not one of the displayed columns (instead, it has to
be added from Choose Columns right-mouse-button-click menu
item)33.

33 Although as per above – the size is
displayed under Value for a sufficiently
large vector.

length

You can determine the length of a
vector A with ...

length(A)

returning its integer length, and
which could in turn be assigned to a
variable, e.g. B = length(A). (Tech-
nically, length returns the largest
dimension of an array.)

size (use #1)
Returns both dimensions, even

though for a vector, one of them
always has a value of 1. This does
allow you to determine its orienta-
tion though, as for the example of A
= [1:10]:

» size(A)

ans =

1 10

(1 row and 10 columns). For A = A’:

» size(A)

ans =

10 1

(10 rows and 1 column).

If you find that you want a different orientation (row vs. column)
of the a vector, the vector can be flipped around (converting row-to-
column and column-to-row) using the transpose operator (.’), e.g.:

D = B.’

will turn the vector B into one (assigned to the variable D) with he
same orientation as C. 34 You can also use the transpose function.

34 Note ... MATLAB gives the syntax as
.’, whereas I always only ever added
the ’ bit ... which works ...

You can also re-order the values in a vector (hence addressing
the restriction in using the colon operator to create a vector that the
values must be monotonically increasing rather than decreasing).
Depending on the orientation of the vector, you can use either the
flipud (for column vectors), or fliplr (for row vectors) functions to
re-order the elements.

flipud, fliplr
These two functions allow you to

re-order a vector. Their use is simple:

» B = flipud(A)

will invert the order of elements of a
column vector, and:

» B = fliplr(A)

will invert the order of elements of a
raw vector. Simples! Lesson over.

1.3.3 Addressing elements in vectors

This next bit is maybe the single most important (and weird) part
of MATLAB. As you go through this section (and also the later one
on matrices) – have Excel open as a aid to visualize how MALTAB
represents arrays. Start by entering the 5 numbers, from 0.5 to 2.5, in
sequential cells, working down from A1 (this is the MATLAB vector B
in the example that follows).

Values can be extracted (or read) from a vector by specifying the
index (technically, this should be an integer, but MATLAB is pretty
forgiving and you can get away with using a real (number) when

32 str = ’do you like bananas?’

specifying an index) of the element required (counting along, left-to-
right, or top-to-bottom, depending on the vector orientation), e.g.

» B(5)

ans =

2.5000

or:

» C(3)

ans =

1.5000

The transpose operator, in MAT-
LAB-speak, "returns the nonconjugate
transpose of A". Who knows what
that means. In slightly more ev-
eryday (i.e. down here on Earth)
language, it: "interchanges the row
and column index for each element".
Or sort of, just interchanges the rows
and columns. The operation can be
written:

» B = A.’

or

» B = transpose(A)

In practice, you can get away with
being lazy (and in fact this is how it
was in the old days, and just write):

» B = A’

(but get into the habit of using the
formally correct, Mathworks official
and UN-approved, syntax of .’).

(In this text, I will refer to accessing a particular element (or ele-
ments) of a vector (or array) via its index as addressing. Unless I for-
get, then I might say something else. You’ll have to keep on your toes
– don’t expect consistency here!)35

35 Recognise the parallel with Excel
here – the value in position 5 in the
MATLAB vector B, is the same as
specifying the contents of cell A5 in
Excel.

There is a MATLAB function end (see Box) that enables you to
easily address (accessing via its index) the very last value in a vector
(in MATLAB, the index of the first position is always 1).

For addressing more than one element of a vector at a time, you
can use the colon operator (see Box). 36

36 Again – e.g. in Excel, the sum of the
5 elements in column A (the equivalent
’vector’), would be =SUM(A1:A5).

As well as reading out an existing value of a vector, you can also
replace an existing value by assigning the new value to the appro-
priate index position. e.g. to replace the first element with a value of
0.0:

B(1) = 0.0

(Here, you are saying that you would like to assign the value of 0.5
to the element in the vector given by the index 1. The previous con-
tent of the array at index position 1 is simply over-written.)

You can access more than a single
element of a vector at a time, by
means of the colon operator, : to
define a min, max range of indices.
For example:

» B(2:4)

ans =

1.0000

1.5000

2.0000

To select all elements:

» B(:)

ans =

0.5000

1.0000

1.5000

2.0000

2.5000

end

Represents the largest index in
a vector when addressing it, or in
MATLAB-speak: "end can ... serve
as the last index in an indexing
expression".

elements of ... matlab and data visualization 33

1.4 Basic graphing (aka. ’data visualization’)

So far ... I suspect this is heavy-going and there is a lot to try and
remember, such as command names, although knowing just that
certain commands exist, is enough to start with and MATLAB Help
can be used later to find out the exact name (and usage syntax). All
this, and we have not even gotten on to matrices (2-D arrays) yet ... So,
we’ll take a diversion to look at some basic plotting techniques that
will make sense now that you can create vectors of numbers to plot
(and later, important some ’real’ data). Unless you have forgotten
how to create vectors already ... :(

1.4.1 Plotting

First – create yourself a dummy dataset to plot. You are going to
need to create yourself a pair of vectors – these can have any values
(all numbers though) in them that you like, but perhaps aim for 1
vector with values counting up from 1 to 10 (or similar) – this will
form your x-axis, and the 2nd column ... whatever you like. 37 The

37 Looking ahead – you could create a
y-axis vector formed of the squares of
the numbers in the x-axis vector:

» Y = X.∧2

(The .∧ bit says to square the value of
each and every element in the vector.)

command figure creates a figure window, which is where MATLAB
displays its graphical output ... but on its own, without anything in
it ... useless. So, lets put something in it, with the simplest possible
graphical way of displaying data called plot.

plot

The MATLAB function plot ...
plots. More specifically, it plots pairs
of (x,y) data and by default, does not
plot the points explicitly but joins
the(x,y) locations up by straight line
segments. MATLAB calls these a
’2D line plot’, although there are
plotting options that allow you only
to display the individual (x,y) points
(making it like the scatter function,
which we’ll see later).

Its most basic usage is:

plot(X,Y)

where X and Y are vectors – of the
same length (important), but not
necessarily of the same orientation
(i.e. if one was a row vector and
one a column vector, MATLAB
would work it out, although it is per-
haps best to avoid such a situation
arising).

There are many options that go
with this function, some of which
we’ll see and use later. You can also
input matrixes as X and Y apparently.
But I have absolutely no clue as to
what might happen. I suspect that
the plot will end up looking like a
bad acid trip.

With any new MATLAB command (function), get into the habit
of looking up the help text (also refer to alternative/simplified help
provided in this text). The key information that will get you started
appears at the very top of the text that help returns on plot:

PLOT(X,Y) plots vector Y versus vector X.

This tells you that you need to pass to plot, your x-axis data vector
(by its variable name), followed by your y-axis data vector (by its
variable name) – comma separated. Do this, and depending on just
what or how random your y-axis data was, you should end up with
something like Figure 1.1 in a window captioned "Figure 1".38

38 If you cannot see the figure window
... check that the window is not hidden
behind the main MATLAB program
window!

This ... is easily the least professional plot ever (aside from any-
thing at all created in Excel). And one that breaks all the most basic
rules of scientific presentation, such as an absence of any labelling
of axes. There is also no title, although here in the course text I have
added a figure caption in the document so I can sort of get away with
it. This is the default output of the basic plot function and you’ll just
have to deal with it (i.e. add a series of commands to add missing
elements of the plot).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 1.1: Example of the default
output of the plot function.

Note that by default, MATLAB also scales both axes to reasonably
closely match the range of values in the two data vectors. In the

34 str = ’do you like bananas?’

example here, the default min and max axes limits in fact turn out to
be the min and max values in the x and y-axis data because the data
is composed of relatively simply/whole numbers. If however the
maximum y value was very slightly larger, you’d see that MATLAB
would adjust the maximum y-axis limit to the next convenient value
so as to preserve a relatively simple series of labelled tick marks in
the axis scale. In fact, why not try that – replace your maximum data
value, with a value that is very slightly larger (an example is given in
Figure 1.2). 39 Then re-plot and note how it has changed (if at all – it

39 If you have created a dummy dataset
in which the value in the last row is
the largest, replacing it is simple –
remember the use of end in addressing
an element in an array. If your dataset
does not monotonically increase and
the largest value falls somewhere in the
middle ... you could cheat’ and open
the array in the variable editor and
discover which row it occurs on.

will depend somewhat on what data you invented in the first place).

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

Figure 1.2: A plot illustrating axis
auto-scaling (maximum x and y values
now slightly larger than 10 and 100,
respectively).

1.4.2 Graph labelling

You have two options for editing the figure and e.g. adding axis
labels. Firstly, you can use the GUI and the series of menu items
and icons at the top of the Figure window to manipulate the figure.
I suspect you’ll prefer this ... but it is not very flexible, or rather, it
requires your input each and every time you want to make changes
or additions to a figure. The second possibility is to issue a series
of MATLAB commands at the command line. (The advantage with
the latter we’ll see later when we introduce m-files.) For now, I’ll
illustrate a few basic commands:

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Whatever values

W
ha

te
ve

r
va

lu
es

 s
qu

ar
ed

A plot of some values vs. their squares

Figure 1.3: A (only very slightly)
improved plot.

1. The first, obvious thing to do is to add axis labels. The com-
mands are simple – xlabel and ylabel. They each take a string as
an input, which is the text you would like to appear on the axis. If
you change your mind, simply re-issue the command with the text
you would like instead.
2. The command for title, perhaps unsurprisingly, is title. Again,
pass the test you would like to appear as a string (in inverted
commas ”), or pass a the name of variable that contains a string
(no ’’ then needed).
3. You might want to specify the axis limits. The command is
axis and it takes a vector of 4 values as its input – in order: min-
imum x, maximum x, minimum y, and maximum y value. e.g.
axis([0 10 -100 100]) would specify an x-axis running from 0 to
10, and a y-axis from -100 to 100.

Information as to how to use all of these commands can be found
via MATLAB help. But a typical sequence, that gives rise to the
improved plot shown in Figure 1.3, is given in the margin.

Example of adding axis labels and a
plot title ...

» xlabel ...

(’Whatever values’);

» ylabel ...

(’Whatever values ...

squared’);

» title ...

(’A plot of some ...

values vs. their ...

squares’);

Note that in the usage of all the above listed commands, they all
require something to be passed within a set of parentheses – (). In
fact, they are all MATLAB functions and require an input (hence the
use of the parentheses). Some of the functions require a string input,

elements of ... matlab and data visualization 35

such as the name of the title in title, and this must be encased in
quotation marks – ’ ’ to designate it a string rather than a variable
name.40 40 You could instead assign a string to a

variable, and then pass the variable name
(no quotation marks).

1.4.3 Sub-plots

You can also have more than one plot in a single Figure window. As
an example, create some sine waves using the sin function (see help)
over the range 0 < x < 2π, e.g.:

» x = 0:0.1:2*pi;

» y = sin(x);

» y2 = sin(2*x);

(Note how in the first line, the colon operator is used to create an x
vector from 0 to 2π, in steps of 0.1. The second and third lines cal-
culate the sine of all the x values, and sine of 2 times the x values,
respectively, and assign the results to a pair of new vectors, y and y2.)

axis

For once, helpfully, MATLAB says:
"axis([xmin xmax ymin ymax])

sets the limits for the x- and y-axis of the
current axes."
which is about all you need to
know (other than the minimum and
maximum limits along the x-axis
are represented by xmin, xmax, and
the minimum and maximum limits
along the y-axis are ymin, ymax).

To place several different plots on the same figure uses the subplot

command 41. The subplot command is used as: subplot(m,n,p) 41 » help subplot

where m is the number of rows of plots you want to have in your
figure, n is the number of columns of plots in your figure, and p is
the index of the plot you wish to create (see: Figure 1.4).

Figure 1.4: Arrangement of subplots.

The basic code then goes something like:

» figure(1);

» subplot(2,2,1);

» plot(x,y);

» subplot(2,2,2);

» plot(x,y2);

» subplot(2,2,3);

» plot(x,-y);

» subplot(2,2,4);

» plot(x,-y2);

In this case, the 3rd and 4th subplots simply display the inverse of
the curves in the subplots above.

1.4.4 Saving graphics and figures

You might just want to save the figure. (Why create it in the first
place in fact if you are just going to throw it away ... ?) Again, you
can do this via the GUI or at the command line 42. From the GUI,

42 To export a graphic at the command
line, use the print function. To cut a
long story short (see: help print), to
print to a postscript file:
print(’-dpsc2’, FILENAME)

where FILENAME is the filename as a
string or a variable containing a string.

you have the option to save the figure in a way that can be loaded
later and re-edited – this is the .fig format option. Or you can save
(export) in a variety of common graphics formats (although once
saved in this format, the graphics can only be edited later using a
graphics package).

36 str = ’do you like bananas?’

You can also close figure windows (see Box). No seriously. They are
not forever. ;)

To close the current (active) Figure
window, the command is:
» close

To close all currently open Figure
windows:
» close all

elements of ... matlab and data visualization 37

1.5 Vectors and arrays #2

A matrix is another special case of an array – this time 2-D (rather
than 1-D in the case of a vector). MATLAB totally hearts them.

1.5.1 Creating matrices and arrays

You can enter matrices (2-D arrays) into MATLAB in several different
ways:

1. Enter an explicit list of elements. To enter the elements of a
matrix, there are only a few basic conventions:

• Separate the elements of a row with blanks or commas.
• Use a semicolon, ; , to indicate the end of each row.
• Surround the entire list of elements with brackets, [].

2. Load matrices from external data files.
3. Generate matrices using built-in functions.

As an example, type in the following at the command prompt:

A = [15 7 11 6; 13 1 6 10; 21 17 5 3; 5 15 20 9]

MATLAB then displays the matrix you just entered43: 43 Remember that you can add an ;

to the end of the line to prevent the
results of the variable assignment being
displayed in the Command Window.

A =

15 7 11 6

13 1 6 10

21 17 5 3

5 15 20 9

In math-speak, this would be equivalent to:

A =








15 7 11 6
13 1 6 10
21 17 5 3
5 15 20 9








Once you have entered the matrix, it is automatically remembered in
the MATLAB workspace. You can refer to it simply as A.

Now go find the array you have just created in the Workspace win-

dow. Double-click on its name icon and see what goodies appear on
the screen. This is a fancy array editor which looks a bit like one of
those dreadful Excel spreadsheet things. You can see that this might
be handy to edit, view, and keep track of at least moderate quantities
of data. This is a useful facility to have. However, we are going to
concentrate on the command-line operation of MATLAB in this class
because that will give you far more power and flexibility in applying
numerical techniques to problem solving, and will form the basis

38 str = ’do you like bananas?’

of scripting (computer programming by another name) that we will
see in a few lectures time. Close down this nice toy to leave just the
original windows.

Elements in the matrix can be addressed using the syntax:

A(i,j)

where i is the row number, and j is the column number. It is very
very easy to keep forgetting in which order the rows and columns are
indexed., but I’ll tell you here and now before I forget:

rows, columns

(You can always create a test matrix and access a specific element to
check if in doubt!) In the example above:

» A(1,3)

ans =

11

(i.e. the value of the element in the 1st row, 3rd column, is 11).
In general, the same functions and operators that applied to vectors

and you saw earlier, also apply to matrixes (or specific dimensions of
matrices).

Similarly as for vectors, you can
access more than a single element
of a matrix by means of the colon

operator, :. For example:
A(:,1) – selects the 1st column
A(3,:) – selects the 3rd row
A(2:3,2:3) – selects the 2×2 ma-

trix of values lying in the centre of A,
while A(1:2,:) selects the top half
(first 2 rows) of the matrix.

Finally – a fundamental way of accessing data that you need to
learn and be familiar with, is to employ the colon operator to select
specific columns (or rows) of data. You’ll find that this skill ends up
inherent to many of your attempts to process and graph data. For
instance, if your (x,y) data to plot ended up in MATLAB workspace
in matrix form (it very commonly does) rather than as 2 sperate vec-
tors (as you had when you first plotted anything), you will need to
select separately the x (e.g. 1st column) data, and the y (2nd column)
data, and pass these to the plot function. For the example of matrix
A above, all the first column data can be selected by typing A(:,1)44, 44 Remembering the HUGE hint above

in 100 pt font as to the order of rows
and columns ...

which says all the rows (:) in the first column. Similarly, all the 2nd
column data alone can be selected by A(:,2). (You’ll practice this
endlessly later on and hopefully get it!) You can also determine the shape of

your array using the size function.
For a 2D array (matrix), when you
pass it the name of your array, it
returns the number of rows followed
by the number of columns (in that
order).

1.5.2 Basic matrix manipulation

You can treat vectors and matrices (or parts of vectors and matrices),
mathematically, as you would treat single values (i.e. scalars) but
unlike a scalar, the transformation is applied to all specified elements
of the array. This applies for all the basic arithmetic operators45. For 45 Technically ... or at least to be consis-

tent with other operations, you might
write multiplication as .* rather than
just plain old *. The preceding dot tells
MATLAB not to treat this as matrix
multiplication but to carry out the
operation on each element in turn. In
this case, it is the same thing (and both
notations work the same), but later, is
not. (This will make more sense when
you get to see it in action, later.)

example, for vector B in the earlier example,

» 2*B

ans =

elements of ... matlab and data visualization 39

0 2 3 4 5

and

» B-1.5

ans =

-1.5000 -0.5000 0 0.5000 1.0000

Question: Multiply all the elements of A by the number 17. As-
sign the answer to a 3rd array (C). What is the value of the element
C(2,3)? How would you ask for the 4th row, 2nd column element of
the array C, and what is its value?

Question: What is the sum of the 4th column of C ? (Sure – you

The function sum ... sums things. The
MATLAB Help documentation (help
sum) says:

’If A is a vector, sum(A)

returns the sum of the

elements.’
’If A is a matrix, sum(A)

treats the columns of A as

vectors, returning a row vector

of the sums of each column.’

also do it by using a calculator, but you will not always have such a
small data-set as here. Perhaps you’ll get a much larger data-set in
the assessed exercise ;) So, practice doing it properly.) The MATLAB
function for this is sum.

Question: What is the sum of the 2nd row of C? For a matrix (rather
than a vector) as input, sum returns the individual sums of each col-
umn, and so on its own;

» C

C =

255 119 187 102

221 17 102 170

357 289 85 51

85 255 340 153

» sum(C)

ans =

918 680 714 476

gives you a row vector consisting of the sums of the individual
columns of the matrix C above.

This is where the transpose function (’) comes in handy (see
earlier). In this case, it flips a (2D) matrix around its leading diagonal
(columns become rows, and rows, columns)46 .

46 This is almost true. Technically the
function you want is .’, as ’ will
change the sign of any imaginary
components. For real numbers, they are
the same.

In addition to transpose, other
useful array manipulation functions
include:
flipup – flips the matrix in the
up/down direction
fliplr – flips the matrix in the
left/right direction
rotate – rotates the matrix
(As always, refer to the help on
specific functions.)

» C’

ans =

255 221 357 85

119 17 289 255

187 102 85 340

102 170 51 153

(transposing the matrix turns the rows into columns)

» sum(C’)

ans =

663 510 782 833

40 str = ’do you like bananas?’

Now you get a row vector consisting of the sums of the individual
columns of the matrix C, but since you have transposed the matrix C

first, these four values are actually equal to the row sums.
Finally, you could transpose the answer:

» sum(C’)’

ans =

663

510

782

833

to give you a row vector format that corresponds to the rows of the
original matrix C. 47

47 Note how you can combine multiple
functions in the same statement to create
sum(C’)’. However, to start with, it is
much safer to do each step separately
and hence be sure what you are doing.

Finally, if you wanted the sum of *all* the elements in the matrix
C in the example above, you could sum all the columns to give you
a row vector of partial sums, and then sum the elements in the row
vector to give you the grant total sum of all the elements. You can do
this, either in completely separate steps48: 48 In general in programming – use as

many smaller, separate steps as you like
and are most comfortable. The more
you break down the calculation, the
clearer it will be to you and the easier
to debug if things go wrong. However,
this does come at the expense of longer
and longer code and sometimes more
compact code is easier to deal with.

» D = sum(C);

» E = sum(D);

or all in one go:

» F = sum(sum(C));

It does not matter if you sum the column of C first, or the row first
– maybe test this to satisfy yourself that this is true.

1.5.3 Some matrix math :(

We will not concern ourselves overly with multiplying vectors and
matrices together ... but you should be aware that MATLAB can do
matrix math. For now, it is worth nothing the difference between *

and .* operators in the context of arrays. For example, consider 2
vectors, A and B:

» A = [1 1 2 2];

» B = [1 2 3 4];

To multiple the elements of A and B together pair-wise, use .*:

» C = A.*B

C =

1 2 6 8

Without the dot, you get the vector product ... well, you would if
the vectors were in an appropriate orientation, i.e.:

elements of ... matlab and data visualization 41

(
1 1 2 2

)
×








1
2
3
4








which you get by typing:

» C = A*B’

C =

17

(which is calculated from: 1 × 1 + 1 × 2 + 2 × 3 + 2 × 4).
An example of the equivalent matrix usage is:

» D = [1 1; 2 2];

» E = [1 2; 3 4];

The pair-wise multiplication of each element of the 1st matrix with
the corresponding element of the 2nd matrix is:

» F = E.*E

F =

1 4

9 16

In contrast, for matrix multiplication, written in math-speak as:
(

1 1
2 2

)

×

(
1 2
3 4

)

we would write:

» F = E*E

F =

4 6

8 12

If your matrix math is rusty and you are not following this, maybe
refresh it (your memory of basic matrix math).

42 str = ’do you like bananas?’

1.6 Loading and saving data

There are a number of different ways to load/import data into the
MATLAB Workspace. Rather than try and tediously list and describe
the commands and syntax and blah blah, we’ll be going through a
couple of (hopefully) slightly less tedious data-based examples as
we progress through the course text. In this way, if nothing else, you
might accidently learn some science even if nothing much about
MATLAB ...

1.6.1 Where am I?

Before anything – you need to know ’where you are’. If the file you
want to load in is not in the directory MATLAB us using, it will not
find it. And if you save something and have no idea where it is being
saved ... that can hardly go well.

MATLAB has a default directory that it starts up in and looks at
first. For basic Windoz installations49 of the software, this directory

49 At installation, this directory can be
specified and hence may not be this
one. Also – different operating systems
will have different default locations.

is:

C:\Users\mushroom\Documents\MATLAB

So, where the load command requires a filename to be passed, you
will need to enter either the full location of the file; i.e., starting with
the drive letter (e.g. as per displayed in the Windows Filemanger ad-
dress bar, or the relative path to where the file is located.

load

Loads variable from a file into the
workspace. The syntax is:

» load(filename)

where filename is the name of the
file (remember: as a string, it needs
to be enclosed in quotation marks).
The file might be plain text (ASCII)
or a MATLAB workspace file (see
below), in which case it should have
the file extension .mat. To force
MATLAB to treat the file input as
ASCII or a MATLAB workspace file,
pass a second parameter (separated
from the filename by a comma) –
’-ascii’ for ascii, and ’-mat’ for a
MATLAB workspace file.

Note that in loading an ASCII
data file, any line starting with a %

is ignored. Also note that the data
must be in a column format with no
missing data.

For an ASCII file, the name of the
variable created to hold the data
being imported is automatically gen-
erated. So in the example of the data
file being called ’twilight.txt’,
the variable generated will be called
twilight. You can instead chose
to assign the imported data to a
variable name of your choice, by e.g.:

» sparkle =

load(’twilight.txt’);

It is not necessarily to have all your files end up here, so there is a
way to change the MATLAB directory that you are working in which
work in a similar way to UNIX/LINUX for those of you who are
familiar with navigating your way around these operating systems.
You can change the directory that MATLAB is working from by
typing:

» cd DIRECTORY_PATH

where DIRECTORY_PATH is the path to the directory in which you want
to work from and where you want your data files (and later, code
files) to live.

Another alternative is to add a ’search path’ (addpath) so that
MATLAB knows of an additional place to look for files.

The command addpath will add
a search path to the MATLAB
workspace. e.g.
addpath DIRECTORY_PATH where

DIRECTORY_PATH is a string (charac-
ters in between inverted commas)
or name of a variable containing a
string.

There is also, of course, the GUI – from the File menu the op-
tion Import Data... will run the data import Wizard – note that you
might have to select All Files (*.*) from the file type option box
in order to find the file. I’ll leave you to work the rest out for your-
selves ... Maybe try importing the data into MATLAB this way once
you have done it successfully using the load function at the com-
mand line. The GUI can also be used to change the directory you

elements of ... matlab and data visualization 43

are working from (duplicating the functionality of the cd command)
and add paths to search (duplicating the functionality of the addpath

command).
In summary: go with whatever works best for you in terms of

working directory. Easiest might be simply to work directly from a
directory on your USB pen-drive (and e.g. have a named different
directory for each week of class).

1.6.2 Loading and importing data

The simplest way (other than via the MATLAB GUI and the beautiful
green Import Data icon) is to use the load function (see Box)50. 50 There is also a much more flexible

way of loading text-based data using
the function textscan, but that also
requires files to be explicitly opened
and closed using fprintf. We’ll see a
little of this later.

As a brief exercise and practice using load – first download the
data file etheridge_etal_1996.txt from the course webpage51. You

51 http://www.seao2.info/teaching.html

might start by viewing the contents of the file by opening it in any
text viewer (or Excel52). This is always a good place to start as it

52 In fact, you could even try first
plotting it in Excel.

enables you to see what you are getting yourself in to (i.e. format
of the file, any potential formatting issues, approximate size and
complexity of the dataset, etc).

Now, import the data into the MATLAB workspace using the load

command. Because the data is a plan text (ASCII) format and not a
special MATLAB .mat file, you need to specify the format as ’ascii’:

» load(’etheridge_etal_1996.txt’,’-ascii’);

Try simply typing the name of the variable that was automatically
created (etheridge_etal_1996) (or the one you chose if you assigned
the imported data to a specific variable name as per detailed in the
Box) to provide a crude view of the data. To view the contents of
the variable in the Variables window – double click on the name of the
variable in the MATLAB Workspace window. This should open up a
spreadsheet-like window in which the data can be viewed, sorted,
and even edited.

For practice, you can try plotting the data53, remembering to label

53 using plot

the figure appropriately54. However, if you just type plot and pass

54 FYI: the first column of the data and
x-axis is year, and the 2nd column of
the data and y-axis is the mixing ratio
of CO2 in air in units of ppm.

the (here: default) name of the data array:

» plot(etheridge_etal_1996);

0 50 100 150
200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 1.5: Result of simply throwing
the entire data matrix at plot

... strange ... things are happening (as per Figure 1.5). In fact,
MATLAB is doing what Excel would in a Line Chart with 2 columns
of data selected – rather than plot y (2nd column) vs. x (1st column),
the values of both columns are plotted against row number.55

55 And this is why you should remem-
ber to use the Scatter (or (X,Y)) Chart in
Excel for plotting (x,y) data.

Instead, if you remember, the format of the MATLAB plot func-
tion is:

plot(X,Y) plots vector Y versus vector X

44 str = ’do you like bananas?’

So you need to specify each column of the data (i.e. each vector)
separately and explicitly. If you recall how to specify an entire row
or column of an array, you should see that you need to type:

» plot(etheridge_etal_1996(:,1),etheridge_etal_1996(:,2));

If this is not obvious ... break it down and create sperate explicit x
and y data vector variables, e.g.

» X = etheridge_etal_1996(:,1);

» Y = etheridge_etal_1996(:,2);

» plot(X,Y);

Breaking things down like this is an equally valid way of doing
things. It is longer ... taking 3 lines rather than 1, but the most im-
portant thing is to be happy that you understand what is going on. If
breaking things down into multiple lines and creating new variables
helps – DO IT! Ultimately, you should end up with something like
Figure 1.6.

1820 1840 1860 1880 1900 1920 1940 1960 1980
Year

280

290

300

310

320

330

340

C
O

2 m
ix

in
g

ra
tio

Figure 1.6: Spline fit to measured
changes in CO2 concentration in Law
Done ice core, following Etheridge et al.
[1996].

1.6.3 Saving and exporting data

Arrays of numbers can be saved in a plain text (ASCII format) by
means of the save function in a simple reverse of the use of load
(see Box). Try re-saving the ice-core data as an ASCII format text file
(with a new filename) ... and then load it in again.

save

Saves variables from the workspace
to a file. There are two main forms
(syntaxes) of the command:

» save(filename)

which saves the entire workspace to
a .mat file (with the filename given
by the string filename (in quotation
marks), and:

» ...

save(filename,A,’-ascii’)

saves the data in the variable A

(which must be given as a string, i.e.
also enclosed in quotation marks) in
plain text (ASCII) format.

MATLAB’s proprietary file format
for saving the contents of your
current Workspace is indicated
by a .mat file name extension (in
Windoz).

1.6.4 Loading and saving the workspace

The entire workspace (including all variables and their values, or
just the values in a single variable if you wish) can be saved to a file
and then later re-opened. The file format is specific to the MATLAB
program and the file-name extension by default is .mat. You might
find this very helpful to use in long lab exercise or large modelling
projects, particularly if you do not come back to work at the exact
same computer each time or wish to use continue the same piece of
work on a laptop elsewhere. Try saving the current Workspace, then
close down the MATLAB program. Re-running it, and then loading
in your saved .mat file. 56

56 This sequence is going to look some-
thing like:

» save mystuff

» exit

...

load mystuff

Remember that when you re-start
MATLAB you may have to change
directories, add a path (addpath), or
provide a full path to the .mat file,
depending on where you saved it.

Hopefully ... all your loaded/created variables etc. have been
recovered ... ?

elements of ... matlab and data visualization 45

1.7 Basic data processing (and yet more plotting)

A couple of common basic data manipulation/processes techniques
follow, with some further plotting/visualization work tagged on.

1.7.1 Sorting data (in arrays)

As an example to kick-off some data-processing tricks, load in the
dataset of (’proxy’) reconstructed atmospheric CO2 concentrations
spanning the Phanerozoic: paleo_CO2_data.txt. You can just im-
port it into MATLAB using the load function. However, there is a
complication here – unlike the ice core CO2 dataset, you now have
4 columns in the array57. The first column is age (Ma), the second 57 Remember that you can diagnose

its size with ... size (or refer to the
Workspace window)

the mean CO2 value, and the 3d and 4th columns are the low and
high, respectively, uncertainty limits. Not forgetting in the space of 5
minutes (I hope!) how to reference specific columns of data in a ma-
trix58 – plot the mean paleo CO2 value as a function of age (in Ma). 58 HINT: the colon operator (see

earlier).If you closed the previous Figure window (see earlier), it is not essen-
tial to explicitly open one (using the Figure command) – when you
use the plot command, if there is no open Figure window, MATLAB
will kindly open one for you. How thoughtful. The result should be
something like 1.7. O dear ...

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.7: proxy reconstructed past
variability in atmospheric CO2.

So ... that was not so successful. What is happening in the default
behaviour of plot, is that the location defined by each subsequent
row of data is being joined to the previous one with a line. This was
fine for the ice-core CO2 example dataset because time progressed
monotonically in the first column, e.g. the data was ordered as a
function of time. If you view the paleo CO2 data, this is not the case.
(In fact, in the original, full version of the data, ordering is by proxy
type first, and then study citation, and only then age ...).

Your options are then:

1. You could import the data into Excel, then re-order (sort) it,
then export it, then re-load it ...
2. You could sort it in MATLAB using the GUI variable view
window. But lets not cheat for now.
3. You could sort it in MATLAB at the command line. How? Well,
a reasonable gamble, which actually turns out to be a total win, is
to try:

» help sort

Actually ... not quite. Reading the help text carefully (and you can
always try it out and see what exactly it does if you are not sure),
sort will sort all columns independently of each other, whereas
we want the first column sorted and the remaining columns linked

46 str = ’do you like bananas?’

to this order. Under see also, MATLAB lists sortrows as a possi-
bility. The help text on this looks a little more promising. It is still
slightly opaque, so the best thing to do is to try it (and view the
results)! This looks rather better. The resulting of plot-ting this
is Figure 1.8. (This is a good illustration of a guess of a function
that was not quite what was needed, but following up on the help

suggestions leads to a more appropriate function.) At least now
the curve is reminiscent of past changes in global temperature and
the geological Wilson cycle, with high values in the Cretaceous
and Jurassic and then lower again in the Carboniferous (roughly
matching the progression of ice and hot house (and then back to
recent ice ages) climates).

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.8: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

Shortly, you will see an alternative plotting function that does not
require the data to be sorted into any sort fo order. You can also use
plot, and omit the line segments by specifying only a symbol, e.g.

plot(x,y,’ro’);

(here, plotting circles for the data points in red)

1.7.2 Data scaling

For an example practicing some basic data scaling: download the
historical global temperature anomaly dataset:
temperature_globalanom.txt59.

59 NOAA

The columns are: (1) year , (2) annual mean ocean+land surface
temperature. Plot the annual mean for the full range of years, as per
Figure 1.9. (plus labels, title, etc etc).

1880 1900 1920 1940 1960 1980 2000 2020
-0.5

0

0.5

1

Year

T
em

pe
ra

tu
re

 (
de

gr
ee

s
C

)

Observed global annual mean surface temperature anomoly

Figure 1.9: Observed annual global
mean surface temperature anomaly
(compared to year 1910 to 2000 aver-
age).

The 20th century average global temperature across land and
ocean surface areas is apparently 13.9°C. So firstly, try changing the
temperature anomaly data into absolute temperatures (by adding the
20th century global average value to all the data values), and then
re-plot. 60

60 Remember – you can increase the
value of every element in an array, by
simply adding that number, e.g. if A is
you array of data, and B is a scalar (the
value you want to increase all array
values by);

» C = A + B;

will have the effect of adding B to
ever element in A, and assigning to a
new array, C. Or alternatively, you can
replace the contents of array A with the
new values:

» A = A + B;

Next, convert the temperature units (of both annual mean and
5-year mean) – from °C to °F. An approximate conversion is:

T(°F) = 1.8 × T(°C) + 32

where T(°F) is the (new) temperature in °F, and T(°C) the (old) temper-
ature in °C.

Create a new data array in MATLAB, with year as the first column
(year, as per the original data) and the 2nd column as annual mean
temperature in units of °F.61 If it helps – play the data conversion

61 Remember – MATLAB will happily
do the same to all values in an array
in an equation, as for a single scalar
value in the same equation. Start by
creating a new array with a single
column, copied form the 1st column of
the original array.

game in Excel first (e.g. creating new columns in a spreadsheet to
firstly hold absolute temperatures rather than anomalies, and then
temperatures in °F rather than °C). Also if it helps – create a new

elements of ... matlab and data visualization 47

array with the modified temperature units data in (rather than replac-
ing the 2nd column of data in the original array). You can also do the
conversion in 2 stages – multiplying the (absolute) temperature (°C)
by 1.8 first (perhaps creating a new array to hold this in), then adding
32.

Re-plot (in MATLAB) once again the final temperature trends in
°F. This should look like Figure 1.10.

1.7.3 Data (row) deletion

For some practice in data filtering (row deletion) and a little further
data manipulation and graphing: download the historical tempera-
ture dataset for Riverside:
temperature_riverside.txt62.

62 NOAA

If you view the data file in a text editor or import into Excel, you
can read the column headers and find out what the different columns
of data are (I am not telling you!). Note that the (1st) line of the file
containing the column header labels starts with a % symbol (telling
MATLAB to ignore this line and not attempt to read in the ’data’ on
it).

1880 1900 1920 1940 1960 1980 2000 2020
56

56.5

57

57.5

58

58.5

59

Year

T
em

pe
ra

tu
re

 (
de

gr
ee

s
F

)

Observed global annual mean surface temperature

Figure 1.10: Observed annual global
mean surface temperature.

%
This is a special symbol that when

MATLAB sees it, it ignore the entire
line. This is known as a comment
symbol (of identifier) and allows
you to have lines of comments in
amongst the lines of code.

Equivalently, when MATLAB
loads in a ASCII data file, any line
in which the % symbol appears,
MATLAB ignores and does not load
in. Hence, column header descrip-
tions *or any other file description
information) can be included in the
file as long as the line starts with a
%.

First create a plot (with appropriate labels) of this data.
It would be ’nice’ ... to make some direct comparison between the

observed global temperature increase and that occurring in Riverside,
e.g. to help answer questions such as ’Are temperatures increasing
faster in Riverside than the global mean?’, and hence ’Will global
warming impacts likely be worse or less severe in the Riverside area
as compared globally?’. To do this, we need both data sets – global
and for the Riverside area – to be on a comparable scale.

You could certainly simply plot both global mean and Riverside
annual mean temperatures alongside each other, using the same
units, e.g. °F as you have previously converted the global mean tem-
peratures to °F, which is the same units as the Riverside temperature
data. You could have 2 sperate plots and visually compare them, but
this is not very cleaver nor necessarily useful in making any sort of
quantitative comparison. For instance – contrast the global data (re-
scaled to absolute degrees F) in Figure 1.10, with the Riverside data,
in Figure 1.11.63

63 There are also sone odd-looking
artifacts (’spikes’) in the raw data that
we will want to deal with in some way.

There are two main problems 64 in making a useful comparison –

64 Plus artifacts in the raw data.

firstly, the two data sets are on different y-axis scales (but luckily on
the same x-axis, year scale), with the global data temperature scale
going from 56 to 59°F, and the local, Riverside temperature data scale
going from 50 to 85°F.

The limits can be specified and made common between the 2 plots
using the axis command that you saw earlier. You could, for in-

48 str = ’do you like bananas?’

stance, not worry about truncating the spurious spikes in the River-
side temperature data and set the y-axis limits for both plots to e.g.
55 to 70°F. (You are still left with comparing across 2 different plots,
which we will fix in a subsequent section by means of the command
hold on.) However, there is still an inconvenient offset between the
global mean temperature and that at Riverside.

1880 1900 1920 1940 1960 1980 2000 2020
50

55

60

65

70

75

80

85

Year

T
em

pe
ra

tu
re

 (
de

gr
ee

s
F

)

Observed annual mean temperature in Riverside

Figure 1.11: Observed annual mean
surface temperature in Riverside.

Recall that the original global temperature data was given as an
anomaly compared to the average over some baseline (or reference)
period – in this case, year 1910 to 2000. If we treated both data sets
the same, and transformed the Riverside temperature data into a
comparable anomaly, direct comparison could be made. To create
an anomaly of the Riverside temperature data, relative to the mean
of the data for years 1910 to 2000, requires the mean of the years
1910 to 2000 ... this is not difficult to do, but it better left for another
time ... For now, take it as having a value of 64.2°F. So to create an
anomaly for the Riverside temperature data, simply subtract 64.2
from the values in the annual mean data column. Finally, go back
to the original global mean anomaly values (re-load the data set if
necessary) and convert from the anomaly in °C to °F (i.e. simply
multiply by 1.8 – no offset (32°F) is required in this particular case).
If you additionally, chose and set a sensible common y-axis scale
for both plots, you might end up with a pair of graphs looking like
Figures 1.12 and 1.13. 65

65 There are all sorts of likely reasons for
the differences. Firstly, the global mean
surface temperature rise includes both
ocean surface and land surface. Because
of the higher heat capacity of the ocean,
the ocean surface warms slower than
the land, and the ocean accounts for
ca. 70% of the total global surface
area. So it is somewhat inevitable that
the warming trend will be stronger
in Riverside. It may also be that the
Riverside data is influenced by the
’urban heat island’ effect, in which
long0-term measured trends can be
affected by increasing urbanization
of the area surrounding the weather
station. It may also be that the latitude
and specific location of Riverside, sees
much more warming that the global
mean.

1880 1900 1920 1940 1960 1980 2000 2020
-5

-4

-3

-2

-1

0

1

2

3

4

5

Year

T
em

pe
ra

tu
re

 a
no

m
al

y
(d

eg
re

es
 F

)

Observed global mean temperature anomaly

Figure 1.12: Observed global annual
mean surface temperature anomaly,
relative to the mean of 1910 through
2000.

1880 1900 1920 1940 1960 1980 2000 2020
-5

-4

-3

-2

-1

0

1

2

3

4

5

Year

T
em

pe
ra

tu
re

 a
no

m
al

y
(d

eg
re

es
 F

)

Observed temperature anomaly at Riverside

Figure 1.13: Observed annual mean
surface temperature anomaly, relative
to the mean of 1910 through 2000, at
Riverside.

Finally to some data filtering (row deletion) – it was mentioned ear-
lier that there were potential ’artifacts’ in the Riverside mean annual
temperature data. If you view the loaded in data array in the Variable

viewing window (double-click on the temperature_riverside variable
name in the Workspace window), you can see for a number of years
and months, rather than numbers, ’NaN’s in the cells. NaN stands for
’Not a Number’ and indicates that there is no (valid) numerical value
for that array position (cell). The impact of there being a number of
months of data missing, is that the annual mean is no longer a true
annual mean but rather simply the mean of whatever monthly data
exists for any particular year. For example, year 2008 has no data
other than during the summer and the annual mean is hence simply
equal to the July temperatures!

One could address this by removing the years with (substantially)
incomplete monthly data from the data file66 and prior to loading

66 i.e. simply deleting the line in the file.

into MATLAB. Or would could process the data once in MATLAB.
This can be done by assigning to particular row (vector) of data, an
empty vector ([]).

Taking first a simple example of a column vector:

elements of ... matlab and data visualization 49

A =






1
2
3






from which we wish to remove the 2nd row. In MATLAB we would
create the vector by:

» A = [1; 2; 3];

and then remove the 2nd row by setting it to an empty element:

» A(2) = [];

Similarly, to remove the 2nd row of:

B =






1 4
2 5
3 6






» B = [1, 4; 2, 5; 3, 6];

» B(2,:) = [];

(instead removing e.g. the 1st column would be B(:,1) = [])
So back to the temperature data – to for example remove the row

containing the year 2008 data67, which is row 11, we write:

67 You can also delete rows (and
columns) if you open up the MAT-
LAB Array window (double-click on
the variable name in the Workspace

window). And ... edit/replace values ...

» temperature_riverside(11,:)=[];

Play this ’game’ – deleting as many row as you think result in bi-
ased means (because of missing monthly data)68, with the Riverside

68 (being aware that as you delete rows,
the numbering of the subsequent rows
changes as the array size shrinks ...)

temperature data, and re-plot the results. For example, the result
of removing ALL the rows with missing monthly data69, results in 69 (There are simple and quick ways of

doing this in MATLAB that we will see
later.)

Figure 1.14.

1880 1900 1920 1940 1960 1980 2000 2020
-4

-3

-2

-1

0

1

2

3

4

5

Year

T
em

pe
ra

tu
re

 a
no

m
al

y
(d

eg
re

es
 F

)

Observed temperature anomaly at Riverside

Figure 1.14: Observed annual mean
surface temperature anomaly, relative
to the mean of 1910 through 2000, at
Riverside, filtered to remove years with
missing monthly data.

50 str = ’do you like bananas?’

1.8 Nicer graphing

This section covers how to create slightly fancier plots in MATLAB
and combines this with some more data loading practice.

1.8.1 Modifying lines/symbols in plot

The first deviant activity you can engage in with plot, it to graph
the data without the line joining the points. Scrolling a little the way
down » help plot, it turns out that there are a number of options for
color, line style, and marker symbol that you list together as a single
parameter, straight after the parameters for x and y vectors. By de-
fault, MATLAB plots a solid line in blue with no marker points. Ob-
viously, we could forego the sorting and plot a sane graphic (hope-
fully) by plotting just points and having no line between them. Hell,
you could even be radical and use a different color ... Or, you could
specify a symbol and no line. The choice of colors is your oyster, as
they (almost don’t) say. e.g. Figure 1.15.

The main (i.e. not an exhaustive list)
data display options for the plot

function are:
(1) point style

. – point, o – circle, x – x-mark,
+ – plus, * – star, s – square, d –
diamond, v – triangle (down).

(2) line style
- – solid, : – dotted, - – dashed, and
when specifying a point style, not
specifying a line style results in no
line.

(3) color
b – blue, g – green, r – red, y –
yellow, k – black, w – white.

To use them, add a new parameter
when you call the plot function
– whereas before, you typed, for
plotting a vector y against x:

plot(x,y);

now add, following a comma, the
point and line style option, encased
in a pair of inverted commas, e.g. for
a red, dashed line:

plot(x,y,’r-’);

and for blue circles (no line):

plot(x,y,’bo’);

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.15: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

1.8.2 Plotting multiple data-sets

So far, so good. But so boring, although simple marker-only and
joined-by-line plots have their place. For a start, the original data-set
included an estimate of the uncertainty in the CO2 reconstructions
in the form of the min and max plausible value for each ’central’
(best guess?) estimate. Excel can make plots incorporating errors,
including non-symmetric errors, relatively easily. What about in
MATLAB? Actually, I have absolutely no idea. (This would make
such a good exercise for the reader, as they (do) say.)

Personally, I might have been tempted to draw vertical bars along-
side the data (most likely). Or plotted in different symbols, the min
and max values as points. Or plotted min and max lines as a bound-
ing envelope. All of these require sone further little trick in MAT-
LAB, which involves the command hold. This is nice and simple and
can be on, or off.

» hold on – will enable you to add additional elements to a
graphic,

» hold off – returns to the default in which a new graphic re-
places the current on in a Figure window.

As an example – set:

» hold on

elements of ... matlab and data visualization 51

and then plot the minimum and maximum CO2 values (columns
#3 and #4) in different symbols and different colors, on top of your
existing plot. If you want to then label what different lines or sets
of points are, you can add a legend with the legend command. For
instance you have managed to successfully plot the mean CO2 values
as discrete black circles, and the minimum and maximum uncertainty
limits as blue and red lines, respectively, you could call:

» legend(’Mean CO_2’,’Lower uncertainty limit’,’Upper uncertainty

limit’);

and it should end up looking like Figure 1.16.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Mean CO
2

Lower uncertainty limit
Upper uncertainty limit

Figure 1.16: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

Returning to the previous plotting Example of the observed historical
trend in global mean temperature vs. the temperature recorded in
Riverside – you now know how to plot BOTH temperature anomaly
trends in the same figure window (and the same panel), so try it!

1.8.3 Changing label font size (and type)

The axis and title labels, by default, can be difficult to read when the
graphics are saved and then imported into a document/paper. You
can change the size of text as you create axis captions and figure titles
etc., by specifying the value of an additional (text size) parameter in
the function. For example, to increase the size of the xaxis label to a
14pt font:

» xlabel(’Year’,’FontSize’,14);

Here – after the you have passed the string you wish ot appear to
the MATLAB xlabel function (’Year’), there is a pair of additional
parameters:

’FontSize’,14

The first additional parameter specifies the aspect of the axis label
that you wish to change (here: ’FontSize’), and the 2nd parameter
of the pair, is the (new) value (here: 14).70 Similarly, the y-axis label 70 See help on xlabel.

and title text size can be adjusted in exactly the same way.
Other property parameters71 that might be useful (to change), are 71 Again – refer to MATLAB help.

(with example changes):

’FontName’,’Courier’

’FontWeight’,’bold’

’FontAngle’,’italic’

52 str = ’do you like bananas?’

1.8.4 Scatter plots

We’ll stay with the Phanerozoic proxy (CO2) data, but put a different
(graphical) spin on it.

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 1.17: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Consider ... scatter. In fact, don’t just considered it, help on it.
The simplest possible usage is, apparently:

SCATTER(X,Y) draws the markers in the default size and color.

(where X and Y are vectors). This almost could not be more straight-
forward. Make yourself an X and Y vector out of the loaded-in dataset
(or if you are feeling brave, you can pass in directly the appropriate
parts of the dataset array), close the existing Figure window72, and 72 See earlier.

scatter-plot the (mean) CO2 data.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 1.18: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Perhaps a little disappointingly, the default (Figure 1.17) (plus
added labels) looks a little like one of the plots before. However,
scatter can plot color-filled symbols, but more powerfully, can scale
the fill color to a 3rd data value (vector), in a sort of pseudo 3D x-y-z
plot. For instance, it will be duplicating information that is already
presented (y-axis), but you could color-code the points, by the y-
value, i.e. the atmospheric CO2 value. e.g.

SCATTER(data(:,1),data(:,2),20,data(:,2))

draws the markers with an (area) size of 20 (points), in different
colors. Coloring just the outlines of the circles is perhaps not ideal
(difficult to see all of the color differences), so the circles can be filled
in instead (and you could make them a little larger too):

SCATTER(data(:,1),data(:,2),40,data(:,2),’filled’)

resulting in Figure 1.18.

1.8.5 Simple 2D data and bitmap visualization

There are 2 different simple MATLAB commands for visualizing a
2D dataset (i.e. a matrix) as a bitmap image (and via a 3rd command,
viewing various bitmap photo and image format files too). As some-
thing (2D data) to play with – load in the matrix model_grid.txt.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 1.19: A 2D plot of some random
gridded model data.

First off – as before, view the data in the array viewer, just to get a
feel for what you are dealing with here (although you are unlikely to
be much wiser after doing so). So go ahead and employ the pcolor

function in its simplest possible usage (see Box). You can see (Figure
1.19) that it is ... something. Maybe a little like the continents, but
up-side-down at the very least. What to do?

Well, it is a good job that you remember how to re-orientate arrays,
right?73 If you guess right first time (three different basic transforma- 73 You don’t? See earlier in the Chapter

...

elements of ... matlab and data visualization 53

tions of a matrix were described), you get Figure 1.20.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 1.20: A 2D plot of some random
gridded model data ... but with the
underlying data matrix re-orientated
before plotting.

Next try something very similar. but using the image function.
Now the model grid is the correct way around! I have absolutely no
idea why and why it is reading the matrix dimensions differently
from pcolor. I am sure you could Google and find out. But you
would have to actually care first.

pcolor

MATLAB claims that pcolor(C)
plots; "a rectangular array of cells
with colors determined by C. Ac-
tually, I believe MATLAB on this.
So if you have a matrix, MATLAB
will plot a regular arrays of cells,
with each cell representing one of
the elements in the matrix, and will
color that cell according to the value.
(pcolor will by default, autoscale
how the color scale maps onto the
data in the matrix such that both
extreme ends of the color scale are
used.)

image

You can import an image, such as
in .jpg, .tiff, or .png format, using
imread – simply pass it the name
of an image file (as a string, this
variable name needs to be encased
in inverted commas) and assign the
results to a variable name of your
choice. Then plot (using image) that
variable.

What is the point of this? So you have the ability to simply visu-
alise a gridded dataset. Later, we’ll be doing it properly and it gets
rather more involved when you have to create matrixes to describe
the grid dimensions (e.g. lon and lat) for yourself.

As your very last exercise – find an image on the internet that
amuses you, download it, load it into MATLAB (using imread), visu-
alize it using image, and then ... well, that depends on how amusing
it is. Maybe try plotting something on top of it (using hold on) or
simply go home.

54 str = ’do you like bananas?’

1.9 Further matrix math (systems of equations)

You can also use MATLAB’s powerful matrix functionality to solve
real-world problems for you.

As an example – consider the Great Lakes – the largest lake system
in the world. They have on their shores some of the greatest cities
... as well as some of North Americas worst hockey teams. More
importantly, much of the region is heavily industrialised and there
is hence an exciting potential for pollution input into the lakes and
hence a contrived numerical modelling exercise.

The layout of the lake system is shown schematically in Figure
1.21, together with the mean volumes of the lakes and the annual
flow rate of water out of them.

A cocktail of heavy metals pours into each lake, the amount de-
pendent largely upon the population within the catchments of the
lake. The input rates to each of the 5 lakes are given below.

Lake Heavy Metal Input (kg yr−1)

Superior 1.0×103

Michigan 4.5×103

Huron 1.0×103

Erie 3.5×103

Ontario 3.0×103

Table 1.1: Pollution input input rates to
each of the 5 lakes.

The steady state concentration of heavy metals in the Great Lake
system (the steady state solution being the state in which none of
the concentrations in any of the lakes is changing) is something that
you can find an analytical solution for. You have 5 unknowns (the
concentration in each of the 5 lakes) and you can write down a series
of 5 equations involving these unknowns. (There is slightly more to it
than this, as there must also exist an inverse for the matrix, which is
not always the case ...)

Figure 1.21: Lake volumes and river
flow rates in the Great Lakes system.

Lets call the concentrations (kg km−3) of heavy metals in the lakes;
cS, cM, cH, cE, and cO (for; Superior, Michigan, Huron, Erie, and On-
tarion, respectively). At steady-state, the inputs of heavy metals must
exactly balance the outputs from each lake (otherwise, the concen-
tration in the lake would change and the system would not be at
steady-state). We can write a series of mass-balance equations for the
5 lakes. For instance, in Lake Superior, the metal input flux is 1.0×103

kg yr−1 (1000 kg yr−1). This must balance the loss of metals in the
river outflow if the concentration of metals in the lake is to remain
constant. The water outflow rate that is given to you is 63 km3 yr−1.
The metal outflow flux is then just the concentration of metals in the
water (cS), times by the water flow; 63*cS. Thus, for Lake Superior,

elements of ... matlab and data visualization 55

we can write 1000 = 63*cS. The other lakes can be similarly anal-
ysed, to give a set of 5 equations:

1000 = 63*cS

4500 = 47*cM

1000 + 63*cS + 47*cM = 157*cH

3500 + 157*cH = 173*cE

3000 + 173*cE = 208*cO

It is not hard to work your way down these, solving first (cS =

1000/63 is not so hard to solve ...) and then the 2nd, which then
allows you to solve the 3rd, before then solving the 4th and 5th in
turn However, the system of equations you might have to solve
could be (and usually is) much more complicated. Fortunately, we
can get MATLAB to do the work. :) It may be far from obvious what
MATLAB has to do with this, so I’ll do a little re-arranging of the 5
equations:

63*cS + 0*cM + 0*cH + 0*cE + 0*cO = 1000

0*cS + 47*cM + 0*cH + 0*cE + 0*cO = 4500

-63*cS + -47*cM + 157*cH + 0*cE + 0*cO = 1000

0*cS + 0*cM - 157*cH + 173*cE + 0*cO = 3500

0*cS + 0*cM + 0*cH - 173*cE + 208*cO = 3000

This is starting to look scarily like some matrix stuff. Satisfy your-
selves that these two sets of equations are the same, and that all I
have done is to write them with the unknowns on the left hand side
(cS, cM, cH, cE, and cO) and the knowns (the metal input fluxes) on
the right hand side. In fact, this can be written in matrix form:










63 0 0 0 0
0 47 0 0 0

−63 −47 157 0 0
0 0 −157 173 0
0 0 0 −173 208










×










cS
cM
cH
cE
cO










=










1000
4500
1000
3500
3000










Brush up on your matrix maths and check that Eq. 5 is exactly
the same as before. It is just the series of 5 separate equations, but
represented in matrix math form. Write out the matrix multiplica-
tion in full to get the 5 separate equations back again if you are not
convinced that this is the case.

In a new MATLAB m-file, create a 5×5 array containing the values
in the matrix on the left hand side of the equation above and assign
it to the variable R (for River flow). Create a 5×1 array containing the
vector values on the right hand side of the equation and assign it to
the variable F (for heavy metal Flux). The solution to this problem is
the set of (steady-state) concentrations of heavy metals in the 5 lakes.
(Call this variable C.) We thus have the equation:

56 str = ’do you like bananas?’

R × C = F

If we could determine the inverse of R, we could write:

R−1 × R × C = R−1 × F

(I have simply multiplied both sides of the equation by R−1.)
Recognizing that a matrix (R) multiplied by its inverse (R−1) is the

Identity matrix (I), and that I leaves everything it multiplies alone,
we have:

I × C = R−1 × F
⇒ C = R−1 × F

We are there! We have R and F, so by multiplying F by the inverse
of R, we get our set of 5 solutions (in the 5×1 vector C). And MAT-
LAB will give you the inverse of R (if it exists) on a plate.74 Sweet 74 At the command line; type:

» help inv

to find out how to get your paws on
the inverse of R. You can also lookup
’inverse of a matrix’ in the Index of
MATLAB Help.

deal!
Now you have everything you need – go solve the steady-state

problem for the unknown metal concentrations in the 5 lakes (the
vector array C) using the inverse of R. You can always plug these
values into the original equations to satisfy yourselves that it all
works out.75 75 Note that the equations above are

written in normal maths language,
e.g. with a × rather than the * that
MATLAB understands.

2

Elements of ... programming

Nerd. This is what you are now going to become. And lose all your social skills. And sit at home all day in
front of your computer. Which has become your only friend.

You will achieve this higher state of Being by starting to learn to write and use scripts and functions (aka
m-files) in MATLAB. Actually, at this point you are now writing computer programs (of a sort) rather
than endlessly typing stuff at the command line in the forlorn hope that something useful might occur.
You will also be doing a great deal of code debugging ...

58 str = ’do you like bananas?’

2.1 Introduction to scripting (programming!) in MATLAB

Commands in MATLAB can become very lengthy, and you typically
end up with multiple lines of code to get anything even remotely
useful done. And as you have noticed, it can take a lot of time to en-
ter in all these lines. When when you log off and go home ... it is all
gone. 1 ... If only there was some way of storing all these commands

1 MATLAB remembers all the com-
mands used in previous session (al-
though this may not be the case of
shared, lab computers) and lists them
in the Command History window. You
can recover and re-execute a previous
command in this list by double-clicking
it. You can also re-run more than one
line at a time by selecting multiple lines
and pressing F9 (or Evaluate Selection
from the (R-mouse button in Windows)
context menu).

in such a way that they could be worked on and run again with the
press of a button (as a wild guess, how about F5?), without having to
enter them all in, all over again from scratch ...

m-file
... is nothing more than a simple

text file, in which a series of one
or more MATLAB commands are
written and which via the .m file
extension, MATLAB interprets as
a program file (script or function)
that can be edited and executed (or
rather, the list of commands inside,
can be executed in sequential order).

Assume a similar convention to
that for variables in the naming of
m-files.

Your wish is granted! In MATLAB, it is possible to store all of
your commands in a single text file, and then request that they (the
list of commands) are all executed (sequentially) at one go. MATLAB
gives this text file a fancy name (because it is a very fancy piece of
software, after all) – a script2, otherwise known as an m-file. To cre-

2 The conception of a function, will be
introduced later.

ate a new m-file; from the File menu, select Script (a common type of
m-file)3. You will see a text editor (more fancy-ness) appear in front of

3 In order version of MATLAB: File/New
menu, and select: Blank M-file.

your very eyes, containing your requested (but currently empty) m-
file. Save the m-file to your directory of choice. Alternatively, simply
create a new (blank) text file and save it with the extension .m, rather
than e.g. .txt – this creates you a (script) m-file (illustrating that an
m-file is nothing more than a text file with a .m file extension). From
an m-file, you can issue all the MATLAB commands you previously
would have entered individually, line-by-tedious-line, at the com-
mand line. Furthermore, having created and saved a MATLAB script,
it can be executed again and as many times as you like.

You can execute an m-file by typing its name into the Command

window (omitting the .m file extension). Ensure that MATLAB is oper-
ating in the same directory as the directory that you have saved your
m-file. You can also run the script (m-file) by hitting the big bright
green Run icon button at the top of the m-file editor4. The short-cut

4 In older versions of MATLAB – select:
Debug/Run from the ’debug’ menu of
the Editor window.

for running it is to whack your paw down on the Function Key F5.
OK – you are now ready for your very first program ... inevitably

... this has to be to print ’Hello World’ to the screen. No, really.
(Google it.)

Create a new m-file, calling it e.g. hello_world.m (remembering that
spaces are NOT allowed in filenames). You are going to use the func-
tion disp (see margin help box and/or type » help disp to find out
the MATLAB function syntax and usage). This command (/function)
will print to the screen, either any text you specify (in inverted com-
mas), or the contents of a string variable (you pass the variable name
to disp). For now, simply pass the text directly.

disp

... displays something (the contents
of a variable) to the screen.

In the example of:

disp(’STRING’)

where STRING is a string, get
the string displayed as text at the
command line.

You can also pass the name of a
variable that contains a string, e.g.

disp(VARIABLE)

where the contents of VARIABLE is a
string.

Note that the difference between
using disp and simply typing the
variable name:

disp(X)

is ... well, find out for yourself!
Note that in some situations, its

effect is simply the same as leaving
off the semi-colon (;) from the end
of a line.

Your program needs just a single line in the m-file:

disp(’hello, world’)

elements of ... programming 59

Save the file (to your working directory). Run it at the command line
by typing its name (omitting the .m extension). Your first program is
a success! (Surely you could not screw up a single line program ... ?5)

5 If MATLAB gives you an error mes-
sage something like
Undefined function or variable

’hello_world’

then it is likely you are simply not
in the same directory as the m-file,
and/or the location of the m-file is not
in one of the directory paths MATLAB
knows about (see previous Tutorials for
comments on changing directory vs.
adding paths.).

You could extend this to a mighty 2-line program by defining the
string as a variable and displaying the contents of the variable, i.e.,

message = ’hello, world’;

disp(message)

(Try this out.)6

6 Remember that when a function
requires a string input, you can either
pass the string directly (encased in
inverted commas), or assigned the
string to a variable, and pass the name
of the variable (no inverted commas).

For further practice – pick one of any of the previous exercises
in which multiple lines of code were required, place them into a
new m-file (either by re-typing them in or copying them out of the
Command History window), save the file (to the same directory that you
are working from), and run it my typing its name at the command
line (omitting the .m extension).

2.1.1 Programming good practice

A few tips about good practice in (MATLAB) programming before
we go on (and on and on and on):

Creating help text in an m-file

MATLAB allows you to crete a
’help’ section in the m-file – text that
is outputted too the screen if you
type help on that particular script
(or function). The text is defined by
a block of comment lines at the very
top of the script file (or after the
function definition in the case of a
function). The last sequential com-
ment line is taken to be the end of
the help section. Note that the help
section can be a minimum of eon
single line. A typical basic format is:

1. Name of (in capitals), and very
brief summary, of the script
(/function).

2. List and description of the dif-
ferent forms of use (if there are
one or more optional parameters)
including definition of the input
parameters.

3. Examples.
4. A See also section listing similar

or related scripts or functions.

• Choose helpful variable names so that it is clear what each vari-
able represents. Avoid *excessively* short names, except for simple
index and counting variables. At the other extreme – excessively
long names, which the might be wonderfully descriptive, can lead
to even simple calculation stretching over multiple lines of code
(which can make it more difficult to see what is going on in the
code overall).
• Use comments within your m-file to add explanation and com-
mentary on your program. Anything after a % on the same line is a
considered a comment7, and is ignored by MATLAB.

7 Your % comment can start on a new
line, or follow on from the end of a line
of code, whichever is more helpful.

• Structure the code nicely. You can break the code up into sec-
tions, e.g. by adding a blank line. You might also start each section
with a label summarizing that it is going to do (via the addition of
a comment line).
• To start with – program in as simple a step-by-step way as
possible. Breaking a complex calculation into several lines of sim-
pler calculations is much easier to debug and work out what you
were doing later, particularly if comments are also added. For all
practical purposes – at this level, everything will run just as fast
whether as a complex calculation on one line, or simple bite-sized
calculation spread over 4 lines with comment sin between.
• Always save your changes before running your program (or
you may unknowingly be running the previous version).
• If using the script to do some plotting, sometimes (but not
always) it is convenient to add at the top of the m-file,

60 str = ’do you like bananas?’

close all;

This command close all currently open figures, plots, images, etc.

An illustration (and a far from perfect illustration) of a short func-
tion (m-file) exhibiting at least a few examples of good practice, is:

function [dum_temp] = ebm_basic(dum_S0)

% 0D case of EBM - analytical solution

% function takes one parameter - the solar constant (units of

W m-2) [NB. modern value: 1370.0]

% define constants

const_0C = 273.15; % (units: K)

const_sigma = 5.67E-8; % Stefan-Boltzmann constant (units: W

m-2 K-1)

% define model parameters

par_emiss = 0.62; % (non-dimensional)

par_albedo = 0.3; % mean albedo

% solve for surface temperature

% equilibrium equation:

% (1.0-par_albedo)*(par_S0/4.0) = par_emiss*const_sigma*loc_temp
∧4.0

% then re-arranged to:

loc_temp = ...

((1.0-par_albedo)*(dum_S0/4.0)/par_emiss/const_sigma)∧0.25;

% convert temperature units (Kelvin to Celsius) and set value

of return variable

dum_temp = loc_temp - const_0C;

end

Figure 2.1: Schematic of the example
program.

The schematic for the program structure is shown in 2.1. (Don’t
worry what this particular program does, just note how I have struc-
tured it.)

This example also illustrates one possibility for a consistent vari-
able naming convention – constants (variables which never change in
value) start with a const_ and parameters (variables whose values
might be changed) with par_, temporary (’local’) variables with loc_

and variables passed into and out of the function: dum_. Note the use
of the semi-colon at the end of every line to prevent (here unwanted)
printing of results to the screen. (Don’t worry about what a function
is yet ... just not the degree of commenting and that there is some
sort of consistent and meaningful naming convention.)

In the file, you can create as much ’ASCII art’ as you like if it helps
to make the code clearer, e.g. adding separator comment lines ...

% --------------------------------

... or highlighting certain section headers, e.g.

% *** PLOTTING SECTION ***

elements of ... programming 61

If it (a line) starts with a percentage symbol, then MATLAB ignores it
and you can type whatever you like after it (on the same line).
Also note, if it helps – you can run a single line of code over 2 lines of
the file by adding

...

at the end of a partial line (that is to be treated by MATLAB as joined
continuously to the next line).

Your Hello World program might look like the following once it
has had a little tune-up (although in this example this is pretty much
over-kill):

% program to print ’Hello World’ to the screen

% *** START ***
% first - define the text to display and assign it to the

variable message

message = ’hello, world’;

% second - display the contents of variable message

disp(message)

% *** END ***

The book schematic structure of this program (script) is shown in
Figure 2.2.8 8 Note that not all of the comment lines

are shown in the structure schematic –
only the main program summary at the
top.

Figure 2.2: Schematic of the Hello
World program.

Finally, and related to the next subsection – code in stages, testing
the (partial) code at each step. Do not try and write all the code in
one go and only try it out at the end9.

9 Because it will not work 99 times out
of 100 ...

2.1.2 Debugging the bugs in buggy code

What programming is mostly about is not writing new code so much
as debugging10 what you have already written. Key then, is to reduce

10 The art of fault-finding in computer
code.

the incidence of bugs occurring in the first place, and when they do
occur, firstly to have code that lends itself to debugging and secondly,
knowing how to go about the debugging. The first two facets are
at least partly addressed through good programming practice (see
earlier)11.

11 And by the discipline of software
engineering, which is way out of scope
of this course.

Here’s an example to try out to start to see what might be involved
in debugging, loosely based on a previous plotting example – go
create a new m-file called: plot_some_dull_stuff.m12. Then add the fol- 12 Remember – you are advised to name

your m-files as something vaguely
descriptive of what the script actually
does (and you do ont have to go with
this choice, although it might turn out
to be perfectly descriptive ;) (i.e. you do
not have to call it this!)

lowing lines to the file:

% my dull plotting program

% first, initialize variables and close existing figure

windows

close all;

x = -2*pi:0.1:2*pi;

y1 = sin(x);

62 str = ’do you like bananas?’

y2 = cos[x];

% open a figure window and plot a sine graph

figure;

plot(x,y1,’r’);

% add a cosine graph

hold on;

plot(x,y2,k);

and then run it (refer to earlier for how).
Pretty dull stuff eh? Wait – maybe you didn’t get a figure appear-

ing on the screen with a pair of sines and cosines on. Has MATLAB
given you an error? If you typed in the above ’correctly’, you should
see:

Error: File: plot_some_dull_stuff.m Line: 6 Column: 9

Unbalanced or unexpected parenthesis or bracket.

Actually ... if this were your program, you should have paid attention
to earlier and not have written it all at once before testing it! But
at least MATLAB is giving you some sort of feedback. The actual
error reported might not always mean that much to you but the line
number at which the problem occurred is gold-dust. The line of code
is does not like is line 613, which is: 13 Note that although MATLAB ignores

comment lines (in the context of exe-
cuting code), it does count them when
telling you which line of the program
code an error occurs at.

y2 = cos[x];

Maybe the mistake is already obvious? If it is – go fix it and re-run
the program. If not, maybe test out the line more simply, passing in a
value directly to the function cos and not bother assigning the result
to a different variable, e.g.

» cos[0.0]

to which you get told:

» cos[0.0]

cos[0.0]

↑
Error: Unbalanced or unexpected parenthesis or bracket.

Now you have reduced the use of the cos command to its simplest,
whilst retaining the usage in your program that seemed to cause an
issue. Hopefully, now the error is apparent. If still not, check out help
on the cos function, or search cos in the MATLAB help (from the
question mark icon in the toolbar).

Is it important to recognise that (1) bugs will not always be flagged by
MATLAB with a line number, and you can have valid code but nonsensical
results, and (2) the mistake is often made earlier in the code than when
MATLAB flags up a problem line.

Other strategies for helping debug include:

elements of ... programming 63

1. Checking the what the values of the variables were at the point
at which the program derp-ed – the current (and the point of
program crash) variable values are listed in the Workspace window.
2. Changing the relevant variable value(s) (here x) and re-typing
the problem line to see if it makes a difference14. 14 This is sort of similar to the example

given of simply testing a specific value
directly.

3. Commenting out (%) lines of code temporarily, or adding in
additional (temporary) lines of code, and re-running. Where cod-
ing in bite-sized chunks is an advantage in this respect, is that if
a program stops working after you have added a new section o
code, you can go comment out the new code (never normally just
delete it all), check that the original section of code still works, and
then line-by-line, un-comment the new code until the problem line
is found.
4. You can also put your program on hold just before the problem
line and explore the state of the variables at that point (see Box),
although in this particular example of a bug, MATLAB does not
allow this, presumably because if feels that the mistake is simple
and can be easily fixed.

Debugging – breakpoints
Breakpoints are indicators in the

code that tell MATLAB to pause that
that point. This allows for in-depth
testing of variable values and lines
of code without having to exit the
program.

To add a breakpoint in the code –
click in the (grey) margin of the code
editor on the problem line or before,
and MATLAB adds a red circle to
indicate a ’breakpoint’ has been set.
The presence of a breakpoint tells
MATLAB to pause that that line.

To unset a breakpoint, click on the
red circle or you can clear one or
more from the drop-down Break-
points menu in the toolbar.

Once you have fixed this, re-run the program. Ha ha – it still does
not work. (It is far from unusual to have multiple mistakes in the
same piece of code, hence why writing the code in chunks and test-
ing each time is helpful.) Now we apparently have a problem on line
12:

Undefined function or variable ’k’.

Error in tmp2 (line 12)

plot(x,y2,k);?

Now MATLAB does not like function or variable ’k’ because it
cannot find that it has ever been defined. Is k meant to be a function
or variable? Look up help plot to remind yourself of the correct
syntax if the problem is not immediately obvious.

Once you have fixed the second bug; saved, and re-run the script,
you should see Figure 2.3. (unless there were further bugs to find ...)

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Output from the (bug-fixed
version of) plot_some_dull_stuff m-file.

64 str = ’do you like bananas?’

2.2 Functions

Functions in MATLAB, are really just fancy scripts. Again – just plain
old lines of code in a text file that is given a .m extension (making it
an m-file). The big difference from a script in MATLAB is that a func-
tion can take variables as input and/or return variables (or variable
values) as an output. (In contrast, a script takes no input and returns
no outputs, other than plots or data files that might be saved.)

A function is defined (and differentiated from a script) by a special
line at the very start15 of the m-file (see Box). 15 Literally: line 1. Not even a comment

line is allowed to appear before the
function definition line.

Functions
The all-important fancy first line

of a function, as defined in MATLAB
help, looks like:

function [y1,...,yN] =

myfun(x1,...,xM)

Thanks MATLAB (this seems overly
complex to say the least)!

OK – lets break this down. Lets
assume that you call the m-file
calc_stuff. The minimal definition of
a function then looks like:

function [] = calc_stuff()

(The syntax is critical and the defini-
tion line must look like this.) Here
we are saying – pass in not parame-
ters and return no values either. So
exactly like a normal script would
work and you would execute the
function calc_stuff by typing at the
command line:

» calc_stuff()

(Maybe you can get away without
the () bit.)

If you wan to pass in a single
parameter (here: X), then you define
the function:

function [] =

calc_stuff(X)

(To pass in more than 1 variable,
simply comma separated the vari-
able names.)

To pass out a parameter (here: Y)
(and no input):

function [Y] =

calc_stuff()

Lastly, at the end of the function,
you include the line:

end

This is all not as weird as you might think. For example, you have
already used the function sin – this takes a single input (angle in ra-
dians), and returns a single output (the sine of the angle). If you were
to write your own function for sin, the file would start something
like:

function [Y] = sin(X)

You can’t, of course, go re-defining pre-defined MATLAB function
names16. So how about if in your work, you found you frequently

16 Actually you can, but it is best not to.

needed to use the square of the sine of a number. You could keep
writing:

Y = (sin(X))∧2

or, if you were a little more devious, you could create your own func-
tion for returning the square of the sine of a number.

In this example, the contents of your m-file, which here we’ll call
sin217, would look like:

17 And hence filename sin2.m.

function [Y] = sin2(X)

Y = (sin(X))∧2;

end

but of course with lots of comments to remind you what the function
does etc.

Your new function is used pretty much as you would expect and
have used previously, e.g.

» sin2(0.5)

will return the square of the sine of a value of 0.5 and dump the
answer to the command line, and

» Y = sin2(0.5);

does the same but assigns the answer to the variable Y (with the
semi-colon suppressing output to the command line).

Go make up your own function now. Start by creating one that
takes a single input and returns a value equal to the sine of the

elements of ... programming 65

square of the value (rather than the square of the sine as above).
Test it (i.e. compare the output of your function with the equivalent
calculation typed in at the command line).

When you are happy with this, create one with 2 inputs (refer to
MATLAB help on function and/or refer to the previous Box), that
returns a value equal to the sine of the first input, divided by the
cosine of the second input18, i.e. 18 Mathematically, the answer is not

valid for all possible values of the 2
inputs (why?), and later we’ll learn
how to pro-actively deal with such a
situation.

y = sin(x1)
cos(x2)

)

You have used other functions, perhaps without knowing it, and
some of them return values, but because you have not attempted
to assign the returned values to a variable, you may not have not
noticed. For example, plot and scatter are in fact functions, and
return an ID of the plot graphic. We simply have not been asking for
the returned value so far. As per MATLAB help:

H = SCATTER(...) returns handles to the scatter objects

created.

with the handle, H, being an identifier of the graphic which could
prove to be useful if e.g. you would like to modify one of the proper-
ties of an existing graphic.

Debugging – functions
Functions are a prime example

of the importance of being able to
pause code part the way through
(e.g. by setting a breakpoint) be-
cause when a function terminates,
or crashes, you get to see none of
the values of any variables created
within the function, unless they have
been returned as output (and assum-
ing here that the code did not crash
and managed to get to the end).
Setting a breakpoint allows you to
interrogate the values of any internal
variables.

Finally, it is important to note that by default, any variables cre-
ated within a function are TOP SECRET, and by that, I mean that they
are not accessible to the main MATLAB workspace and do not ap-
pear listed in the Workspace window. To see that this is a non-Trump
true fact, create the following function (basically, the first example but
split into 2 steps):

function [Y] = sin2new(X)

tmp = sin(X);

Y = tmp∧2;

end

Here, we have created a variable tmp to hold the value of the partial
calculation. It does not appear in the Workspace window when you use
the function. The advantage of this is that you could create a second
function that also created a temporary variable internally called tmp

with both instances of tmp treated entirely sperate and isolated by
MATLAB (i.e. setting the value of one instance of tmp does not affect
the value of the other).

The private nature of variables created within functions does how-
ever does lead to some additional complications in debugging func-
tions because when the function terminates, you have no record of
what occurred during its execution (in terms of not being able to ac-
cess the value of any of the variables used within the function). Try
setting a breakpoint at the start of the line where the square of tmp

66 str = ’do you like bananas?’

is calculated – note that tmp now appears in the Workspace window.
Continue the function and when it terminates, note that tmp is now
gone from the list.

elements of ... programming 67

2.3 Conditionals ’101’

2.3.1 if ...

One of the most important programming constructs is the conditional
statement, in which whether one or more statement(s) are executed
(and hence the overall outcome) is conditional on the ’truth’ or other-
wise (i.e. it being true or false) of a given expression.19 19 Pause ... and deep breath.

Conditional Statements
The principal conditional statement

in MATLAB is: if ... end

The basic if structure is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

end

in which the code CODE is executed
if EXPRESSION is evaluated as true.
No code is executed otherwise (and
STATEMENT is false).

A variant addition – else – which
allows for an alternative block of
code (OTHER STATEMENT(S)) to be
executed if EXPRESSION is instead
evaluated as false, is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

else

OTHER STATEMENT(S)

end

Finally, there is 3rd variant including
elseif:

if EXPRESSION (IS TRUE)

STATEMENT(S)

elseif EXPRESSION (IS

TRUE)

OTHER STATEMENT(S)

else

OTHER STATEMENT(S)

end

Now, assuming that the first EX-
PRESSION is not true, a second
EXPRESSION is evaluated, and
only if that second EXPRESSION is
also not true, will the final possible
STATEMENT be evaluated. (Here,
this final variant is shown with an
else ... included at the end, but
this is not a formal requirement to
include.)

This is embodied in MATLAB (and similarly in most languages)
by the if ... end construct (see Conditional Statements Box).

In creating an if ... end construct, the statement tested for
truth can be any one of:

1. A variable having a value of true (1) or false (0). e.g.

if happy

...

where happy is a variable.
2. A MATLAB function returning a true or false, e.g.

if isnan(A)

...

where variable A, may or may not be a NaN.
3. A relational operator (see earlier), i.e. one of e.g.:

>, <, <=, >=, ==, ∼=, &&, ||

and applied to a pair of variables, one variable and one value, or
two values, e.g.:

if A > B

...

where A and B are numbers.

All this will hopefully become apparent during this and later
weeks, so don’t worry about the details ... just yet.

An initial and rather computer programming textbook-like
example is as follows:

Designing a program (a MATLAB script saved as an m-file) that
asks whether or not you like bananas, and if you answer ’yes’, tells
you ’Correct – they are a great fruit!’.

But before we worry about anything else (e.g. how to apply a con-
ditional statement), you’ll need to know about inputting information
into a MATLAB program from the keyboard20. Amazingly, you can 20 All programming languages have

such a facility and man basic pro-
grams, at least in the Old Days prior
to widespread GUIs, make use of
keyboard input

guess (I actually just did) the command for requesting input – it is
input (for ’input’ – a rare occasion when everything is logical and
simple!) (see Box).

68 str = ’do you like bananas?’

Armed with this important new information (how to get MATLAB
to ask for input and then receive and do something with keyboard in-
put) – firstly create a blank m-file and save with a ’suitable’ filename.
Maybe add a header comment (1st line or lines starting with a %) to
remind you what this script is going to do.

Secondly, (and on the next line) – define the text (question) that
you are going to ask and assign this string to the variable MY_QUESTION

(substitute your own filename here). Then place the input command
(on the next, now 3rd line) for string input, and assign the input
string to the variable MY_ANSWER. You should have a program con-
sisting of 3 (or more, depending on how much commenting you
do) lines – an initial comment line, a line defining the question and
assigning this string to a handy variable (MY_QUESTION), and a line
taking the results of the input function, and assigning it to a second
variable (MY_ANSWER). The structure of your program should look like
Figure 2.4. To help you out, a complete program looks like:

input

There are two variants – one for
inputting numerical information
and one for inputting a string (as 1

could be either the value one or a
1-character string ...).

For inputting a numerical value:

X = input(PROMPT)

will display the text in the string
variable PROMPT and set the value
of variable X to whatever number
is entered (and after RETURN is
pressed).

For inputting a string:

STR = input(PROMPT,’s’)

will display the text in the string
variable PROMPT and set the value of
STR when a string is entered (and
after RETURN is pressed). Note that
the second parameter passed to the
function input (’s’), tells MATLAB
that the input is a string rather than
a number.

Figure 2.4: Schematic structure of the
simple bananas question program.

% === a program to ask whether I like bananas ===

% first - specify the question (and assign to a variable)

var_question= ’Do you like bananas?’;

% now ... ask the question!

var_answer = input(var_question,’s’);

Run the program thus far. You should see the question displayed,
and when you type in an answer and hit RETURN, the program will
end. Because your m-file is configured as a script and not a function
(see earlier), you can see the variable MY_ANSWER in the variable list
and you can hence check its value – it should contain a string with
the answer you gave to the question. Make sure it all works like this
so far.21

21 HINT: When you type the answer,
it appears on the screen immediately
adjacent (and untidily) to the end of the
question. You can make this look nice(r)
by adding a space at the end of the
question string you assigned to prompt,
e.g. PROMPT = ’Do you like bananas?

’;.

OK – aside from the use of input, there is nothing new here. Yet.
The ultimate purpose of the program is to give a reply that depends
on the answer given. This is where we are going – to utilize a condi-
tional statement – depending on whether the answer is ’yes’ or not, we
are going to display a different message. This is a fundamental pro-
gramming element – different code (the statements in the conditional
definition) will execute depending on the value of a variable – in this
example, the ’different code’ is a different message and the value of
the variable is ’yes’ or ’no’ (or other answer).

You are going to add an ’if ...’ statement to the code (starting
on line 4) to test whether the answer, held in the variable MY_ANSWER,
is equal to ’yes’. In the language of MATLAB syntax (see Box), the
EXPRESSION is whether the string contained in MY_ANSWER is ’yes’.
How do we ask MATLAB to compare the value of MY_ANSWER with

elements of ... programming 69

’yes’?
Once upon a time, long long ago, MATLAB was simple and help-

ful and you could write:

if (my_answer == ’yes’)

[MESSAGE]

end

where [MESSAGE] you will later replace by a message that you will
display using the disp command that you saw before. (In this stupid
example it might be: ’Correct – they are a great fruit!’).

strcmp

For once, the MATLAB help ex-
planation is relatively simple and
straightforward:

tf = strcmp(s1,s2)

compares s1 and s2 and

returns 1 (true) if

the two are identical.

Otherwise, strcmp returns

0 (false).

Which is pretty well much how we
expected asking: s1 == s2 to pan
out.

(In MATLAB help – tf, the vari-
able name used in the example, is
short for ’true-false’.)

However ... life is no longer this simple. MATLAB is going to
make us use the function strcmp (see Box). In using strcmp we might
break things down into 2 steps – the first comparing the 2 strings
(MY_ANSWER and ’yes’) and returning to us a value of true or false
that we will store in a new variable. In the second step, we’ll ask the
conditional to act on the value of the variable. The code will now
look like this:

COMPARISON_RESULT = strcmp(MY_ANSWER, ’yes’);

if COMPARISON_RESULT

[MESSAGE]

end

Or, we could have made this more compact:

if strcmp(MY_ANSWER, ’yes’)

[MESSAGE]

end

Your code should now comprise something like the 3 lines from
before (comment, define question, get input) followed by 4 lines of
code of the conditional structure, comprising: the strcmp function,
the if ..., use of disp to display a message, and lastly, end. The
structure should look like Figure 2.522 or if you assign the message

22 The red triangle denotes a branch
point, where the code can go in differ-
ent directions depending on the result
of the conditional. In this example –
there is only one branch, corresponding
to the answer being ’yes’.

to a 2nd variable, like Figure 2.6. A complete example program ... to
help you follow all the above, would look like23:

23 Note the indentation of the contents
of the if ... end structure. This is
very common programming practice.
You can make MATLAB do this for you
by selecting a single line, or highlight-
ing a block of lines, and clicking on the
Indent icon in the code editor.

Figure 2.5: Schematic structure of the
extended bananas question program.

% === a program to ask whether I like bananas ===

% === (and now give an answer!) =================

% first - specify the question (and assign to a variable)

var_question = ’Do you like bananas?’;

% second - specify the response (and assign to a variable)

var_response = ’Me too! OMG I could die!’;

% now ... ask the question!

var_answer = input(var_question,’s’);

% test the answer ... and reply if ’yes’

if strcmp(var_answer, ’yes’)

disp(var_response);

end

70 str = ’do you like bananas?’

Figure 2.6: A slight variant on the
schematic structure of the extended
bananas question program.

(Please – do not just copy-paste the code ... write your own code and
only use, if you really need it, this code as a guide.)

Re-run (after saving) the program and confirm that it works (ask-
ing whether you like bananas and if you answer ’yes’, tells you ’Cor-
rect – they are a great fruit!’). If not – time to de-bug! Note that if you
tested the code in two stages, any bug at this point is only in the con-
ditional structure. Start by double-checking the syntax required for
the if ... structure. You could also try commenting out the message
line and re-running.

Next, you might display an alternative message is the answer is not
’yes’. Refer to help / the margin Box on if ... and note that you can
extent the structure with an else which would be followed by a line
displaying the alternative message (e.g. ’Then you need to get a life,
apple-lover.’)24. 24 And then the line with end after

that – follow the prescribed structure
exactly.

Try this first – extend you program with an else line and then a
an alternative message. The structure should now look like Figure
2.7.

Figure 2.7: Schematic of the bananas
program using the if ... else ...

construct (and displaying alternative
messages).

You could also turn this around, and test for any answer except
’no’ (the ∼ is making the test, not ’no’), i.e.

if ∼strcmp(MY_ANSWER, ’no’)

[MESSAGE 1]

else

[MESSAGE 2]

end

Now you are asking whether the answer is something other than
’no’ (which might be ’yes’, but not necessarily so) – in the logical
construct – whether the (string) contents of answer are not equivalent
to ’no’.

Finally – you could extend this example further and tackle the
situation of their being 3 possible answers – ’yes’, ’no’, and ... ’I don’t
know’ (or any other answer). Now the basic structure becomes

if strcmp(MY_ANSWER, ’yes’)

[MESSAGE 1]

elseif strcmp(MY_ANSWER, ’no’)

[MESSAGE 3]

else

[MESSAGE 2]

end

Here – we are now adding an elseif ... line (followed by its
specific message) (and see Box/help). Maybe try this and test it fully
– inputting a ’yes’, a ’no’, and some other answer, and confirming
that you get the correct message displayed.

elements of ... programming 71

Continuing to beat this same tired example to death ... what if
some wise-crack answered ’YES’ rather than ’yes’?25 One could write: 25 This goes to the heart of all software

testing – what if the user does some-
thing you were not expecting? Hence
why all software undergoes extensive
testing by user or people who did
not test it. Sometimes there are pre-
releases (’alpha’ or ’beta’ versions or
simple ’pre-release’) of software to all
or specific parts of the user community,
precisely to provide feedback, find
bugs, and see whether they can break it
...

if strcmp(MY_ANSWER, ’yes’)

[MESSAGE 1]

elseif strcmp(MY_ANSWER, ’YES’)

[MESSAGE 1]

end

This will work, but you might note that you have had to exactly du-
plicate the MESSAGE line. If instead of displaying a simple mes-
sage, a complex calculation was carried out – all the lines of the
code following the if ... would have to be exactly duplicated af-
ter the elseif While it might seem trivial to simply copy-paste
the required lines, this is26 dangerous – if the first set of lines are 26 Note quite in the same way that

driving down a mountain highway with
your eyes shut or hungry sharks are
dangerous.

ever changed (due to a bug-fix or simple further development of
the code), the same changes MUST then be exactly duplicated in
each and every instance, or the code will not longer work correctly.
This is *very* easy to forget to do, particularly for extensive code or
code that you have not looked at for ... years. Code duplication also
makes the overall code unnecessarily long (and hence harder to look
through).

Instead, we can nest statements containing relational operators.
What does this mean? Well, in the example of the answer being ’yes’
or ’YES’, logically, what we want is:

(1) the contents of answer is equivalent to ’yes’
OR

(2) the contents of answer is equivalent to ’YES’

In code, this is written:

strcmp(answer, ’yes’) || strcmp(answer, ’YES’)

Make sure you are happy with what this means (it is pretty well
much exactly as it looks == logic).

So – go modify your code to allow for a ’YES’ or a ’yes’. Hell, try
allowing for a ’Y’ or a ’y’ as well.27 (You could extend it to ’no’ also 27 Sort of for this reason and that there

are many different ways of writing
’yes’, software often requires you to
answer ’yes’ in a restricted number of
ways – this restriction is made clear
as part of the message that asks the
question. Common is to restrict the
answer to ’Y’ or ’y’.

but I think you get the point ...)

A non-text and non fruit related example. Almost.
How many bananas could you eat in a day? I bet it is less than ten.

We’ll let the computer ask and if the answer is 10 or more, you (the
computer) shouts: ’liar!’.28 28 This example is even more stupid

than the last one. But no more stupid
than in any computer programming
textbook and it will at least demon-
strate a subtly different usage of if
....

72 str = ’do you like bananas?’

The basic code is very similar to before. Create a new m-file, add
a comment line, define your question (’How many bananas do you
think you could you eat in a single day?’) and then get MATLAB to
ask it and pass back whatever is entered in at the command line. The
only difference at this point – refer to the usage of input (see earlier
Box) – is that we want a number input rather than a string. You can
call the variable into which you assign the result of input, the same as
before, or to make it distinct, e.g. N_BANANAS, i.e.

N_BANANAS = input(MY_QUESTION)

In the if statement, we now want to test whether the value of
N_BANANAS is greater or equal to 10 (or equivalently, greater than
9), i.e.

if (N_BANANAS >= 10)

[MESSAGE 1]

else

[MESSAGE 2]

end

or equivalently:

if (N_BANANAS > 9)

[MESSAGE 1]

else

[MESSAGE 2]

end

Write this code and get it going. Feel free to switch fruit / fruit
consumption threshold, question/answers, or whatever.

2.3.2 switch ...

A less commonly used alternative to if ... is switch ... case

... and is helpful in the case of multiple possible correct answers
and/or multiple different answers.

Conditional Statements (2)
The other main conditional state-

ment is: switch ... case ...

end

The basic switch structure is:

switch VARIABLE

case VALUE(s)

STATEMENT(s)

end

which deviates rather from how
MATLAB describes it, but this
makes more sense to me (and hope-
fully to you). Here, VARIABLE is a
variable and it is compared with
one or more VALUE(s). If the value
of VARIABLE matches that of the
VALUE(s), then STATEMENT(s) are
executed.

A common variant adds a default
set of STATEMENT(s) to be executed
if the value of VARIABLE does not
match any of the VALUE(s), e.g.

switch VARIABLE

case VALUE(s)

STATEMENT(s)

otherwise

STATEMENT(s)

end

You can also have multiple case
possibilities:

switch VARIABLE

case VALUE(s)

STATEMENT(s)

case VALUE(s)

STATEMENT(s)

otherwise

STATEMENT(s)

end

For instance, and back to the ... fruit ... you might want the same
answer for multiple different kinds of fruit. Trying coding up the
program that would give you ’A great fruit!’ for any of ’banana’,
’kiwi’, ’apple’, ’pineapple’, and ’cucumber’ (yes they are technically
fruit – Google it). You will find either you have many lines of code
and many duplicated lines of the same message, or a very long line
after if ... with loads of strcmp and ORs (||). Using switch ...

case ... the code instead might look like:

switch MY_ANSWER

case {’banana’, ’kiwi’, ’apple’, ’pineapple’, and ’cucumber’}

disp(’A great fruit!’)

otherwise

elements of ... programming 73

disp(’yuck!’)

end

where MY_ANSWER is the name of a fruit entered in, in response to
input, e.g.

MY_ANSWER = input(’What is your favourite fruit?,’s’);

Note that for a list of multiple possible value, MATLAB requires
the list after case to be encased in {}. For a single answer, it would
just be:

case ’banana’

for a string, and for a number:

case 10

74 str = ’do you like bananas?’

2.4 Loops ’101’

loops in MATLAB
for

The basic for ... end structure
is:

for n = VAL1:VAL2

CODE

end

where VAL1 and VAL2 are the limits
that n will count between (start-
ing at VAL1 and ending at VAL2),
meaning that STATEMENT(S) will be
executed (VAL2-VAL1)+1 times in
total. STATEMENT(S) can be one or
more lines of code, that will all be
executed on each and every cycle of
the loop.

The loop need not count in in-
crements of one (1), the default,
e.g.:

for n = VAL1:INC:VAL2

CODE

end

counts with an increment of INC.
It is also possible to count down (a
negative value of INC).
while

The basic structure is similar to
that for for ... end:

while STATEMENT (IS TRUE)

CODE

end

while differs from if in that there
are no alternative branches of code
that can be executed. The while ...

end loop cycles and CODE continued
to be executed (for ever) until the
STATEMENT is evaluated to be false.

The next main program construct that you are going to see is the
loop. There are a number of different forms of this in MATLAB (see
loops Box) (and also in other programming languages), but the basic
premise is the same – a designated block of code (one of more lines
of code29), is repeated, until some condition is met. That condition

29 It is possible to for the block of code
to be only a fragment of a single line
and hence the entire loop plus code
block, to be written on a single line.

might be something as simple as a count having been reached, e.g.
the block of code is always executed n times, or the condition might
be slightly more complex and involve a conditional statement (see
later). Will explore a very basic loop though an example, almost as
contrived as for conditionals :o)

2.4.1 for ...

In this subsection we’ll start with a very straight-forward and some-
what abstracted usage of for ..., which hopefully will get you
in the mood for loops. Then we’ll go through some slightly more
problem-focused examples.

Loops Ground Zero. Basically – for loops cycle through a series of
numbers between specific limits, or if you like, ’count’ up (or down)
through a series of numbers. As the loop counts (cycles), it allows
you to execute some code, so for each count (or cycle), the (same)
block of code is executed. We’ll worry about what you might ’do’30

30 Note intentionally a joke. Actu-
ally, this is only funny if you know
FORTRAN, and even then it is only
marginally funny.

(i.e. the code fragment) in a loop, later.
Consider, or rather: create a new m-file31, and add the code for the

31 Comment it!

following loop:

for n=1:10

end

Save it. Run it. What did it do?
I bet you have absolutely no idea! It actually cycled around ten

times, counting from n=1 through n=10, but you would not know
it as there was no code within the loop to do anything and tell you
anything about it.32

32 You get one clue – if you look in the
variables Workspace window, you’ll see
there is a variable n, with a value of 10 –
the last value it was assigned before the
loop ended.

There are 2 alternative but very crude debugging strategies you
could take33:

33 Plus, you could add a breakpoint and
view the value of n in the Workspace
window each cycle around the loop.

1. Simply add a line within the loop with the name of the (count-
ing) variable, e.g.

for n=1:10

n

end

elements of ... programming 75

and it will spit out the value of n each time around the loop.
2. Print the value of n ’properly’34, e.g. 34 Although you can get away with just

writing:

disp(n)
for n=1:10

disp(n)

end

or

for n=1:10

disp(num2str(n))

end

or you can tart this up even nicer by creating a string that provides
more explicit information back to you, which is when you really
need to use num2str, e.g.

for n=1:10

my_string = [’The value of n is: ’ num2str(n)]

disp(my_string)

end

or if you are happy with more going on in a single line:

for n=1:10

disp([’The value of n is: ’ num2str(n)])

end

(but they work the same – check it).

If you are not yet 100% with concatenation – the ’action of linking
things together in a series’ (dictionary definition), what is happening
in the line:

my_string = [’The value of n is: ’ num2str(n)]

is that you are taking the string ’The value of n is: ’, and the
string equivalent of the numerical value of n (created via the use of
num2str) and ... joining them together, one (num2str(n)) after the
other (’The value of n is: ’).

Loops in action. So, consider the following (contrived) problem
– you want to be able to enter a series of numbers and return their
sum (although equally one could perform and return all sorts of
statistics).35 The basic code is simple and you can try it out by first 35 Obviously, one way to do this would

be to enter the numbers into a file first,
use the load function, and calculate the
sum.

creating a new (script) m-file.
Using the other (numerical input) form of input (see earlier), the

code fo entering 2 numbers, one after the other, might look like this
(although in practice, your code is full of helpful comments, right?):

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

76 str = ’do you like bananas?’

B = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B)]);

The first 4 lines you should be A-OK with, you have seen some-
thing very like this before. I the last line, again, 2 strings have been
concatenated by enclosing ’The sum of the numbers is: ’ and
num2str(A+B) in a pair of brackets []. The string representing the
number sum is itself created by adding A and B, and then convert-
ing the resulting number into a string using num2str (see earlier).
As always – if you are happier breaking down the last line into its
component parts, e.g.

answer = A+B;

answer_string = num2str(answer);

disp(answer_string);

then please do! There is no particular computational penalty in MAT-
LAB (at least, not at this stage) for creating as many variables as you
like and breaking down code into multiple lines.

So far so good. But what if you wanted 4 numbers summed ...

my_question = ’Please enter a number: ’;

A = input(my_question);

my_question = ’Please enter a number: ’;

B = input(my_question);

my_question = ’Please enter a number: ’;

C = input(my_question);

my_question = ’Please enter a number: ’;

D = input(my_question);

disp([’The sum of the numbers is: ’ num2str(A+B+C+D)]);

You can see whether this is going – firstly that you are duplicating
more and more lines of code as the number of numbers increases.
Secondly, and we’ll come to that in a moment – what if the program
does not know a priori how many numbers you want to sum? Or
do you need to write a program for every single possible number of
numbers that you might need to input and process? An impossible
and thankless task ...

You can see the code that is being repeated (here for input x):

my_question = ’Please enter a number: ’;

x = input(my_question);

If you bothered to read the margin box earlier, you’d known that
this is exactly what a loop can be used for. We therefore want some-
thing of the form:

for n = 1:MAX_N

my_question = ’Please enter a number: ’;

x = input(my_question);

end

elements of ... programming 77

It should be apparent if you tried it
out, that the value of x at the very end
of the program, is equal to the last
value you entered. In other words,
each time you go around the loop you
are over-writing the previous entered
value and end up with nothing to sum
at the end. There are two (or more)
possibilities to solve this:

1. You could keep a running sum.
This would also avoid having to
explicitly calculate a sum at the end,
but you would not have saved the
numbers as you went an no other
stats would be possible.
You would do this by adding the
inputted value to the existing value,
i.e.

x = x + input(prompt);

where x is the running total. What
this says is: take the current value
of x, add the value if the user input,
and place the total back into the
variable x.
The only problem here ... is that
MATLAB does not know what the
very first value of x is – i.e. the value
before the loop start and that you
then try and add input(prompt) to.
The solution is to initialise the value
of x before the loop starts, e.g.

x = 0;

2. Alternatively, you could add the
newly inputted number to the end
of an existing vector. In this way,
you end up recording all the values
that were inputted. e.g.

y = [y input(prompt)];

which says take the vector y, and
add a further value (input(prompt))
to the end of it. At the end of
the program (after the loop has
terminated), you have to sum the
contents of the vector y.
Or, to break it down:

z = input(prompt);

y = [y z];

The easy part is the configuration of the loop – in the previous
example with 4 inputs, we would write:

for n = 1:4

and the loop with go around 4 times as the counter n counts from
1 to 4 (MAX_N) in increments of 1 (the default behavior of the colon
operator). Each time around the loop the block of (2 lines of) code is
executed and a number is inputted. But what is still missing? Try it
exactly like this and see if you can see what is going on, or rather,
not going on. If you think it is not working as expected – try some
debugging (i.e. adding one (or more) disp statements within the
loop code, or add a breakpoint within the loop). See if you can come
up with a solution once you see what the problem is. (Warning: the
spoiler is in the margin.)

After having tried your own solutions, try out both of the given
alternatives (see margin) (assuming that one of them was not also
your solution). Note that you are not given the complete code needed
and some further debugging might be needed (but they do both
work!).

Two things to be aware of in doing this:

1. If you set the maximum number of items quite high and then
get bored and need to exit the program – press the key combina-
tion Ctrl-C and MATLAB will exit your program (but leave MAT-
LAB running).
2. If you run the program a second time and use the vector ap-
proach, something very odd starts to happen to the reported sum.
This is because there already exists a vector with the same name
left over from the first time you ran the script program. You can
solve this (first try it out – running the program several times in
a row to see what happens) either by initializing the vector y, just
like you did for x in the 1st solution, i.e.

y = [];

(before the loop starts, of course), or you can clear the workspace
using » clear all (clears *all* variables), or clear just the problem
variable (y) that will end up growing and growing and growing ...
(» clear y).

A different and simpler way of looking at creating a running sum,
or in the case below, incrementing the value of a variable within the
loop is to consider creating an explicit counting variable, sperate
form the loop counter. Recall:

78 str = ’do you like bananas?’

for n = 1:10

end

will simply loop around 10 times, as the loop counter n is repeatedly
incremented by 1 (the default increment of the colon operator), until
it reaches a value of 10.

Create a new m-file and enter the following code:

m = 0;

for n = 1:10

m = m+1;

end

What do you expect to happen to the value of m? Add some disp

statements and print out the values of n and m (from within the loop),
each time around the loop. Was this what you expected? Why? What
about the following?

m = 1;

for n = 1:10

m = m+1;

end

Or ... what do you expect in this:

m = 2;

for n = 1:10

m = m∧2;

end

As abstracted and odd as it might seem now, later, this will all be
important to understand. Please make sure you do! You might note that you should not

substitute the variable name n, for m, i.e.
as in something like:

n = 0;

for n = 1:10

n = n + 10;

end

Why? (Try it and see, even.)

2.4.2 Other loop configurations and usages

In the previous examples, the loop limits were fixed in the program
itself – you’d have to edit the script code and re-save the file in order
to be able to input and sum a different number of values. You could
create a more flexible program by making the m-file a function rather
than a script.36 36 There are other ways of adding

flexibility to the loop count that we’ll
see shortly.

The idea here is to create a function that takes a single input. This
input will be the maximum loop count. If the input variable was
called max_count, then the loop structure would now look like:

for n = 1:max_count

my_question = ’Please enter a number: ’;

x = input(my_question);

end

Referring to the previous lessons on functions (as well as help if
need be), create a function that when you call it, e.g. like:

elements of ... programming 79

» function_sum(5)

will request 5 inputs in turn, and at the end, display the sum.37 37 So in addition to the code fragment
given, you need to define (at the top)
and then end (at the bottom) a function,
you need to create a running sum, and
then after the loop finishes, display the
sum.

Then create a variant of this function, and have it return the sum,
rather than display it. i.e. you function will now take as input, the
number of numbers you wish to input, and will return the sum of
those numbers.

Alternatively, your program (as a script), before the loop starts,
could ask for the number of values to be entered, passing this to
the variable max_count, with the loop then looking exactly like the
above. In both cases you are substituting a fixed number (e.g. 4) for a
variable that might contain any number.

Finally, in addition to a flexible loop count maximum limit, the value
of the increment in the count each time around the loop need not be
one and it also need not start from 1. For example:

for n = 10:10:100

...

end

is exactly equivalent in terms of the number of iterations carried out
to

for n = 1:1:10

...

end

and which is the same as the default behavior of the colon operator:

for n = 1:10

...

end

The value of the loop counter n simply differs by a factor of 10 at
every iteration between the top and bottom two versions.

2.4.3 Fun(!) worked examples

(Only one example to date. And not necessarily even fun.)

Loops, camera, action! (A more colorful example of loops in action.)
What we are going to do is (load and) plot a sequence of monthly
data-sets and put them together to create a movie (animated graphic)
to illustrate the seasonality of temperature in global climate. You
will hopefully thereby better appreciate the value of constructs such
as loops in computer programming in saving you a whole bunch of
effort and needless duplication of code. (Equally, you might not have

80 str = ’do you like bananas?’

wanted a movie as the end result, but simply a number of plots, all
identical except in the specific array of data they were plotted from.)

First download all the monthly global surface temperature data-
files on the course webpage (there are 12 files to download)38. Then 38 In scripting, it is also possible to

automate downloading files from the
internet.

you are going to want to plot them all ... which would get desper-
ately tedious if you had to do this at the command line 12 times.
Think how much more of your life you would be wasting if the data
were weekly. Or monthly data for 1972 through 2003, some 372 sep-
arate data-files ... You would never have time to go get a coffee ever
again(?)

Create a new m-file. Call it ... anything you like39. However, as well 39 bob_the_builder.m counts as ’any-
thing you like’, but that looks pretty
lame and it certainly won’t help you
remember what the script does if you
came back to it sometime in the future.

as appropriately naming your script file, add a comment on the first
line of the file as a reminder to yourself of what it is going to do.

To make an animation, we need to make a series of frames, with
each one being a different monthly temperature plot (in sequence;
Jan through Dec). The files are rather conveniently named: temp1.tsv,
temp2.tsv, ... temp12.tsv40. We should start by loading this little lot 40 Don’t worry about the .tsv file

extension – the file format is plain old
text (ASCII) and could have instead
been .txt.

in. For the first file we could write:

temp = load(’temp1.tsv’);

or equally:

temp(:,:) = load(’temp1.tsv’);

and hence with a slight-of-hand, we could also write:

temp(:,:,1) = load(’temp1.tsv’);

Can you see that these statements are identical? Run the script with
one, then with the other, just to be sure. The last form is really useful,
because we can now go on and write:

temp(:,:,2) = load(’temp2.tsv’);

What you have done here is to load the January 2D (lon-lat) temper-
ature distribution into the 1st 2D layer of the temp array, and then we
have gone and created a second 2D layer on top of the first with the
February climate data in it. Look at the Workspace window (or type
size(temp)) – you now have a 3D (94×192×2) array. Fancy! This is
your first 3D array – there is nothing really conceptually different
from the 2D arrays that you have already been using, we simply have
a 3rd index for the third dimension – if it helps, you can think of a
3D array as being indexed by: row, column, layer.

You could go on and load in the March, April, etc data in a similar
fashion, but you should be able to see a pattern forming here – each
filename differs only in the number at the end of its name and this
number corresponds not only to the number of the month, but will

elements of ... programming 81

also correspond to the layer index of the 3D array that you will cre-
ate. This is something that a loop could be used for while you go off
for a coffee. So this is what we are going to do – use a loop to load in
all of the files. So go back and delete the lines that load in the files,
one-by-one.

We first need to construct the loop framework. We’ll call the month
number counter variable, month. Create a for loop (with nothing
in it yet) with month going from 1 to 12.41 Refer to the course text 41 Don’t forget to suitably comment

what it is that the loop does with a line
(or even 2, but don’t write a whole
essay) beginning with a %.

(this document!), and/or the MATLAB documentation, and/or the
entirety of the internet, if necessary. The syntax (and examples) is
described in full under » help for. Save the script (m-file) and run
it42. What happens? Can you tell? 42 Typing: the m-file filename without

the extension.One way of following what is going on as MATLAB executes the
commands within a script is to explicitly request that it tells you how
it is getting on. You can use the function disp to help you follow
what the program is doing (this is Old School debugging43). Within 43 You can also add a breakpoint within

the loop and thus can cycle through the
loops one-by-one, thereby being able to
check the status of the variables within
the loop and how they change from
iteration to iteration.

the loop, add the following line:

disp(month)

then save and re-run the script. Now you can see how the loop pro-
gresses. This sort of thing can be useful in helping to debug a pro-
gram – it allows you to follow a program’s progress, and if the pro-
gram (or MATLAB script) crashes, then at least you will know at
what loop count this happened at, even if you are not given any more
useful information by MATLAB. Only when you are happy that you
have constructed a loop that goes around and around 12 times with
the variable month counting up from 1 to 12; comment out (%) the
printing (disp) line44 (unless you have grown rather attached to it) 44 Note that by commenting out a line

rather than completely deleting it, if
you want to print out the loop count
in the future, all you have to do is to
un-comment the line, rather than type
in the command all over again. This can
be really useful if your debug command
is long, or particularly if you have a
whole series of lines that are required
to report the information you want to
know.

and move on.
We can construct filenames to load in by:

1. Forming a complete filename by concatenating sperate strings.
For example:

» filename = [’temp’ ’1’ ’.tsv’]

will create the filename out of 3 components parts – a common
elements of all the filenames (’temp’), the number of the month
(’1’), and the file extension (’.tsv’).
2. Converting a number value of a (count) variable to a string
(the num2str function), so instead of hard-coding in the string
representing a number (’1’ in thsi example), you convert from
the value of a counter, e.g. num2str(month).

This is where the role of the loop counter (stored in the variable
month) comes in. Each time around the loop, the value of variable
month is the number of the month. All you have to do is to convert

82 str = ’do you like bananas?’

this value to a string and thereby automatically generate the correct
month’s filename each time (as per above).

Now add the following within the loop in your script;

filename = [’temp’ num2str(month) ’.tsv’];

and after it (still within the loop) some debugging45: 45 Or you can make use of a breakpoint.

disp(filename)

just to confirm that appropriate filenames are being generated. Save
and run the script. Satisfy yourself that you know what it is doing.
Can you see that you are now automatically generating all the 12
filenames in sequence? And this only takes 3 lines of code total (not
including the debugging line), compared with 12 lines if you had to
write down all the 12 file names long-hand.

Now comment out (or delete) the disp(filename) line, and add a
new line to load in each dataset from the filename that is constructed
each time the loop goes around.46 This is almost identical to the use

46 Remember that the load line goes
inside the loop. (Why? Try writing it
outside the loop (at the end) and see
what happens if you like.)

of the load command earlier in the example:

temp(:,:,month) = load(filename);

but ... with 2 important differences. Firstly, rather than specifying the
1st, then 2nd, etc layer of the 3D array, are are specifying the layer
with an index equal to month, which remember, counts up from 1 to
12 in the loop. Secondly, rather than specifying the filename explicitly
in the load command, we are passing the string contained in the
variable filename. Hopefully on the previous line of code within the
loop, you have created the string value of filename ...

Assign the 2D data array that is loaded in, to the temp array vari-
able, at the next layer number. Take a look at the Workspace window –
note that you have an array (temp) that has size 94×192×12. If temp
is 94×192×1 then go back a page or so and go through the bit about
loading data into a 3D array. You want to avoid over-writing the in-
formation that is already there, so the line; temp = load(filename);
will not work (and you will only get a 94×92 array after going 12
times around the loop). Why? (Again, look back a page-ish.)47

47 If you are still stuck, then stick up a
paw.

At the end of (but still within) the loop (i.e., before the loop has
completely finished), create a new figure window on one line, then plot
(using pcolor) the monthly temperature data on the next line, and
add the essential labelling stuff (lines after that). All within the loop
still. This line should look something like:

pcolor(temp(:,:,month));

and should produce extremely exciting graphics as in Figure 2.848. 48 The 2D graphics will get *much*
better later – one thing at a time!(Don’t just type this line in blindly (maybe it doesn’t work anyway).

elements of ... programming 83

Make sure that you understand what you are doing (otherwise why
take the class at all?).)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.8: Extremely unappealing
blocky plot of Earth surface temper-
ature (who cares with month? – the
graphics are too poor to matter ...).

Save and run the script. Do you have 12 different temperature
plots on the computer screen?49 Note that if you keep running the

49 If not, stick you paw up in the air for
help ...

program, you’ll get 12 more figure windows each time. This is where
the close all command comes in useful, and you could add this
at the start (or end) of your script. Because if you re-run the script,
you wont then end up with 24 figure windows. And then 36 the time
after that, and ...

Actually, there is no need to create a new figure window each time –
comment out the command that creates a new figure window (figure).
Save and re-run and note the difference.

Finally ... look up MATLAB help on getframe. Then go back to
your global temperature loading/plotting script and add the follow-
ing line50: 50 Where to put the line? See the

Example given in the help on this
function. It is exactly what you are
doing here.

M(month)=getframe;

Save and run. When MATLAB is all done, at the commend line
type in:

» movie(M,5,2)

and hopefully ... an animation of the progression of monthly surface
air temperatures globally, should appear51. 51 Note that the active Figure window

may have disappeared behind some
other windows so go rescue it to see
what is happening.

movie2avi

The function movie2avi converts
an animation encoded in MATLAB’s
movie format to an avi file, which is
a common film format that can then
be played in Windows (or other op-
erating systems) without having to
use MATLAB to display it. It is also
a format that could e.g. be embed-
ded in a Powerpoint presentation. A
typical basic usage is:

» movie2avi(M,’file.avi’);

where file.avi is the output file-
name and M the input MATLAB
movie name.

If you want to play some more, just type help movie – there are
controls for not only the number of times you loop through the com-
plete animation, but also for the numbers of frames per second. But
we will revisit this later – the 2D plotting you have done so far is
very basic and there is no scale or sane x/y axes. Later we can also
add the continental outlines that will help orient you and improve
the quality of the graphical output.

Before you move – go look at your script – is it well commented?
Would you be able to tell exactly what it does it by the end of the
course? What about next year? Are the loop contents indented? It is
important that it is commented and laid out adequately.

Finally – there are MATLAB commands to turn your MATLAB
format movie into a format you can use elsewhere. Previously ...
there was a command was movie2avi (see Box). But it has been ...
retired (curse you, Mathworks). The new/replacement command
is VideoWriter, which differs mostly in that the animation is now
created within the program and the .avi format animation has its
frames added (within the loop) as the graphics are created (rather
than converting the frames afterwards as in movie2avi). . To use this
new MATLAB function, adjust your code as follows and as per the
MATLAB help on VideoWriter.

84 str = ’do you like bananas?’

% Prepare the new file.

vidObj = VideoWriter(’my_animation.avi’);

open(vidObj);

% Create an animation.

for month=1:12

filename = [’temp’ num2str(month) ’.tsv’];

temp = load(filename);

pcolor(temp);

% Write each frame to the file.

currFrame = getframe;

writeVideo(vidObj,currFrame);

end

% Close the file.

close(vidObj);

The code above also simplifies things by not bothering to create a
3D array, but rather over-writing a 2D array (temp) each time around
the loop (having first created the animation frame).

elements of ... programming 85

2.5 Loops and conditionals ... together(!)

No surprise that you might combine both loops and conditionals in the
same programming structure. In fact, this becomes very powerful
and is an extremely common device in programming.

2.5.1 for ... and conditionals

break

Simply – break terminates the ex-
ecution of a for or while loop’. And
from help a further clarification:
’Statements in the loop after the
break statement do not execute.’

Slightly more complicated (but not
much) in the case of nested loops –
in this case, break exits only the loop
in which it occurs.

Indenting code
Just do it (or let MATLAB do it). Even

for a single loop or conditional, it is
way easier to see what code is within
the loop and what outside it, when the
code inside starts several spaces in from
the margin.

For nested loops and conditionals, it
is even more important to keep (visual)
track on what is going on.

Note that the indention (or lack of)
does not affect the execution of the code
(unlike in e.g. Python).

As an alternative to (or as well as) a fixed loop, or variable and (func-
tion) parameter passed controlled loop, we could specify a near infi-
nite loop, but provide a get out of jail free. For example, within the
loop, we could add a line that asks an additional question: ’Another
input (y/n)?’ We would test the answer and if no (’n’), exit the loop
(and report the sum as before). This would look like:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

for n = 1:1000000

my_number = input(my_question1);

my_string = input(my_question2,’s’);

if strcmp(my_string,’n’)

break

end

end

where1000000 is simply chosen as a ’very large number’ and one
rather larger than the maximum number of numbers you could ever
imagine entering52.

52 There us a better way of doing this,
with the while construct, that we’ll see
shortly.

The key new command here is break. The way the code works
(hopefully!) is that at the start of a new iteration of the loop, the ’an-
other input’ question is asked – if no further input is required, the
loop exits via the break command. Otherwise (the else), the user is
prompted for another input. Note that now we have loops and condi-
tionals nested together, it helps even more to indent the code53. Also 53 MATLAB will do this for you if you

click on the Indent icon. It will also
indent the code as far as it reasonably
can, as you type.

note that here – the two different questions (demands) outputted
to the screen – ’Another input (y/n)?’ and ’Please enter a number’
– are pre-defined before the loop starts. These same lines could be
placed within the loop, but re-defining the variable e.g. my_question1
as ’Another input (y/n)?’, each and every time, is redundant (i.e. it
could instead simply be defined once at the start of the program).
Also also note that in this code, the number entered in is assigned to
the variable my_number rather than n as was used before – simply to
help distinguish the number input from the string input (assigned to
my_string).

It is up to you to ’do’ (i.e. add or modify the code) something with
the number entered in an stored in the variable my_number, as each

86 str = ’do you like bananas?’

time around the loop, the previous value is over-written by the new
input.

Currently, the program only exits upon entering ’n’ to the ques-
tion. Instead, we could have it exiting for any answer other than ’y’:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

for n = 1:1000000

my_number = input(my_question1);

my_string = input(my_question2,’s’);

if ∼strcmp(my_string, ’y’)

break

end

end

which compares my_answer and ’y’, if this is not true (that they are
the same), break is executed.

A more practical example would be when saving a data file, to
test for a filename already that already exists and if so, automatically
modify the new file name so as not to over-write the file.54 The rel- 54 Note that while in the m-file Editor,

MATLAB asks you if you want to over-
write an existing file, when saving a
file directly from a program, no such
dialogue box or warning is given.

evant function is exist, and in the case of a test for a file, returns
either 0 (the file does not exist in the MATLAB search path, although
that does not rule out it existing somewhere else entirely), or 2 (the
file exists).

Clearly(?), in the example of saving the movie file, you might
well want to test whether the filename that you have chosen already
exists (i.e. the value returned by exist is 2). If so (i.e. the file exists),
you need to modify the filename by means of a new concatenation,
perhaps appending something like ’_NEW’ to the end of the string55.

55 Recall that in using the movie2avi

command, you pass a filename – simply
modify the filename passed, in a similar
way to in which you modified the
filename for loading the temperature
data.

If not, and the filename has not already been used, you can proceed
as before – the equivalent of ’doing nothing’. Go ahead – try it (i.e.
modify your code to avoid over-writing an existing filename).

exist

Tests for whether a specified
variable, function, file, or directory
exists, and in generally, which is
these it is.

The general syntax and usage is:

exist(’A’)

to return what A is.
An extended syntax with a second

passed parameter:

exist(’A’,’file’)

returns value of 2 is returned is A if a
file, and for:

exist(’A’,’dir’)

returns a value of 7 is returned is A if
a directory.

You could start by defining a default filename in the code56 that

56 Either near the very start of the
program (neater), or just before you
need to use the string (to save a file).

you will use if there is no clash with any existing file, e.g.

my_filename = ’GEO111_movie.avi’

Now test whether this filename already exists:

filename_check = exist(my_filename,’file’)

Finally, using an if statement, test whether the value of filename_check
is equal to 2. If so, you are going to need to modify the filename
string (my_filename). If not, you can let the conditional just end and
proceed to saving. Modifying the filename is just as per for the exam-
ple of loading global temperature distributions, e.g.

my_filename = [’NEW_’ my_filename];

elements of ... programming 87

where here, we take the string contained in my_filename, we append
a ’NEW_’ to the start57, and assign the new (longer) string back into 57 Note that because the filename

already has its .avi extension attached,
you’ll have to modify the start of the
string.

the variable my_filename.
The file naming becomes a little awkward, so rather than the entire

filename + extension, you might just store just the filename in the
(my_filename) variable. i.e.

my_filename = ’GEO111_movie’

but the remembering when you test fo rthe existence of a particular
file, you must add the extension, i.e.

filename_check = exist([my_filename ’.avi’],’file’)

(here we create a new string [my_filename ’.avi’] by concatenating
my_filename with the extension ’.avi’). If the filename exists, the new
filename we generate can then be:

my_filename = [my_filename ’_NEW’];

(adding the ’_NEW’ after, rather than before the existing filename
string).

2.5.2 while ...

We can re-frame the earlier example programs using the while con-
struct rather than the for loop. But now ... you need to specify under
what conditions the loop continues as the basic syntax (see earlier or
help) is:

while STATEMENT (IS TRUE)

CODE

end

Here – STATEMENT (IS TRUE) is the conditional. For instance and
rather trivially, create the following as a program and run it58: 58 You ... are going to need a Ctrl-C on

this one ...
while true

disp(’sucker’)

end

What has happened is that true is always ... true. Hence the con-
dition is always met and the while loop loops forever. Conversely,
while false would never loop, not even once. more interesting and
useful is when the statement might change in value as the loop pro-
gresses.

Consider (and type up in a script):

n = 0;

while (n < 10)

disp(’sucker’)

end

88 str = ’do you like bananas?’

This also will loop for ever as n is initialized to 0 and hence the state-
ment (n < 10) is always true. But if we increment the value of n each
time around the loop:

n = 0;

while (n < 10)

disp(’not a sucker’)

n = n + 1;

end

then the loop will execute exactly 10 times (just as per for n = 1:10).
You could also do this in reverse:

n = 10;

while (n > 0)

disp(’not a sucker’)

n = n - 1;

end

Now, n counts down from 10 and when it reaches a value of 0, it is
no longer greater than zero and the statement (n > 0) is false (and
the loop terminates).

It is not always completely obvious whether even simple while
loops like this execute 9 or 10 (or 11) times particularly when often
you might come across while (n >= 0) that allows the loop to con-
tinue when when n has reached z value of zero (but not below). So –
spend a little while playing about with different while configurations
and loop criteria.

Finally, note that the conditional statement in the while loop need
not test for an integer being larger or smaller than some threshold.
One could equally loop on the basis of a string equality/inequality.
For example, taking the previous example using break could be re-
coded with a while loop:

my_question1 = ’Please enter a number: ’;

my_question2 = ’Another input (y/n)? ’;

my_string = ’y’;

while strcmp(my_string,’y’)

my_number = input(my_question1);

my_string = input(my_question2,’s’);

end

and ends up a slightly shorter and more compact piece of code, omit-
ting the need for a break or a nested structure. However, in this
example, we do need to initialize the value of my_string (to ’y’ – as-
suming that we want at least one number). Try it and then adjust it
so that the loop proceeds as long as the answer is not ’n’ (rather than
as long as it is ’y’)59. Note that as before – it is up to you to ’do’ (i.e. 59 See earlier Example.

add or modify the code) something with the number entered in an

elements of ... programming 89

stored in the variable my_number, as each time around the loop, the
previous value is over-written by the new input.

Extending the filename checking example60 to fully integrate 60 Which first time around did not
actually combine loops and conditionals
in the same structure. Rather, a loop
came first in the program (loading in
and plotting the temperature data),
ended, and only then a conditional
checking the filename.

a loop and conditional. The problem with the previous code is that
you checked for the existence only a default filename (and appended
’_NEW’ if a file already existed).

One (partial) solution would have been, rather than append a pre-
defined string (’_NEW’) to the filename, would be to request that the
user provide either a string to append, or a completely new filename.
You have already see the input command in action, so you should be
in a good position to code this modification up.61 61 Effectively, all you have to do, if exist

returns a 2 and the file already exists,
is to ask for an alternative filename,
and use the string entered in as the new
filename (and don’t forget to add the
’.avi’ extension to the end when saving)

A better solution (because even when asking for an alternative
filename – what if that file exists too?) would be to keep checking for
a filename clash and keep asking for a new filename, until a unique
one is found. Who knows how many attempts this might take (to
find an unused filename), so while ... would be a better choice of
loop than for Becasue exist returns a 2 if the file already exists,
a logical condition for while would be while exist is returning 2:

my_question = ’Please enter an alternative filename (without

the extension): ’;

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename ’.avi’],’file’)

end

Within the loop, a new filename is requested and then checked
against the directory contents. What is missing is the initial value of
filename_check. In a previous example, we simply set a value at the
start. If we did that here, the first line of this code would look like:

filename_check = 2

In this case, we do not need a default filename as the user provides
the very first filename that is tested. Alternatively, we could perform
a single check before the loop starts:

my_question = ’Please enter an alternative filename ...

(without the extension): ’;

my_filename = ’GEO111_movie’;

filename_check = exist([my_filename ’.avi’],’file’)

while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename ’.avi’],’file’)

end

90 str = ’do you like bananas?’

2.6 Even more (and loopier) loops

[Further examples of increasingly extreme loopiness.]

Looping through arrays. In plotting e.g. global temperature distri-
butions, it would be nice to add on the continental outline. Currently,
and particularly with the very basic 2D plotting you have seen so far
(pcolor), you are left to some extent guessing where the land and
where the ocean is.

A pair of files are provided (from the website), comprising a series
of pairs of lon-lat values that delineate the outline of the continents
and all but the smallest of islands:

• continental_outline_lat.dat

• continental_outline_lon.dat

Download, and then load these into the MATLAB workspace (in
the ’usual way’). You should now have 2 vectors. Maybe view them
in the Variable Window to get a better idea of what you are dealing
with. Also keep an eye on the entries in the Workspace Window and
perhaps the Min and Max values to give you an idea of the range
(here: of longitude an latitude values).

Try plotting these lon/lat locations. Use the scatter plotting func-
tion (which makes it all the easier as your data is in the form of 2
vectors already). You might need to reduce the size of the plotted
points (refer to the earlier exercises, or help) and additionally, you
might want to fill the points (up to you). Remember you can set the
axis limits, which presumably should be 0 to 360 or -180 to 180, on
the x-axis (longitude), and -90 to +90 on the y-axis (latitude). Font
sizes of labels can also be increased if necessary. You might end up
with something like Figure 2.9.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

Continental outline

la
tit

ud
e

Figure 2.9: Continental outline (of
sorts).

By plotting dots (points), the coastal outline at higher latitudes
gets increasingly pixelated (why?). So, we might instead plot as lines
between the lon-lat pairs. For this, you could simply use plot. Do
this, and see if you get something like Figure 2.10..

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 2.10: Another continental outline
(of sorts).

Well ... interesting. If you think about it, as one continental outline
is completed, the next lon-lat pair will be for the next continent or
island. What plot does is to join up *all* the adjacent x-y (lon-lat)
pairs and hence points, which is why you get the straight lines criss-
crossing the map with the start of each successive continent and
island in the dataset joined to the end of the previous one.

The continental outline dataset is not actually that useless. There
are additional files that specify which block of lon-lat pairs belong to
a single shape (i.e. continent or island). Load in the 2 additional files:

elements of ... programming 91

• continental_outline_start.dat

• continental_outline_end.dat

These vectors hold information regarding the start row and end
row, of each shape. Again, view the contents of these vectors to get
an idea of what is going on. For example, you’ll see that the first en-
try is that the first shape starts on row 1 (continental_outline_start),
and ends on row 100 (continental_outline_end). The 2nd shape
starts on row 101, and ends on row 200. etc etc

The simplest way too start dealing with all this, is to just plot the
very first shape, defined by rows 1-100 of the lon and lat vectors. By
now, you hopefully will be able to see that to plot rows 1-100 of lon
and lat data, you are going to do:

plot(lon(1:100),lat(1:100));

(here I have named the arrays lon and lat for added convenience
rather than the long-winded default file-name based versions
(continental_outline_lat, continental_outline_lon)).

Well ... this is probably about as unexciting as it gets – a small
piece of the Antarctic coastline. If you do a hold on and plot the next
block (rows 101-200), you’ll get the next chunk of coastline. (Try this
and see.) You could keep going this – manually adding additional
sections of the global continental outline. This could get tedious ...
and it turns out that there are 283 different fragments to plot, all one
after another. (This number comes from asking MATLAB the length

of continental_outline_start or continental_outline_end.) This
is, of course, why we need to get clever with a loop and automatically
go through all 283 fragments, plotting them on on top of another in
the same figure.

length

This function could almost not be
simpler – just pass the name of a
vector, and it returns its length (i.e.
the number of rows, or columns,
depending on the shape of the
vector).

How? First you need to write the plot command in a more gen-
eral form – you do not want to have to read the values out of the
continental_outline_start and continental_outline_end files
manually. Hopefully, it should be apparent that you can re-write the
plot statement for the first fragment, as:

plot(lon(line_start:line_end),lat(line_start:line_end));

where for the first fragment, the values of line_start and line_end

are given by lstart(1) and lend(1), respectively (renaming the
original vectors to shorten the variable name)62. Re-writing again: 62 You cannot use the obvious variable

name end – why not?
plot(lon(lstart(1):lend(1)),lat(lstart(1):lend(1)));

Try this and check you still get the single piece of the Antarctic coast-
line.

Really, you should hopefully be making the mental leap to looking
at (1) and thinking that it could be: (n), where n is a loop counter

92 str = ’do you like bananas?’

which can go from 1 to 28363 and hence loop through all the line 63 This number comes from a 5th file
– continental_outline_k.dat, that
numbers the continents/islands from
1 to 283. You don’t need it, although
downloading it, loading it, and deter-
mining the length f the vector gives you
the loop limit and you would not have
to go trusting me to write down 283
correctly without making a mistake ...

fragments. Yes? For instance, setting n=1, and plot (with n replacing
1 in the code fragment above) – you should again get that very first
fragment. Try setting n=283 and plot. Do you get the last fragment
(what is it of64)?

64 An island at about 20N and -150E if
you have done it correctly.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 2.11: Another go at the continen-
tal outline!

So ... create yourself an m-file. Load in the lon-lat pairs as vectors
(renaming then to something more manageable if you wish). Load in
the vectors continuing the start and end information. Create a do ...

end loop. Maybe print (disp) the loop count and run the program
(after saving), just to check first that the loop is functioning correctly.
Before the loop, create a Figure window. and set hold on. You now
have a basic shall of a program – loading in the data, initializing a
figure, and appropriate looping, but not yet actually doing anything
within the loop.

In the loop all you need is the plot command, but with the start
and end rows being a function of n (or whatever you call the loop
counter). Set axis dimensions and label nicely (after the loop ends).
Run it. Hopefully ... something like Figure 2.11 appears(?)

3

Further ... MATLAB and data visualization

This chapter is something of a potpourri of MATLAB data and vi-
sualization methodologies and techniques, generally building on the
basics covered in the previous chapters.

94 str = ’do you like bananas?’

3.1 Further data input

Previously, you imported ASCII data into MATLAB using the load

command1. You might not have realized it at the time, but the use of 1 Or maybe ’cheated’ and used the
MATLAB GUI ...load requires that your data is in a fairly precise format. MATLAB

says "ASCII files must contain a rectangular table of numbers, with an
equal number of elements in each row. The file delimiter (the character
between elements in each row) can be a blank, comma, semicolon, or tab
character. The file can contain MATLAB comments (lines that begin with a
percent sign, %)." Firstly, your data may not be in a simple format and
often may contain both numerical values and string values. Secondly,
your data may not even be in a text/ASCII format. For instance,
you data maybe be in an Excel spreadsheet, or for spatial scientific
data, an increasingly common format is called ’netCDF’ (Network
Common Data Form). In this section, we’ll go through the basics and
some examples of each.

3.1.1 Formatted text (ASCII) input

The general procedure that you need to follow to input formatted
text data is as follows:

opening and closing files
MATLAB has a pair of commands

for opening and closing files for
read/write:

• fopen will open a file. It
needs to be passed the name (and
path if necessary) of the file (as
a string), and will return an ID
for the file (assign (save) this to a
variable – you’ll need it!).
• fclose ... will close the file. It

requires the ID of the file (i.e. the
variable name you assigned the
result of calling fopen to) passed
to it as a parameter.

textscan

According to (actually, para-
phrased from) MATLAB:

C = textscan(ID,format)

" ... reads data from an open text file into
a cell array, C. The text file is indicated
by the file identifier, ID. Use fopen to
open the file and obtain the ID value.
When you finish reading from a file,
close the file by calling fclose(ID)."

The ID part should be straightfor-
ward (if not – follow through the
Example).

The format bit is the complicated
bit ... There is some help in a fol-
lowing Box and via the Example.
Otherwise, there is a great deal of
details and examples in MATLAB
help – you could look at this as a
sort of menu of possibilities, and
given a particular file import prob-
lem, the best thing to do is simply
scan through help, looking for
something that matches (or is close
to) your particular data problem
(and/or ask Google).

1. First, you need to ’open’ the file – the command (function) for
this is called fopen (see Box). You need to assign the results of this
function to a variable for later use.
What is going on and why this all differs so much form using
load, where you only had to use a single command, is that you
first have to open a connection to the file ... before you even read
any of the contents in(!)2.

2 This is very common across all(?)
programming languages.

2. Secondly ... you can read the content in (finally!). The com-
plications here include specifying the format of the data you are
going to read in. You also need to tell MATLAB the ID of the file
that you have opened (so it knows which one to read from). The
function you are going to use to do this is called textscan.
3. Close the file using fclose (see Box). You are going to have to
pass the ID of the open file again when you call this function (so
MATLAB knows which file to close).
4. Lastly, you are going to have to deal with the special data struc-
ture that MATLAB has created for you ...

If you are interested (probably not) – the connection made to an
open file is called a file pipe. Typically, you have have multiple open
file pipes at the same time in programs, and this is why obtaining and
then specifying a unique ID for the pipe you wish to read or write
through, is critical.

further ... matlab and data visualization 95

As an initial Example to illustrate this alternative (and more flexi-
ble) means of importing of ASCII data, we are going to return to the
paleo atmospheric CO2 proxy dataset file – paleo_CO2_data.txt3. 3 The version that you have used before

– not to be confused with a version
ending in .dat that we will look at
shortly ...

Assuming that you have already (previously) downloaded it, open it
up in a text editor and view it – you should see 4 neatly (ish) aligned
columns of numeric values ... and nothing else4. 4 This ’nothing else’ is important as it

is the reason why you were previously
able just to load the data.

OK – so having seen the format of the data in the ASCII file, you
are going to work through the following steps5: 5 You can start off working at the com-

mand line if you wish, but ultimately,
you are going to need to put everything
into an m-file.

1. First ’open’ the file – you will be using the function command
fopen, and passing it the filename6 (including the path to the file

6 For convenience, you could assign the
filename (+ its path) to a (string) vari-
able and then simply pass the variable
name – remember, no ’ ’ needed for
a variable naming containing a string
(whereas ’ ’ is needed for the string
itself).

if necessary). So that you can easily refer to the file that you have
opened later, assign the output of fopen7 to a variable, e.g.

7 The output is a simple integer index,
whose value is specific to the file that
you have opened.

» openfile_id = fopen(’paleo_CO2_data.txt’);

2. Now ... this is where it gets a trickier – the function you are go-
ing to use now is called textscan. Refer to help on textscan, but
as a useful minimum, you need to pass 3 pieces of information:

(a) The ID of the open file (you have assigned this to a handy
variable (openfile_id) already.)

(b) The format of the file (see margin note). (This is where it

According to MATLAB help:
"the format is a string of conversion

specifiers enclosed in single quotation
marks. The number of specifiers de-
termines the number of cells in the
cell array C." Take this to mean that
you need one format specifier, per
column of data. The specifier will
differ whether the data element is a
number or character (and MATLAB
will further enable you to create
specific numerical types).

The format specifiers are all listed
under help textscan. However,
your Dummies Guide to textscan

(and good for most common appli-
cations) is that the following options
exist:
%d - (signed)integer

%f - floating point number

%s - string

MATLAB will automatically repeat
the format for as many lines as there
are of data. Alternatively you can
specify precisely how many times
you would like the format repeated
(and hence data read in).

gets much less fun, but hang in there!) You simply list, space-
separated, and between a single set of quotation marks, one
format option per element of data.

In this particular Example, there are 4 items of data (per
row) – each of them is an integer or a floating point number8,

8 At least, none of them are clearly
strings, right?

depending on how you want to look at it. Assuming that the
data is a floating point number, the format for the input of each
number item, is %f.

The result of textscan is then assigned to a parameter, e.g.

my_data = textscan(openfile_id,’%f %f %f %f’);

3. So far, so good! And you can now close the file:

» fclose(openfile_id);

4. Actually, it does get darker before the light at end of the tunnel
... what textscan actually returns, i.e. your read-in data, is placed
into an odd structure call a cell array. It is not worth our while
worrying about just what the heck this is, and if you view it in
the Variables window (i.e. double click on the cell array name in
the Workspace window), it does not display the simple table of 4
columns of data that maybe you were expecting. For now, we can
transform this format into something that we are more familiar
with using the cell2mat function, e.g.

96 str = ’do you like bananas?’

my_data_array = cell2mat(my_data);

And now ... it is done, i.e. there exists a simple array, of 4 columns,
the first being the age (Ma), the second being the CO2 concen-
tration value (units of ppm), and the 3rd and 4th; minimum ad
maximum error estimates in the proxy reconstructed value. :)

MATLAB claims that a cell array

is "A cell array is a data type with in-
dexed data containers called cells. Each
cell can contain any type of data. Cell
arrays commonly contain pieces of text,
combinations of text and numbers from
spreadsheets or text files, or numeric
arrays of different sizes." I am sort of
prepared to believe this.

Basically, in object-oriented speak,
a cell array is an object, or rather, an
array of objects. As MATLAB hints
– the cells can contain *anything*.
Your limitation previously is that
an array had to be all floating point
numbers, all integers, or all strings,
and if strings, all the strings had
to be the same size. For strings in
particular, it is obvious that a more
flexible format where a vector could
contain both ’banana’ and ’kiwi’
is needed (try creating a 2-element
vector with these 2 words and see
what happens). You clearly might
also want to link a number with a
string (e.g. number of bananas) in
the same array, rather than have to
create 2 sperate arrays.

cell2mat

Having created this weird format
(cell array), now MATLAB has
to give you a way of converting the
data inside into something more
usable. The function is cell2mat,
which for a cell array C:

A = cell2mat(C);

will return the corresponding
(’normal’) array A.

Now this is only true if all the
data in C is of the same tpye (e.g.
all floating point numbers). If the
data types are mixed or you only
wish for a sub-set of the data to be
extracted and converted, simply
index the required part of the cell
array (Examples on this later).

As a further example, we are going to process a more complicated
version of the paleo atmospheric CO2 proxy dataset. The file is called
paleo_CO2_data.dat and is available from the course webpage. An
initial problem here is even opening up the file to view it – if you
use standard Windows editors such as Notepad it fails to format it
properly when displaying its contents9. The first lesson then in sci-

9 If you use a Mac (or linux) however,
all text editors should display the
content jus fine.

entific computing then is to have access to a more powerful/flexible
editor than default/built-in programs such as Notepad. One good
(Windows) alternative is Notepad++10. So go open the file with this

10 Conveniently installed on the Watkins
computer lab computers.

instead11. Note the format – there are a bunch of header lines and

11 Right-mouse-button-click over the file,
then select Open with and then click on
Notepadd++.

moreover, some of the columns are not numbers (but rather strings).
So even if you were to manually edit out the headers with comments

(%)12, you are still left with the problem of mis-matched columns. You

12 Recall that MATLAB ignore lines
starting with a % and this includes
loading in data lines using load.

could edit the file in Excel to remove the problematic columns as well
... but now this seems like a real waste of time to be editing data for-
mats with one software package just to get it into a second! (Again,
you could use the MATLAB GUI import functionality ... but it will
be a healthy life experience for you to do it at the command line :o))

OK – so having gotten an idea of the format of the ASCII data file,
you are going to work again through the 4 steps:

1. First ’open’ the file as before (fopen) and assigned the ID re-
turned by the function to a variable openfile_id2.
2. Call textscan. However, we now want to pass 3 pieces of infor-
mation (compared to 2 before):

(a) The ID of the open file.
(b) The format of the data.
(c) And now – a parameter, together with an (integer) value, to
specify how many rows of the file, assumed to be the header
information, to skip.

(Again – the result of textscan is then assigned to a variable
which will represent a cell array.)
Lets do the easy bit first – to tell MATLAB to skip n lines of a file,
you add the parameter ’HeaderLines’ to the list of parameters
passed to textscan, and then simply tell it how many lines to skip.
In this Example, you’d add:

my_data = textscan(openfile_id2, ... ,’HeaderLines’,3);

further ... matlab and data visualization 97

OK – now to dive back into the MATLAB syntax mire ... Lets
just load in just the first 2 columns of data, and assume that they
are both integers (and skipping the first 3 lines of the file as per
above). We might guess that we could simply write:

my_data = textscan(openfile_id2,’%d %d’,’HeaderLines’,3);

Try it (including closing the file, and a call to cell2mat, as before).
What has happened?
It seems that MATLAB translates your format (’%d,%d’) into: ’read
in a pair of integers, and keep automatically repeating this, until
something else is encountered’. That something else is sequence
of characters at the end of the first data line (line #4, because we
skipped the first 3), that makes MATLAB think that it has finished
(or rather, that it cannot reading in 2 pairs of integers any longer).
This leaves you with 2 pairs of integers – i.e. a 2×2 matrix (as
you’ll see if you look at my_data_array).
Here is a solution – we could omit all the information following
the first 2 elements (something for Google to help with).13: 13 This turns out to be specifying

’%*[
∧\n]’, which in effects sort of

says:
’skip everything (all the fields) (%*)

up until the end of the line is found
([∧\n]).

my_data = ...

textscan(openfile_id2,’%d %d %*[
∧\n]’,’Headerlines’,3)

3. Now close the file:

fclose(openfile_id);

4. And now convert the results to something more human-
readable:

my_data_array = cell2mat(my_data);

This should do it – a simple array, of 2 columns, the first being the
age (Ma) and the second the CO2 concentration value (units of ppm).
:)

There must be some sort of important life lesson hidden here.
Perhaps about only working with well-behaved data files, or using
the GUI import functionality? But hopefully it does illustrate that
messy files can be dealt with, without the need for laborious editing
or processing in Excel.

3.1.2 Importing ... Excel spreadsheets

If your data is contained in an Excel spreadsheet, and you want it in
MATLAB, your options are:

1. Select some, or all, of the columns and rows in a specific work-
sheet, and either copy-paste this into a text file (but taking care
that the worksheet column widths are formatted such that they
are wider than the widest data element), or save in an ASCII for-
mat, with comma or tab delineations between columns. In either

98 str = ’do you like bananas?’

case, then load in the data using load, or if consisting of mixed
numbers/text, go through the Hell that is textscan
2. Use MATLAB function xlsread.

xlsread

There are various uses (i.e. alterna-
tive allowed syntax) for xlsread for
an Excel file with name filename.
The 2 relevant and more useful ones
look to be:

1. num = xlsread(filename)

which will return the *numeric*
data in the Excel file filename in
the form of a matrix, num. Note
that non-numeric (e.g. string)
headers and/or columns, are
ignored. Also note that num is a
’normal’ numeric array and does
not require any conversion.
2. [num,txt,raw] = ...

xlsread(filename) will
additionally return text data in a
cell array txt, and *everything* in
a cell array raw.

You can also specify a particular
worksheet out of an Excel file to load
in:

num = ...

xlsread(filename,sheet)

(and there are further refinements
and options listed under help).

So ... option #2 looks ... is looking the easiest ... :)

As an example, lets return to the paleo proxy CO2 data again, but
this time, as an Excel sheet. The data file you need is:
paleo_CO2_data.xlsx
(You may as well go load this into Excel just to take a look at the
format and so subsequently, you’ll know if you have imported it
faithfully or not.)

From the help box on xlsread, it should be pretty apparent what
you do. And in fact, I am going to leave you to work it out – try and
import the age and CO2 data (the numeric part of the data) from
paleo_CO2_data.xlsx.

If you need to, you index a cell array, pretty well much like a nor-
mal array, except it has an alternative syntax. For a normal, numeric
array A, you might write:

» A(4,3)

to reference the value in the 4th row, 3rd column. For a cell array C, to
index the cell in the 4th row, 3rd column, you’d also write:

» C(4,3)

but you’d get a cell returned, not the value in the cell. If you want
the value in the cell located at (4,3), you’d put the index in curly
brackets:

» C{4,3}

and you’d get a value of 3000 returned in this example.
If you happen to have an Excel file with data (of any sort) in it

from another class, practice loading in its contents into MATLAB.
Note that if the Excel file contains cells with text in, you’ll need to
use the more advanced format of xlsread (see Box or help). Also try
loading into only a single sheet of an Excel file (assuming the file has
multiple sheets).

3.1.3 Importing ... netCDF format data

Much of spatial, and particularly model-generated, scientific output,
is in the form of netCDF files. This is a format designed as a com-
mon standard to facilitate sharing and transfer of spatial data, but in
a way that enables e.g. a ’complete’ description of dimensions and

further ... matlab and data visualization 99

various types of meta-data to be incorporated along with the data.
The format is platform independent and a variety of graphical view-
ers exist for viewing and interrogating the data. Most programming
languages support the reading and writing of netCDF format data.
MATLAB is no exception here.

MATLAB actually has a quick and simple, and ... a long-winded
formal way of accessing data in a netCDF file:

1. Using ncread, which reads data directly from the file.

2. Via a series of function calls to the netCDF library.

1.
ncread is by far the simplest way, although it lacks in flexibility and
deviates from standard practices used across other programming
languages.

ncread

In its simplest incarnation:

data = ...

ncread(filename,varname)

where filename is the name of a
netCDF file, and varname is the name
of the data variable in the netCDF
file.

e.g. if there was a variable called
rain in the file climate.nc,

data = ...

ncread(’climate.nc’,’rain’)

would read the values in the netCDF
file variable rain and assign to the
variable data.

MATLAB provides a couple of
further tricks, allowing you to read
sections of the full netCDF variable
data array, or sample the data array
– see help.

2.
In the formal and more long-winded approach, you open the file
and receive an ID for that file. The file can then be written to or read
(including just interrogating its properties rather than necessarily
extracting spatial data) using this ID. And of course, closed (using
the same ID). The netCDF standard is also little odd in how read-
ing/writing is implemented and everything has to be done by deter-
mining the ID of a particular data variable or property of the file. The
general approach is as follows:

1. Open the netCDF file by

ncid = netcdf.open(filename,’nowrite’);

where filename is the name of the netCDF file (which generally
will end in .nc). ’nowrite’ simply tells MATLAB that this file
is being open as read-only (this is the ’safe’ option and prevents
accidental deletion of over-writing of data).
2. This is the weird bit, as we cannot ask for the data we want
automatically :o) Instead, given that we know14 the name of the 14 There are ways of listing the variables

if not.variable we want to access, we ask for its ID ...

varid = netcdf.inqVarID(ncid,NAME);

where NAME is the name of the variable (as a string), allowing us
to then request the data:

data = netcdf.getVar(ncid,varid);

that says – assign the data represented by the variable varid, in
the netCDF file with ID ncid, to the variable data.

So actually, not totally weird – you request the ID of the vari-
able, then use that to get access to the data itself. The names of

100 str = ’do you like bananas?’

the MATLAB commands vaguely make sense in this respect –
inqVarID for inquiring about the ID of a variable, and getVar for
getting the variable (data) itself15. 15 It is beyond the scope of this course to

worry about why in the case of netCDF,
the function are all netcdf. something.
Just to say, it involves objects and
methods and is a common notation
in object orientated languages (that
nominally, MATLAB isn’t).

3. Finally – close the file, by passing the ID variable into the func-
tion netcdf.close, i.e.

netcdf.close(ncid);

Note that you need to pass the ID of the netCDF file for each and
every command (after netcdf.open) so that MATLAB knows which
netCDF object you are referring to (you are allowed to have multiple
netCDF files open simultaneously).

For a netCDF Example, we’ll take the output of a low resolution
Earth system model (GENIE). To start off, download the ’2D marine
sediment results’ netCDF file – fields_sedgem_2d.nc. The data here
is relatively simple – a 2D distribution of bottom-water and surface
sediment properties, saved at a single point in time. In other words,
there are only 2 (spatial) dimensions to the data16. 16 Adding time would make it 3 dimen-

sions (2 spatial + 1 of time). Adding
height or depth in the ocean would also
make it 3 (3 spatial). 3 spatial + time
would make for a 4-dimensional dataset
...

OK – we’ll start by opening the file (assuming that you have
downloaded it!), remembering to assign its unique ID to some vari-
able. Then, you’ll want to get hold of (and assign to another vari-
able), the ID of the variable we want to extract and plot – in this
Example, it is called ’grid_topo’. Having obtained the ID for this vari-
able, you can then fetch it – assign it to a variable data. Then close
the file.17 17 You should be able to do all of this

without further hints – the sequence
of commands and how they are used,
is given in the introduction to this
subsection.

You should now have an array called data. It should be 36×36 in
size. Why not plot it18. Can you guess what it might be? Is it in the

18 Your choice of 2D plotting function.
correct orientation? (If not – correct it.)

Clearly what is missing are the x and y axis values, which you
should have correctly deduced are longitude and latitude, respec-
tively, with latitude presumably going from -90 to 90N, and longitude
... well, maybe it is not completely obvious exactly what the value of
longitude is at the original.

A great strength of netCDF its the ability of this file format to also
contain the grid (axis) details that the data is on. There are ways of
finding out the names of the axis variables (dimensions), but for now,
I’ll give you them:

• ’lat’ – is the latitude axis. (Technically, the axis values are the
mid-points of the grid cells.)
• ’lon’ – is the longitude axis.

The axes are held in the netCDF file as vectors and we can retrieve
this (1D) data in a similar way to the 2D data:

varid = netcdf.inqVarID(ncid,’lat’);

http://www.seao2.info/mycgenie.html

further ... matlab and data visualization 101

lat = netcdf.getVar(ncid,varid);

varid = netcdf.inqVarID(ncid,’lon’);

lon = netcdf.getVar(ncid,varid);

in which we obtain the ID of the axis variable ’lat’, then retrieve the
axis data and assign it to a vector lat (and then likewise for longi-
tude). Do this, and confirm that you get plausible vectors represent-
ing positions along a longitude and latitude axis.

The final task would then be to take the 2 axis vectors, and create
a pair of matrices – one containing longitude values associated with
the 2D data points, and one containing latitude values associated
with the 2D data points. For this, you would need to use the function
meshgrid19. (We’ll re-visit this example once you have seen meshgrid 19 See subsequent section.

in action.)
The variable names of other data-sets that you might load and

experiment with in terms of plotting function, color scale, and any
other refinements that help visualise the data, include:

• ocn_sal – deep ocean salinity (units of per mil).
• ocn_O2 – concentration of oxygen in bottom waters (units of
mol kg−1).
• sed_CaCO3 – weight % of calcium carbonate in surface sedi-
ments.

In a related netCDF Example, we’ll extend the problem to 3D – 2
spatial dimensions (longitude and latitude) and one of time. The file
you will need to download to experience these wonders, is called
fields_biogem_2d.nc20. You are going to go through the same basic 20 The back-story is that this contains

the 2D surface ocean and atmosphere
fields form a model experiment in
which the climate system was spun-
up from rest and uniform values of
everything, so as time progresses, the
spatial patterns of the climate system
start to evolve and stabilize.

procedures of:

1. Opening the file.
2. Obtaining the ID of the variable (the name of the variable we
will use is called ’atm_temp’).
3. Accessing the data using that ID, i.e.:

data = netcdf.getVar(ncid,varid);

4. And closing the file.

How many dimensions does this array have?21 What are the 21 e.g. use size, or ensure that the Size
column in the Workspace window is
selected.

lengths along each dimension? Can you guess which dimension of
the 3 time might be?

The name of the time axis variable is ’time’, and you can extract all
the values (different years, in this case) along this axis by:

varid = netcdf.inqVarID(ncid,’time’);

times = netcdf.getVar(ncid,varid);

102 str = ’do you like bananas?’

Ideally, you should be able, given the 3D array that you have ob-
tained (from the data variable atm_temp), to specify and plot, the
1st model-projected surface air temperature distribution, as well as
the last distribution. And given that the variables for latitude and
longitude are also ’lat’ and ’lon’, you should be able to plot the
temperature distribution with appropriate axes (and contoured).

Finally, test your understanding to date, by creating an animation
of how the surface air temperature in the model evolves over time.22 22 You have everything you need – the

vector of years, and from this you can
determine how many different time
points (and 2D data slices) there are,
and hence the number of iterations of a
loop.

further ... matlab and data visualization 103

3.2 Further (spatial / (x,y,z)) plotting

As you have seen earlier – the simplest possible way of taking a ma-
trix of data values and plotting them spatially, as a function of (x,y)
location, is the function image. In effect, this is treating your data as
if it were an image – the data values being the ’color’ of each pixel
and the location in the matrix defining where in the image (row,
column) the pixel is. The problem with this is that information re-
grading what is on the x and y axes is lost, be this distance, lat/lon,
or some set of observed/experimental variables, or whatever. Instead,
the points are evenly spaced on both axes. Moreover, the raw values
are plotted and there is no possibility of interpolation/contouring
or smoothing. One could regard scatter plotting as an improvement
over this and a sort of x,y,z plotting, in as much as a 3rd dimension (z
data value) can be represented through color and/or symbol shape
and at time this can be quite effective. However, again, no interpola-
tion/contouring or smoothing is possible with scatter.

3.2.1 Contour plotting

For plotting true (x,y,z)/’3D’ plots (i.e. data values in 2 spatial di-
mension), MATLAB provides a wide variety of more formal ways of
plotting data spatially, including even the possibility of adding a 4th
dimension representing the data value (x,y,z,zz) (see Box).

x,y,z PLOTTING
MATLAB calls plots of a (z) value

as a function of both x and y, ’3D’.
Strictly, one could look at some of
these functions as 2D, as scatter can
plot a 3rd data (z) value as different
colors/shapes/sizes as a function of
both x and y ... Anyway, the most
commonly used/useful and fortu-
nately simple, functions which create
a 2D (x, y) plot but with contours in
the value of (z), are:

1. contour – Plots a figure with the
data contoured, with a range and
increment between contours that
is fully specifiable, color-coded or
not, and labelled or not. Options
are also provided for specifying
how the contouring is done (and
the data interpolated).

2. contourf – Similar to contour,
except in between the (now sim-
ple black, by default) contours, a
fill color is plotted and scaled to
the data value.

For a genuine 3D plot, with surface
height determined by the data in
the 3rd dimension of the array, col-
ors and/or contours in the data in
the 4th array dimension, suitable
functions include:
surf, surfc, mesh
(but are not considered further here).

For a feel of what you should be able to learn to achieve using
MATLAB – go to the following webpage. In this data repository
you can do things like re-plot with different longitude, latitude, and
temperature ranges. Overlay the coastlines, and other useful things
like that. You can also click through the different months of the year
to get a feel for how the surface temperatures on Earth change with
the seasons. The graphic produced from this particular website is not
particularly great, and you will learn to do at least as good as this.

imagesc

For a data array (matrix) A,

imagsc(A)

displays the data array as if a
bitmap, but unlike image (see ear-
lier), "uses the full range of colors in the
colormap".

As an example, load in the global topographic data file (etopo1deg.dat)
from the course webpage. This is the height of the (solid) surface of
the Earth relative to mean sealevel in meters, with the continents
having a positive value and the ocean floor, negative. The data is
conveniently on a 1° (longitude and latitude) grid. You could view
the resulting elements of the 2D array in the Variable window if you
like ... but at 360×180 in size, there may not be much of use you can
glean by visually inspecting the matrix23.

23 More useful then are the summary
details in the Workspace window, such as
the apparent absence of NaNs and that
the Min and Max Earth surface heights
seem plausible.

Try throwing the array into the image function see what happens
(hopefully something like Figure 3.1). It it had happened to come out
displayed upsidedown24, then you’d need to flip the matrix upside-

24 It doesn’t in this particular case.

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.MONTHLY/.temp/#nameddest=views

104 str = ’do you like bananas?’

down using the command:

etopo1deg=flipud(etopo1deg);

and if the Earth instead appeared on its side you will need to swap
the rows and columns (x for y axis):

etopo1deg=etopo1deg’;

using the transpose function. It is not unusual for a first plotting
attempt of spatial data to be incorrectly orientated and a little trial-
and-error to get it straight is perfectly acceptable!

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.1: Very basic imaging (image)
of an array (2D) of data – here, global
bathymetry.

This is not exactly the prettiest of images. You can distinguish
ocean (blue) from land (mostly brown, but other color pixels in
places). Fortunately, MALTAB provides a variant of this plotting
function, imagesc, that calculates the color scale to exactly span the
min/max values in the data. Try it (and get something like Figure 3.2
hopefully).

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.2: Slightly improved very basic
imaging (imagesc) of bathymetry data.

The function imagesc also enables the range of data values the
colo9r range corresponds to, to be set. Refer to help on this func-
tion and see if you can plot just the above-sealevel, i.e. land surface
heights, spanning zero (sealevel) to the maximum height25.

25 Don’t forget the function max.

Which sort of in a round-about sort of way also brings us to how
to set the color scale, which can be changed using the colormap com-
mand (see Box). Try out some different colormaps and re-plot the
global topography data.What scales work well and what do not?
Which scales help pick out details of e.g. ocean floor depth variation
and which help pick out simple land-sea contrasts. Think about what
one might want to highlight about global topography and what color
scale might be best for this purpose? colormap

MATLAB has a number of ’col-
ormaps’ built in – color scale that
determine the colors that correspond
to the data. The command to change
the colormap from the default is:

» colormap NAME

where NAME is the name of the col-
ormap. You can find a list of possible
colormaps in help on colormap (in
a table towards the bottom). But a
brief summary is:

• parula – the current MAT-
LAB default – chosen to provide
a wide range of color and color
intensity.
• jet – the old MATLAB de-

fault, but one which uses red and
green in the same color, which
should be avoided (why?).
• hot, cool – relatively simple

color transitions but useful – hot
is something like you’ll see in
publication figures.
• pink – another simple and at

times useful transition and from
dark (almost black) to white.

To return to the default colormap:

» colormap default

Sticking with global Earth surface topography, how else can we
display the spatial data? For instance we might want to interpolate
it, contour it, or simple get the longitude and latitude exes correct.
Note that only by luck, because this particular dataset is 1 degree
by 1 degree, the default axis scale in MATLAB when using image is
approximately correct, although note that ’latitude’ has been ordered
in reverse and it goes from 1 to 180 rather than -90 to 90 ... We’ll
explicitly address this shortly.

To start with, you can simply use the contour function (see Box),
passing only the matrix (of global topography values). Try this. Now
you might want to think about flipping the matrix up-down, and/or
left-right, as your plot should have come out looking like Figure 3.3.

Once you have fixed the orientation of the topography map, you
might play about with the color scale (colormap) as before. You
might also try the companion to contour – contourf. Re-orientating

further ... matlab and data visualization 105

the matrix, switching to a different colormap, and plotting using
contourf, might give you something like Figure 3.4.

OK, so a next refinement in plotting esp. maps and contour plots,
is firstly to specify the range of the color scale, as we may not want
the min-to-max range chosen by default by MATLAB, and the num-
ber of contours (e.g. in the topography example, they are pretty far
apart and it is difficult to make out much detail). Both of these fac-
tors can be addressed simultaneously, by giving MATLAB a vector
containing the value at which you want the contours drawn26. 26 By default: MATLAB determines the

minimum and maximum data values,
and draws 10 equally spaced contours
between these limits.

Taking the global topography data – lets say you were interested
only in low lying and shallow bathymetry, and wanted 20 con-
tours intervals. Assuming a range in topographic height (relative
to sealevel) of -1000 m to +1000 m, you should be able to deduce how
to create the vector(?)27 27 If not, it is:

» v = [-1000:100:1000];

contour There are various uses of
contour. The simplest is:

contour(Z)

where Z is a matrix. Thsi ends up
similar to image except with the data
contoured rather than plotted as
pixels (the ’simularity’ here is that
the x and y axis values simple are
the number of the rows and columns
of the data).

You can specify the values at which
the contours are drawn, by passing a
vector (v) of these values, e.g.

contour(X,v)

More involved and practical, is:

contour(X,Y,Z)

where X, Y, and Z, are all matrices
of the *same* size (there is impor-
tant). X and Y contain the x and y
coordinate locations of y data values
(contained in matrix Z). In the exam-
ple of a map – X and Y contain the
longitude and latitude values of the
data values in Z.

Similarly, you can add a vector v

containing the contours to be drawn,
by:

contour(X,Y,Z,v)

Do this and check e.g. by opening up the vector in the Variables

window. You should see the numbers from -1000 to 1000 in intervals
of 100. Why, for instance, can you not simply write:

» v = [-1000:1000];

??? (Or rather: why might this not be a good idea ... ?)
Having created a specific vector of contours to plot, try it out. OK

– so this is a little weird and maybe not so useful, but you get the
point hopefully. So try plotting the following:

1. Just above sealevel topography, up to 10,000 m, in increments
of 100 m.
2. Just the sealevel (coastline) contour ... trickier – create a vector
with a value at zero, and a value either side – one very high and
one very low. Use contour rather than contourf, although the
latter produces a lovely land-sea mask!
3. Convert the data matrix of value in units of m, to ft, and plot
the ocean floor (values equal to or below sealevel) in intervals of
1000 ft.
4. Finally – try some different color scales for the above. Think
about which color scales best help illustrate the data, and whether
contour or contourf is clearer. Also: how many contour intervals
is ’best’? You key is to make features clear, within the plot becom-
ing cluttered or overly detailed.

The final refinement in contour plotting we’ll look at is adding la-
bels to the contours. The command to do this is clabel (for ’contour
label’) (see Box). Now, before anything, there is a slightly complica-
tion. clabel needs to know details of the contours and graphics ob-
ject with which to do anything with. For the purposes of this course,
you don’t have to worry about the details of this, but simply need to
know the following:

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.3: Example result of basic
usage of the contour function.

106 str = ’do you like bananas?’

1. When you call contour (or contourf), 2 parameters are re-
turned, which so far you have not cared about or even noticed. We
now need them. So when you call either potting function, using
the syntax:

[C,h] = contour(...)

which saves a matrix of data to C, and a ID (technically: graphics
object ’handle’)to h.
2. When you call clabel, pass these parameters back in, e.g.

clabel(C,h)

(in its most basic usage).

Figure 3.4: Example usage of contourf,
with the hot colormap (giving dark-
/brown colors as deep ocean, and
light/white as high altitude).

0

0

0
0

0

0

0

0

0

0

00

0

0

0

0

0

00

0

0

0

0

00
0

0

0

0

0
0

0

0

0

0

0

0
0

00

0

0

0

0 0
0

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.5: Example usage of contour,
contouring only the zero height isoline,
and providing a label.

If you do this, in an earlier example of plotting just the zero height
contour, and now using the most basic default usage of clabel (as
above), you get, for good or for bad, Figure 3.5.

In the default usage of clabel, you’ll get a label added on every
contour that you plot. This ... can get kinda messy if you have lots
and lots of contours plotted. You may well not need every single
contour labelled, particularly if you also provide a color scale (see
below). So you can also pass in a vector to tell MATLAB which con-
tours to label. For example, if you have a contour interval vector:

v = [-1000:100:1000];

maybe you onyl want labels every 500m, so you’d use a vector:

w = [-1000:500:1000];

to specific the labelling intervals. The complete set of commands
becomes:

» v = [-1000:100:1000];

» w = [-1000:500:1000];

» [C,h] = contour(etopo1deg,v);

» clabel(C,h,w);

clabel

» clabel(C,h)

labels every contour plotted from

[C,h] = contour(...);

(or from contourf).
By prescribing and passing a vec-

tor v of contour intervals, you can
label fewer/specific intervals rather
than all of them (the default), e.g.

» clabel(C,h,v)

Finally – missing from our color-coded plots so far, is a color scale
to relate values to colors (although labelling the contours works as an
OK substitute). The MATLAB command is simple:

» colorbar

(and see Box for further usage). Try adding a colorbar, and in different
places in the plot. Refer to the Box to try and add a caption to it ...

further ... matlab and data visualization 107

colorbar

This almost could not be simpler:

» colorbar

plots the color scale! By default, is
places it to the RH sice of the plot. If
you wish for it to appear anywhere
else, use the modified syntax:

» colorbar(PLACEMENT)

where PLACEMENT is one of:
’northoutside’, ’southoutside’,
’eastoutside’, ’westoutside’. Note
that these are strings and so need
to be in quotation marks. (More
options are summarized in a table in
help.)

Finally, you can also add a label to
the colorbar, but only if you get hold
of its ID (’graphics handle’) when
you call colorbar, e.g.

» h = colorbar

will save the graphics handle in
variable h, which you can then muck
about with via:

c.Label.String = ’The

units of my lovely

colorbar’;

(Don’t fight this – use this syn-
tax to set a label for the colorbar –
don’t worry about what it means.
MATLAB keeps rather annoy-
ingly changing the way it does this
anyway :()

In this next Example, we’ll address the issue with missing/incorrect
lon/lat axis labels on the plots.

Each data point in the etopo1deg matrix should have one longi-
tude value (x-axis) and one latitude (y-axis) value associated with
it. It should hopefully be intuitive to you now ... that what we need
is a pair of matrices, of exactly the same size as the etopo1deg data
matrix – one holding longitude values and one latitude values. There
are various ways of creating the required matrices ’by hand’ (or in-
volving writing a program including a loop). All of them are tedious.
There is a MATLAB function to help. But it is not entirely intuitive28

28 DON’T PANIC!

... meshgrid.
Spend a few minutes reading about it in help. In particular, look

at the examples given to help you translate the MATLAB-speak
gobbledegook of the function description. You should be able to
glean from all this that this function allows us to create two a × b
arrays; one with the columns all having the same values, and one
with the rows all having the same values (exactly what we need
for defining the (lon,lat) of all the global data points). If not, and
probably not – see Box. And then lets do a simple example (adapted
from help):

» [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Y =

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

Here, we are taking 2 vectors – [1:3] and [10:14], and asking MAT-
LAB (very nicely) to create 2 matrixes, one in which [1:3] is repli-
cated down, until it has the same number of rows as the length of
[10:14], and one in which [10:14] is replicated across until it has
the same number of columns as the length of [1:3]. (Try it.)

It’ll become apparent *why* bother shortly. Honest.

meshgrid

The unholy syntax is:

[X,Y] = meshgrid(xv,yv)

Pause, and take a deep breath. On
the left – the results of meshgrid are
being returned to 2 matrixes, X and
Y. These are going to be our matrixes
of the longitude and latitude values
(in the particular example in the
text). So far so good(?)

On the right, passed into the func-
tion meshgrid, are two vectors – xv

and yv. Pause again.
What MATLAB is going to do,

is to take the (row) vector xv, and
it is going to replicate it down so
that there are as many rows as in
the vector yv. This becomes the
returned output matrix X. MATLAB
then takes the column vector yv, and
replicates it across so that there are
as many columns as in the vector xv.
This becomes the returned output
matrix Y.

In our Example – start by noting that the topography data is on a
regular 1 degree grid starting at 0° longitude. Latitude starts (at the
bottom) at -90° and goes up to +90°). We need a matrix containing
all the longitude values from 0° to 359° and latitude from -90° to 89°
.29 These matrices need to be the same size as the data matrix.

29 There is a slight complication with
this, which we’ll get to shortly, but note
that the data array is 360 elements (x-
direction) by 180 elements (y-direction).

108 str = ’do you like bananas?’

Maybe just do it and then understand what has happened after.
Create the longitude and latitude grids by:

» [lon lat] = meshgrid([0:359],[-90:89]);

View (in the Variables window) the lon matrix first. Scan through
it. Hopefully ... you’ll note that it is 360 columns across, and in each
column has the same value – the longitude. The matrix is 180 rows
’high’, so that there is a longitude value for each latitude. Similarly,
view lat. This also should make a little sense if you pause and think
about it, with the one exception that the South Pole latitude is at the
’top’ of the matrix – don’t worry about this for now ...

The only way to fully make sense of things now, is to use it. Re-
member that use of contour (and contourf) can take matrices of x
and y (here: longitude and latitude) values that correspond to the
data entries in the data matrix (etopo1deg). Re-load the topography
data in case you have flipped it about in all sorts of odd ways, and
then do:

» [lon lat] = meshgrid([0:359],[-90:89]);

» contour(lon,lat,etopo1deg);

Almost! Note that the x and y axis labelling is ’correct’ and partic-
ularly the y-axis, where latitude goes from -90 to 90 (although by
default MATLAB labels in intervals of 20 starting at -80 it seems).
But it also turns out that we do need to flip the data op-side-down.
We can actually do this in the same line as we plot:

» contour(lon,lat,flipud(etopo1deg));

Phew! (Figure Figure 3.6.)
0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

Figure 3.6: Usage of contour but with
lon/lat values created by meshgrid

function and passed in (and with the
hot colormap (giving dark/brown colors
as deep ocean, and light/white as high
altitude).

The final complication is that the data points in the gridded
dataset (matrix etopo1deg), technically correspond to the mid-points
of a 1 degree grid, not the corners. So if we were going to try and be
formally correct30, our vectors that we’d pass into meshgrid, would

30 Don’t worry about this for now –
grids will be covered more in subse-
quence chapters surrounding numerical
(environmental) models.

be:

» xv = [0.5:359.5];

» yv = [-89.5:89.5];

OK – another Example on this. Previously, you downloaded and
plotted monthly global distributions of surface air temperature. You
plotted these simply using pcolor (or image) and the results were
... variable. Certainly not publication-quality graphics and missing
appropriate longitude and latitude axes for the plots.

Make a copy of your original script (m-file) in which you created
the animation, and give it a new name. Edit your program, and

further ... matlab and data visualization 109

in place of pcolor, use contour or contourf (your choice!). Pass
in just the data matrix (of monthly temperature) when calling the
contour(f) function and don’t yet worry about the lon/lat values.
Get this working (i.e. debug it if not). You should end up with a
contoured animation (rather than a bit-map animation).

The problem with the axis labelling should be much more appar-
ent (than compared to the topography data, which was on a handy 1
degree grid already). So you need to make a matrix of longitude val-
ues, and one of latitude. using meshgrid. The grid is a little awkward:

1. The longitude grid runs from 0°E (column #1) with an incre-
ment of 1.875°; i.e., 0.000°E, 1.875°E, 3.750°E, ... up to 358.125°E
(column #192).
2. Latitude runs from 88.54196°S (-88.54196°N) at row #1, to
88.54196°N (row #94) with an increment of about 1.904.

so I’ll give you the answer up-front:

» lonv = [(1.875/2):1.875:360-(1.875/2)];

» latv = [-90+(1.904/2):1.904:90-(1.904/2)];

» [lon lat] = meshgrid(lonv,latv);

Now use the longitude and latitude values matrices, in conjunction
with contour(f), to plot the global temperature distributions ’prop-
erly’. Try plotting just one plot first, before looping through all 12
months.

At this point (before creating an animation), you might also ex-
plore some of the plotting refinements we saw earlier. For example,
as per Figure 3.7. Firstly – get the units of the temperature data array
into units of °C (or °F if you are into that sort of thing) rather than
°K. Either: assign the temp array data to a new array and make the
appropriate conversion from °K (all within the loop), or you can do
this subtraction on the line that you actually plot the data (i.e., within
the contour/contourf function), for example:

contourf(lon(:,:),lat(:,:),temp(:,:,month)-273.15);

would convert to °C as it plotted the data.
You can also get the plotting temperature limits and contouring

consistent between months and with greater resolution by adding the
following line (before the loop starts):

v=[-40:2:40];

and then to the contour(...) (or contourf(...)) function, add ,v to
the end of the list of passed parameters. This particular choice for the
vector v tells MATLAB to do the contouring from -40 to 40 (°C), and
at a contour interval of 2 (°C).. Play around with the min and max
limits of the range, and also with the contour interval to see what

110 str = ’do you like bananas?’

gives the clearest and least cluttered plot. For instance, maybe you
don’t want the low temperatures to go ’off’ the scale (the white color
in the filled contour plot).

Longitude

La
tit

ud
e

Climatological July surface air temperature

0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50

Figure 3.7: Example con-
tour plot including meshgrid-
generated lon/lat values. Result of
contourf(lon,lat,temp7,30), where
the data file was temp7.tsv, with some
embellishments.

Lastly – for any (or all) of the Examples above, you could add the
continental outline to the plot. Remember, to use hold on in order
to overlay the continental outline on top of the contour map without
replacing it in the Figure window.

It should be obvious that plotting the continental outline might
be something you want to us more than once. Sections of code that
might get used multiple times are commonly placed in a file (or spe-
cial section of the file) of their own and called from the main program
that needs it. For example, you could place the entire continental
outline plotting code, including loading in the data, in an m-file and
make it a function – in this case, taking no parameters as input, and
return no output.31 In the example of the looped animation, in the 31 Make sure that you do not open

a figure window with the figure

command with the function, or you will
not get a continental output overlay on
your plot, but rather a sperate Figure
window with just the continental outline
on.

sequence of code (within the loop), you will need to call your conti-
nental outline plotting function just after you have plotted the con-
tour (or bitmap) plotting function.

3.2.2 Using the MATLAB Mapping toolbox

You can do some nice spatial plotting with this data using the MAT-
LAB Mapping Toolbox. This should be available as part of the MAT-
LAB installation in the Lab (and also if you have downloaded and
installed an academic version on a personal laptop). Refer to the on-
line documentation for the Mapping Toolbox to get you started. The
key function appears to be geoshow. Try plotting the region encom-
passing the ’quake data, with a coastal outline (of land masses), and
the ’quake data overlain. Explore different map projections. Remem-
ber to always ensure appropriate labelling of plots.

further ... matlab and data visualization 111

3.3 Further data processing

This section contains a selection of further simple techniques for
doing useful stuff with data, as well as for better graphing.

112 str = ’do you like bananas?’

3.3.1 find!

So – a single MATLAB function gets its own sub-section, all to itself.
Either it’s really powerful and useful, or I am running out of ideas for
the text32. 32 It is really powerful and useful.

find

MATLAB defines find, with a basic
syntax of:

k = find(X)

as ’return[ing] a vector containing the
linear indices of each nonzero element in
array X’.

That means ... nothing to me. This
is going to have to be a job for some
Examples ... (in order to see what
find is all about).

Actually, find returns the indices
of the non-zero elements in the array
and if the array is a vector, what is
does is simple. For a matrix, MATLAB
counts the elements sequentially,
starting at the 1st row and 1st col-
umn, and working down the first
column, rather than provide the
(row,column) for indexing format
you are used to. Hence where the
’linear indices’ bit comes in.

Furthermore, ’non-zero’ indices
is really just code-word for ’true’.
So you are asking where the true
values occur in X. If X is the answer
to a logical or relational operation,
then find tells you the indices of the
elements that are true.

For example, 3 > [5 3 1] equates
to [0 0 1], i.e. only the first element
in the vector [5 3 1] is less than 3.
Hence:

find(3 > [5 3 1])

first evaluates the relational opera-
tion and generates a vector of true
and false values, and then find tells
you the index (or indices) where the
true values occur (here, ans = 3).

find ... finds where-ever in an array, a specific condition is met. If
the specific condition occurs once, a single array location is returned.
The specific condition could occur multiple times, in which case find

will report back multiple positions in the array.
What do I mean by a ’specific condition’? Basically – exactly as per

in the if ... construction – a conditional statement being evaluated
to true.

OK – some initial Examples.
Say that you have a vector of numbers, e.g.:

A = [3 7 5 1 9 7 4 2];

and you want to find the maximum value in the vector – easy.33

33 I hope so ... check back earlier (or
slightly later) in the course on max.

But ... you want to find *where* in the vector the maximum value
occurs. Why might you want to do this? Rarely do you have a single
vector of data on its own – generally it is always linked to at least one
other vector (often time or length in scientific examples). Trivially,
our second vector might be:

B = [0:7];

and is time in units of ms34. The question then becomes: at what time

34 Why? Why not.

did the maximum value occur? Obviously, this is easy by eye with
just 8 numbers, but if you had 1000s ...

We can start by determining the maximum value (in the data array,
A).

c = max(A);

Now, we use find to evaluate where in array A (here: a vector) the
element with a value of max(A) (equal to c) occurs. The following
should accomplish this:

find(A(:)==c);

Here, what we are saying is: take all of the elements in A and find
where an element occurs that is equal to c (the maximum value,
which we already determined). Try it, and MATLAB should return 5

– the 5th element in the vector.
Finally, if we assign the result of find to d, remembering that find

return an array index (or indices), we can then use d to determine the
time at which the value of 9 occurred, i.e. B(d) which evaluates to 4

(ms):
In this example, find returned just a single element, but if we

instead had:

further ... matlab and data visualization 113

A = [3 9 5 1 9 7 4 2];

The maximum value is still the same (9) but now ...

» find(A(:)==c)

ans =

2

5

What has happened is that find has determined that there are 2
elements in vector A that satisfy the condition of being equal to c (9)
and that these lie at positions (index) 2 and 5. The result vector, if you
assigned it to the variable d again, can be used just as before to access
the corresponding times in vector B;

» d = find(A(:)==c);

» B(d)

ans =

1 4

i.e. that the times at which the values of 9 occur are 1 and 4 (ms).
Any of the relational operators (that evaluate to true or false) can be

used. In fact – looking at it this way leads us to maybe understand
the MATLAB help text, because true and false are equivalent to 1 and
0, and find is defined as a function that returns the indices of the
non-zero elements in a vector. By writing A(:)==c we are in effect
creating a vector of 1s and 0s depending on whether the equality is
true or not for each element. You can pick apart what is going on and
see that this is the case, by typing:

» A(:)==c

ans =

0

1

0

0

1

0

0

0

(the statement being true at positions (index) 2 and 5, which is exactly
what find told you).

For instance, we could ask find to tell us which elements of A
have a value greater than 5:

» find(A(:)>5)

ans =

2

5

6

114 str = ’do you like bananas?’

(Inspect the contents of vector A and satisfy yourself that this is the
case.)

We can also use find to filter data. Perhaps you do not want val-
ues over 5 in the dataset. Perhaps this is above the maximum reliable
range of the instrument that generated them. Having obtained a
vector of locations of these values, e.g.

d = find(A(:)>5);

we can plug this vector back into A and assign arrays of zero size to
these locations – effectively, deleting the locations in the array, i.e.

A(d) = [];

They it, and note that the size35 of A has shrunk to 5 – all the other 35 Use the command length or view in
the Workspace Window.elements remain, and in order, but the elements with a value greater

than 5 have gone. You could apply an identical deletion (filtering) to
the time array (B(d) = []).

Play about with some other relational operators and criteria, and
make up some vectors of your own until you are comfortable with
using find.

For an Example of data-filtering – dig out the paleo-proxy
(paleo_CO2_data.txt) atmospheric CO2 data you downloaded ear-
lier. One further way of plotting with scatter is to scale the point
size by a data value. We could do with by:

SCATTER(data(:,1),data(:,2),data(:,2))

... except ... it turns out that there are atmospheric CO2 values of zero
or less and you cannot have an area (size) value of zero or less ...

NaN

... is Not-a-Number and is a
representation for something that
cannot be represented as a number,
although if you try and divide some-
thing by zero MATLAB reports Inf

rather than a NaN.
NaN can also be used as a function

to generate arrays of NaNs. The most
common/usage in this context is:

N = NaN(sz1,...,szN)

which will (according to help) "gen-
erate a a sz1-by-...-by-szN array of
NaN values where sz1,...,szN indi-
cates the size of each dimension. For
example, NaN(3,4) returns a 3-by-4
array of NaN values."

This leads us to a new use for find and some basic data filtering.
The simplest thing you could do to ensure that no zero value appear
anywhere, would be to add a very small number to all the values.
This would defeat the ’no zero’ parameter restriction, but would not
help if there were negative values and you have now slightly modi-
fied and distorted the data which is not very scientific. Substituting
a NaN for problem values is a useful trick, as MATLAB will simply
ignore and not attempt to plot such values.

So first, lets replace any zero in the CO2 column of the data with a
NaN. The compact version of the command you need is:

data(find(data(:,2)==0),2)=NaN;

But as ever – perhaps break this down into separate steps and use
additional arrays to store the results of intermediate steps, if it makes
it easier to understand, e.g.

further ... matlab and data visualization 115

list_of_zero_locations = find(data(:,2)==0);

data(list_of_zero_locations,2) = NaN;

What this is saying is: first find all the locations (row indices) in the
2nd column of data for which the value is equivalent (==) to zero.
Replace the CO2 value in all these rows (which is originally zero) to
a NaN (technically speaking: assign a value of NaN to these locations).
You have now filtered out zeros, and replaced the offending values
with a NaN and when MATLAB encounters NaNs in plotting – it
ignores them and omits that row of data from the plot.

Alternatively, we could have simply deleted the entire row con-
taining each offending zero. Breaking it down, this is similar to be-
fore in that you start by identifying the row numbers of were ze-
ros appear in the 2nd column, but now we set the entire row to be
’empty’, represented by []:

list_of_zero_locations = find(data(:,2)==0);

data(list_of_zero_locations,:) = [];

If you check the Workspace window36, you should notice that the size 36 Or:
» size(data)of the array data has been reduced (by 4 rows, which was the number

of times a zero appeared in the 2nd column).
We are almost there with this example except it turns out that

there is a CO2 proxy data value less than zero(!!!) We can filter this
out, just as for zeros. I’ll leave this as an exercise for you37 ... The plot 37 But you might e.g. use <=.

should end up looking like Figure 3.8. As another lesson-ette, given
that the circles are insanely large ... try plotting this with proportion-
ally smaller circles38. 38 HINT: you are going to want to apply

a scaling factor to the vector you passed
as the point size data.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 3.8: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Conversely, having inserted NaNs into an array, or having ended up
with NaNs in an array for other reasons, you can also search for (find)
the NaNs. The first thing to note in looking for NaNs, is you cannot
test for a NaN with a simple equality operator:

» a=NaN;

» a==NaN

ans =

0

which ... is odd. Having assigned a NaN to variable a, MATLAB ap-
parently is telling you have a is not equivalent to NaN. Really unhelp-
ful. In fairness, a does not have a value and is Not A Number and
hence MATLAB cannot determine whether or not it is equal to an-
other Not A Number. Better would have been for MATLAB to give
you an error ... still, it is what it is.

isnan

’isnan(A) returns an array the same
size as A containing logical 1 (true)
where the elements of A are NaNs and
logical 0 (false) where they are not.’

Meaning that you can pass any
dimension of array (e.g. vector or
matrix or 3D), not just a scalar (a
single value or 1 × 1 matrix).

To try and make amends, MATLAB provides a function to deter-
mine whether or not something is Not A Number – isnana. This
returns true (1) is the passed variable is Not A Number, and false (0)
if not, e.g.

116 str = ’do you like bananas?’

» isnan(a)

ans =

1

whereas:

» isnan(99)

ans =

0

because 99 is a number (integer) and not a Not A Number.

In the CO2 data, there are min and max uncertainty limit values.
One could color-code the points in a scatter-plot to represent either
the min or the max (perhaps try this first), but one on its own is not
necessarily much use. One could color-code by the difference, but
this is a function of the absolute value and one would expect large
uncertainty bars if the mean (central) estimate was high, and lower if
it were low. Perhaps we need the relative range in uncertainty? Can
you do this? i.e., scatter-plot the mean CO2 estimate (as a function
of time), but color-coding for the range in uncertainty as a proportion
of the value?

It turns out this is not entirely trivial because as you have seen,
the data is not as well behaved as you might have hoped. In fact, it
is just like real data you might encounter all the time! Before you do
anything – break down into small steps what you need to do with
the data, as this will inform what (if any) additional processing you
might have to carry out on the data. It should be obvious, that to
create a CO2 difference, relative to the mean, you are going to have to
divide by the mean value (the values in column #2 of the array). So
first off – if any of the mean values are zero, it is all going to go pear-
shaped (dividing by zero ...). Actually, equally unhelpful, or at least,
lacking in any meaning, may be negative values. If you inspect the
data (in the Variable window), there are both zeros and negative values
for mean CO2 proxy estimates. We need to get rid of these. Follow
the steps as before (i.e. identifying zero of negative values and either
removing the corresponding rows in the array, or setting the values to
a NaN). You may also have to process the min and max values should
they turn out to be the same. Likely, you are going to have to delete
all the rows in which: (1) column #2 values are zero or below, and
(2) column #3 and #4 values are equal (you could also try the NaN

substitution and see if it works out). (If you need a slight hint ... one
possible answer is here39 , but try and work it out for yourself.)

39 In this possible solution – all rows
in the array data, with mean CO2
values less than or equal to zero, are
deleted. Also, all rows for which the
max and min values are the same, are
also deleted.
» data=load(’paleo_CO2_data.txt’,
...’-ascii’);
» data(find(data(:,2)<=0),:)=[];
» data(find(data(:,3)==data(:,4)),:)
...=[];
» scatter(data(:,1),data(:,2),40,
...100*(data(:,4)-data(:,3))./data(:,2),
...’filled’);
» xlabel(’Time (Ma)’)
» ylabel(’Atmospheric CO_2 (ppm)’)

» title(’Proxy atmospheric CO_2’)

All that is missing now, is any indication of what the color scale
actually means in terms of values (and of what). MATLAB will add a

further ... matlab and data visualization 117

colorbar to a plot with the command ... colorbar. Although the color
scale gets automatically plotted with labels for the values, looking
at the plot, we still don’t know what the values are of (e.g. units).
We can label the colorbar, but MATLAB needs to know what we
are labelling. Each graphic object is assigned a unique ID when you
create them and which normally you know nothing about. We can
create a variable to store the ID, and then pass this ID to MATLAB to
tell it to create a title for the colorbar. To cut a long story short:

colorbar_id=colorbar;

title(colorbar_id,’Relative error (%)’;

It should end up looking something like Figure 3.9 in which you
can see the high relative uncertainty (bight colors) prevail at low CO2

values and ’deeper time’ (ca. 200-300 Ma). The colorbar title (label)
is maybe not ideal, nicer would be one aligned vertically rather than
horizontally. We’ll worry about that sort of refinement another time.

0 100 200 300 400 500

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

50

100

150

200

250

300

350

400

450

500
Relative error (%)

Figure 3.9: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

3.3.2 Other data filtering

In the example of the observational Riverside temperature data (data
file: temperature_riverside.txt), if would be nice to also be able to
use find ... which can indeed determine all the locations at which a
NaN occurs40, by e.g.: 40 Using isnan.

» find(isnan(temperature_riverside))

... but it is not obvious what to ’do’ with the resulting list of linear
indices for each cell containing a missing value (NaN). For instance,
you cannot remove a single cell from a a × b array for which both
a and b are > 1 (because an array must contain the same number
of elements in each row (and the same number of elements in each
column)).

What you need, is a way of automatically removing each and
every row in which one (or more) NaNs appear. There are two obvious
approaches:

1. use a loop

We could go through the array, row by row, and for every row in
which a NaN occurs, remove that row. The code would look some-
thing like:

%%% script to load in data and remove NaN-containing rows

% load dataset

data=load(’temperature_riverside.txt’,’ascii’);

% determine number of rows of data

n_max = length(data);

% initialize row count to the first row

118 str = ’do you like bananas?’

n = 1;

% loop through all rows

while (n <= n_max),

found_nans = find(isnan(data(n,:)));

if (∼isempty(found_nans));

% remove row

data(n,:) = [];

% remember to update total number of rows!!!

n_max = n_max - 1;

% NOTE: don’t update row count

else

% move on to next row

n = n+1;

end

end

2. cheat!

(not really)
There is a relatively new MATLAB function that achieves just this:

rmmissing. Slightly simpler code to do the same job would then look
like:

%%% alt script to load in data and remove NaN-containing rows

% load dataset

data=load(’temperature_riverside.txt’,’ascii’);

% remove problem rows!!!

data = rmmissing(data);

rmmissing – ’Remove rows or
columns with missing entries’.

In the simplest usage:

B = rmmissing(A);

Removes rows containing miss-
ing data elements from array A,
assigning the results to array B.

MATLAB defines missing data as:

• NaN - for number arrays
• <missing> - for string arrays
• blank character [’ ’] - for

character arrays
• empty character ” - for cell arrays

(see help for further information and
examples)

3.3.3 Basic (pretend) ’stats’

We are not going to delve into complex stats here. A variety of stats
related functions are included in the MATLAB Statistics Toolbox.
We” stick to some simply functions included as standard in the basic
package.

Useful basic stats-related functions include:

• sum – the sum of a vector of numbers.
• mean – the mean of a vector of numbers.
• min – the minimum value of ...
• max – the maximum value of ...

In addition to which, basic MATLAB functions also include:

• std – the standard deviations of a vector of numbers.
• var – the variance of a vector of numbers.
• median – the median value of ...
• mode – the mode value of ...

further ... matlab and data visualization 119

For instance, consider vector A (integers from 1 to 9, inclusive):

» A = [1:9];

Try out all of the above functions on the vector. Most of the values
you can pretty much guess. The mode of the vector is perhaps the
only one where it comes up oddly, because the mode of a set of val-
ues is defined as the most popular value, yet you have created only
one of each value in the vector. So all values are in theory equally the
most frequent and MATLAB simply returns the first.

So try adjusting the vector, adding an additional ’7’ at the end:

» B = [A 7];

Now what is the mode value of the vector B?
Sometimes you have have the situation where you have one or

more NaNs in the data. For example:

» C = [A NaN];

Now try out some of the same functions on vector C. What happens?
Why MATLAB does this and does not simply ignore NaNs, is any-
pony’s guess. I mean, what application could you possibly have
where when you ask for the mean of a vector, you are hoping to be
told ’NaN’? There are solutions.

1. Firstly – you could use find, to find and remove NaNs from data.
So if you have data that includes NaNs, you could simply filter
them out prior to processing the data. The function for determin-
ing whether or not an array element is a NaN, is isnan)see earlier
Box).
2. Or you could create a loop and test each element in turn as to
whether or not it is a NaN (again, using the isnan function).
3. The MATLAB functions listed above, all (most?) have an ad-
ditional optional parameter (see Box) that allows you to direct
MATLAB to ignore NaNs in the data.
4. Lastly, in the Statistics Toolbox, there are variants of all (most?)
of these functions that automatically ignore NaNs, such as nanmean

(the NaN-ignoring variant of mean)

Try out each of these solutions, applying them to the vector C (or a
NaN-containing vector of your choice).

All of these functions can also be used on 2D arrays (matrices) ...
with care. Consider the matrix:

» D = [1 2 3; 4 5 6; 7 8 9];

120 str = ’do you like bananas?’

(which has the same elements as A, just in a different configuration).
What happens when you ask for mean(D)? As per help (and the Box):
’If A is a matrix, then mean(A) returns a row vector containing the mean
of each column.’ So mean(D) is returning the mean of [1 4 7], [2 5

8], and [3 6 9]. Try transposing the matrix and then using the mean

function. You should see that you now get the mean of the individual
rows (rather than columns) of matrix D:

» mean(D’)

ans =

2 5 8

This goes for sum and all (most?) the rest of the functions.
If you need the total sum of all the elements in a matrix, or mean

of all the elements in a matrix, you can simply nest the functions:

» sum(sum(D))

or if you prefer breaking things down into sperate steps:

» E = sum(D); » sum(E)

However, note that std(std(D)) is not the standard deviation of all
elements in the matrix D. Why?

3.3.4 Some useful data manipulations techniques

This (failure to directly obtain the standard deviation of all the ele-
ments in a matrix) brings us to array manipulation, which will prove
useful in other contexts, such as graphing and particularly scatter
plots. In the previous example, std(std(D)) fails to give us what we
want. Ideally, we would like to have all the elements of D reconfig-
ured so that they were in a single vector format, and we could just
write e.g. std(D) and get a single, complete answer.

reshape

Use reshape to transform data in
an array of one shape (i.e. configu-
rations of rows and columns), into
another. MATLAB help is OK on
this and for the main usage of the
function, says:

’B = reshape(A,sz) reshapes A using
the size vector, sz, to define size(B). For
example, reshape(A,[2,3]) reshapes A
into a 2-by-3 matrix.’

In this usage you need to spec-
ify the rows and columns of the
resulting array.

NOTE that the array you turn it
into to, can have a single row, or
a single column (and hence be a
vector), but you need to specify this
with a 1.

Also note that the total number
of elements in the array must be
conserved, so if you turn an n × m
array into a p × p array, then it must
be true that:

n × m = o × p There is also a
convenient second usage, that will
attempt to automatically determine
the row or columns needed to make
n × m = o × p true, given either o or
p. For example:

B = reshape(A,2,[])

in the previous example will auto-
matically determine that 3 columns
are needed. Conversely,

B = reshape(A,[],3)

will determine that 2 rows are re-
quired to meet the n × m = o × p
criteria.

This usage is particularly conve-
nient for making vectors, e.g.:

B = reshape(A,[],1)

MATLAB provides the function reshape41 for the express pur-

41 See help and Box

pose of re-configuring the shape of an array, such as turning a matrix
into a vector, or vice versa. For instance, given the 3x3 matrix D in the
previous example:





1 2 3
4 5 6
7 8 9






how do we turn this into a 9x1 column vector?

further ... matlab and data visualization 121




















1
4
7
2
5
8
3
6
9




















You can use reshape in 2 different ways:

1. Firstly, you can explicitly specify the new array shape you
want.42 e.g. 42 Obviously, the total number of ele-

ments in the array must be conserved.
Dvector = reshape(D,[9,1]);

2. Alternatively, if you know you want a single column vector
and cannot be bothered to work out how many rows you need,
MATLAB will kindly pick up the slack via a slightly different
usage of reshape:

Dvector = reshape(D,[],1);

Here you are specifying one column, but ’whatever’ ([]) rows.

(Having created a vector containing all the numbers, you can now
find the standard deviation: std(Dvector).)

Obviously, if you want a row, rather than a column vector – ei-
ther transpose the column vector to row vector shape, or specify the
format of a row vector in the first place when using reshape:

Dvector = reshape(D,[1,9]);

Lastly, you might notice how MATLAB reads the elements from D
before creating the new array shape – elements are read from the top
of the first column downwards, before moving to column #2. Hence
why the order of numbers is 1 4 7 2 5 8 ...

What, instead, if you wanted a vector with the ordering:



















1
2
3
4
5
6
7
8
9




















122 str = ’do you like bananas?’

?
ANS: simply transpose the matrix before you reshape:

Dvector = reshape(D’,[1,9])

(or Dvector = reshape(transpose(D),[1,9])).

3.3.5 Data interpolation

Interpolation? What is it and why would you do it? We’ll answer this
via an example.

First download the ice-core dataset of atmospheric CO2 over the
past 800,000 years, recovered from the Dome C site on Antarctica
– filename icecore_co2.txt on the course webpage. Start by plotting
it (your choice of MATLAB plotting function) to see what you are
dealing with.43 43 First column / x-axis values are age,

in years, and 2nd column / y-axis
values are CO2 concentration, in units
of ppm.

So what if we wanted to know the average (mean) value of at-
mospheric CO2 over the last full glacial cycle, i.e. between now (age
zero) and the end of the previous interglacial period, about 115,000
years ago.

So firstly, you might use your most excellent MATLAB skills to
extract all the data corresponding to this specific interval – i.e. all the
ages (and corresponding CO2 values, between zero and 115,000 years,
or rather, less than or equal to 115,000 years. You should know this
requires the find function, and that the range of indices if given by
(assuming the data array you loaded in is called co2):

a=find(co2(:,1)<=115000)

which simply says: take all the elements in the 1st column of the
array co2 (co2(:,1)), and find the indices of all the elements with a
value equal or less than 115,000. To select just the first 115000 years of
data in co2 is then just a matter of:

co22=co2(a,:)

and check that this does indeed give you the correct portion of data
and has assigned it to the array co2new. (Maybe plot to confirm.)

It is worth pausing at this point – this is a common, and pow-
erful, usage of find, and of indexing, and you should be sure you
understand it before moving on. What this line is saying is: take both
columns of the array co2 – select all the elements (rows) defined by
the vector a, and assign the result to co2new.

OK, so we are progressing well towards answering the question –
the mean CO2 value over the last glacial cycle (last 115,000 years). In
fact – try answering that now (using mean). You should end up with a
value of 245ppm.44 The question is – do you ’believe’ it? Look at the 44 Note that MATLAB will report the

value in a scientific notation with a
power (here 102).

further ... matlab and data visualization 123

plot – do you think that value is representative of the average?
To make the problem more obvious – repeat the above exercise,

but now consider only the past 40,000 years. From the plot, high,
interglacial CO2 values characterise only the last 10,000 years or so,
with a transition over 5,000 years or so before that. From 15,000 years
and back to 40,000, CO2 is clearly bumping along its lowest values.
What would you guess the mean CO2 value is? Now try it. I get
249ppm CO2. Does that look correct to you, across the past 40,000
years?

If you were previously using plot to plot the data, now try scatter.
It should be much more obvious what is going on now – you have
very uneven data sampling in time – the bulk of the data is from the
last 10,000 years or so, and there are very few data points older than
about 22,000 years. When MATLAB calculates a mean, it is off the
data points, and an uneven data sampling will give a biased, unrep-
resentative value. We need to interpolate the data – place it on an
evenly sampled-in-time basis.

The MATLAB function to interpolate vector (1D) data is interp1

(see help/Box).

interp1

yi = interp1(x,y,xi)

will interpolate the y-axis values
located at x-axis points given by
the vector x, onto the x-axis points
given by vector xi. The resulting
interpolated y-values are assigned
back to yi.

By default the interpolation meth-
ods used is linear. For a different
interpolation method, use the varient
of the function:

yi =

interp1(x,y,xi,method)

where method is one of: ’nearest’,
’linear’, ’spline’, ’cubic’ ... (for
a fuller list, see help).

To extrapolate outside of the
domain spanned by the (original)
x-axis vector x, specify:

yi =

interp1(x,y,xi,method,’extrap’)

The first thing we need, to use interp1, is a vector of points in
time, that we are going to interpolate our data on to. As a rule, the
vector should ideally not extend in value beyond the minimum and
maximum values of the original axis, but we’ll ignore this for now.
We might pick ... 1,000 years as a simple sampling interval, and so to
create this new axis vector, we would write:

xi=[0:1000:40000];

assuming we stick with the 0-40,000 year interval. The interp1 func-
tion requires that you pass this vector, along with the original time
(x-axis) vector, and the original data (y-axis) vector, and will give
you a new data vector, with values corresponding to the time points
defined by xi. Like this:

yi=interp1(co22(:,1),co22(:,2),xi);

If you prefer to break things down45 so as the process is clearer, 45 And then you might also make
the variable names REALLY explicit,
and have xold, yold, xnew, ynew or
something.

maybe first extract and create the original data, x-axis (time) vector:

xold=co22(:,1);

and then the y-axis (data) vector:

yold=co22(:,2);

and then do the interpolation:

y1=interp1(xold,yold,x1);

124 str = ’do you like bananas?’

Either way, now scatter-plotting the interpolated data:

scatter(x,y);

should result in an obviously evenly-spaced data plot.
We could now use mean, except if you were paying attention,

because we extrapolated outside of the range of the extracted data
into the array co2new. But you know how to handle this situation, i.e.
removing the offending NaN rows, or use nanmean if you have access
to the required MATLAB toolbox.

Or, you could re-do the interpolation, but interpolate from the full,
original data array, which you know extends way past 40,000 years.
And ... specify the very first time point as 1,000 years rather than
zero. e.g.

x1=[1000:1000:40000];

y1=interp1(co2(:,1),co2(:,2),x1);

Well ... it doesn’t work, which is sort of pretty ’real world’ problem-
esk. The issue is that there is a duplicate year – i.e. 2 CO2 values with
the same year.46 How to find them? Well, you saw earlier the func- 46 The MATLAB interpolation function

requires a strictly monotonically in-
creasing (with no duplicates) old and
new x-axis vector.

tion mode, which return the most popular value in an array. If we
do:

» mode(co2(:,1))

ans =

409383

Ha ha, so the year 409,383 is duplicated.47 How to find this ... 47 The absence of duplicated year
values, or rather, there only being one
of each individual number, would
result in MATLAB returning the very
first value in the vector. The only
confusion here would be if the very first
value was itself duplicated ...

find(co2(:,1)==409383);

or if you prefer (and neater):

» rows=find(co2(:,1)==mode(co2(:,1)))

ans =

531

532

giving us the row numbers. We could be cleaver, and create a single
entry for this year, with the CO2 value formed of the mean of the
duplicate entries:

co2mean=mean(co2(rows,2));

replace the first CO2 value ...

co2(rows(1),2)=co2mean;

... and then delete the second.

further ... matlab and data visualization 125

co2(rows(2),:)=[];

Phew! Now try the interpolation again. Plot (scatter and/or
plot). Find the mean CO2 value over 0-40,000 (technically, now we
have restricted the data to 1,000-40,000). Does this seem more rea-
sonable? Repeat for 0-115,000 years (or 1,000-115,000 years). Also try
out carrying out an interpolation with closer spacing, say 500 or 100
years.

Finally, if you read the (Box or help) details about the function
interp1, the more recent MATLAB version releases enable you to ex-
trapolate outside of the data domain. SO instead of having to restrict
the xi vector to starting at year 1,000, you can start at year zero:

x1=[0:1000:40000];

y1=interp1(co2(:,1),co2(:,2),x,’linear’,’extrap’);

126 str = ’do you like bananas?’

3.4 Even nicer graphing and graphics

There are a bunch of simple MATLAB drawing and text placement
commands that can help improve the look and feel of scientific plots,
or even replace the provided plotting functions (i.e. you can create
your own bespoke plotting functions). There are also a variety of
options for altering the axes, axes tick-marks, axes tick-mark labels,
etc that can be useful.

further ... matlab and data visualization 127

3.4.1 Drawing lines and shapes

We’ll start with some simply line and shape drawing. At the com-
mand line – open a new figure window (» figure;). Before anything
else, do a » hold on;).

When MATLAB draws lines and shapes and places text, it needs
to know the coordinates of where to place things. It is not possible (I
think) to draw directly in the figure window – MATLAB needs a frame
to put things in, and the easiest way to do this is to create a set of
axes. So having opened a new figure window, set the range of the x-
and y-axes 48: 48 Here taking the example range of

0-100 on both axes.

» axis([0 100 0 100]);

The resulting figure is really not very exciting ... and should look like
Figure 3.10.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 3.10: Figure window with axes.

There are 2 ways to draw a line:

1. plot

Are you recall, plot will plot a sequence of (x,y) points, and by
default, join them up with a line. If we wanted a diagonal line,
from the original to the mid-point of the plot area, we could invent
a pair of vectors to define the two points we need – at (0,0) and
(50,50):

X1 = [0 50];

Y1 = [0 50];

and then plot the resulting points as a plot plot:

plot(X1,Y1);

You should now see something like Figure 3.11.49 49 If you find that the plot area has been
re-sized such that the x- and y-axes
now both go from 0-50, then you have
forgotten to do a hold on.

line To draw a simple (single) line
on a graphic:

» line([x1 x2],[y1 y2])

where x1 and x2 are the x-
coordinates of the start and end
position of the line, and y1 and y2

are the corresponding y-coordinate
values.

2. line

MATLAB provide a specific command for drawing lines ...
line. In its simplest usage, it is a little like plot, except taking
only a single pair of x- and y-coordinate values.

To use line to draw a 2nd line segment, starting at (50,50) and
terminating at (100,0), we create another pair of vectors to define
these points:

X2 = [50 100];

Y2 = [50 0];

and then draw it:

line(X2,Y2);

as shown in Figure 3.12.

128 str = ’do you like bananas?’

Obviously, both line segments could be drawn using plot, or both
with line.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 3.11: Figure window with single
line segment (via plot).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Figure 3.12: Figure window with a
second line segment (via line).

If you are just drawing, rather than annotating a plot with axes, then
you might want to turn off, or hide, the axes tick marks and tick
labels. To do this, we first need to find the special MATLAB ID of the
axes, which helpfully, because you only have one set of axes and have
just been using them, is the ’current axis’. To do this, we use the gca

function, which returns the handle (ID) of the axes:

» h = gca;

Having got the axis handle50, we can now ’set’ the properties of the

50 It is worth omitting the ; in order to
see the properties associated with the
axes, and in fact, it is worth clicking
on Show all properties to see a list
of everything that can be edited and
adjusted.

ALL these can be changed if you ever
want!!!

axes, using set:

» set(h,’XTick’,[],’XTickLabel’,”);

What this does is to tell MATLAB: take the graphics object with
the ID contained in variable h (which we just retried via the gca

function), and set (whcih is why we use the command set ...) the
following properties:

• ’XTick’,[] – set the number and position of tick marks on the
x-axis, to the contents of the empty vector [].
• ’XTickLabel’,” – set the labels applied to the tick-marks, to ”

(i.e. no text).

Actually, in this example, the 2nd graphics parameter set (the labels)
is sort of redundant, as there are no tick-marks in the first place ...

To see how different combinations of settings pan out, try:

» set(h,’XTick’,[0 50 100],’XTickLabel’,”);

(3 small inwards ticks, no labels)

» set(h,’XTick’,[0 50 100],’XTickLabel’,’cat’);

:o)
or:

» set(h,’XTick’,[0 50 100],’XTickLabel’,{’cat’, ’dog’, ’rabbit’});

where {’cat’, ’dog’, ’rabbit’} is actually a 3 string cell array.
All this insanity should be looking like Figure 3.13 (if we also

remove the y-axis ticks and labels51).

51 It is sufficient just to type:

» set(h,’YTick’,[]);

cat dog rabbit

Figure 3.13: (no comment).

An alternative way to create a figure to draw on, without having
to remove the axes ticks and labels etc etc, is to create the axes as
invisible. To try this – first create a new figure window.52

52 If you find yourself drowning in figure
windows, remember that close closes the
current window, and close all closes
all of them.

further ... matlab and data visualization 129

» h = axes(’Position’,[0 0 1 1],’Visible’,’off’);

Here, ’Position’,[0 0 1 1] specifies that the axes area should fill
the window, and ’Visible’,’off’ says to make the axes invisible.
(We keep a copy of the handle, h, just in case we need it later.) And set
the axes as usual:

axis([0 100 0 100]);

For some reason ... you need to do hold on only after creating axes
frame ...

The command set can be used in the context of any (I think?) graph-
ics object, i.e. component part of a final plot (e.g. axis, ticks, line,
point, etc). For example, in creating the line segment previously:

h = line(X2,Y2);

you could store a copy of the handle of that line segment. With this,
you can now change the properties of the line (after you have drawn
it).

• set(h,’LineWidth’,2.0);

will change the line width to 2.0 (points).
• set(h,’Color’,[1 0 0]);

will turn the line red, using the RGB (red-green-blue) notation:
[1 0 0]53. 53 Alternatively:

set(h,’Color’,’r’);• set(h,’LineStyle’,’:’);

will make the line dotted.

An obvious use for drawing lines on plots, is to annotate them. e.g.
placing a text label (we’ll see shortly), with a line pointing from the
text to a specific feature. You can do with with a simple line and
hence the line command.

It would be more handy and in fact common, to include an arrow
head to make clear that the line is pointing to something. This can
in theory be done by drawing 2 more, shorter lines, but is no fun
at all54. MATLAB hence provides the function quiver. quiver is 54 True fact – I have tried it :(

commonly used for plotting fields of arrows, but can equally be used
to create a single arrow – much like earlier you used plot to draw
just a single pair of joined up points and hence a line. However,
rather than take a pair of (x,y) points – one for the start and one for
the end, of the line, quiver takes an (x,y) location for the start of the
arrow, and then the length in the x and y directions.

Consistent with the previous example, we were starting the line
segment at (0,0), and then extending the line to (50,50). The length

130 str = ’do you like bananas?’

vector in this case is also [50 50]. So, given the specific syntax and
input parameter format required by MATLAB for this function, we
would write:

» quiver(0,0,50,50,0);

The last, 5th parameter (0), telling MATLAB not to auto-scale the
arrow.55 55 If it your arrow hard to make out –

try creating a new figure window. You
can also use cls to clear all the graphics
in the window (i.e. and not have to
re-generate the figure window.For shapes, you can draw rectangles with patch. This takes as pa-

rameter input, a vector of x-coordinate positions, then a vector of
y-coordinate positions, and as a 3rd parameter, the color for the ob-
ject.

So in our previous example, with the x- and y-axes going from
0-100, say we want to draw a square in the middle, 20 units on each
side. We could create our vector of x-axis coordinates as such:

» X1 = [40 40 60 60];

and for the y-axis ... some care is needed and often it might be help-
ful to sketch out the coordinate pairs and positions on a piece of
paper:

» Y1 = [40 60 60 40];

And then:

» patch(X1,Y1,’r’);

shown in Figure 3.14.

Figure 3.14: Square.

Or we could re-orientate the square:nits on each side. We could
create our vector of x-axis coordinates as such:

» X2 = [40 50 60 50];

» Y2 = [50 60 50 40];

» patch(X2,Y2,’c’);

shown in Figure 3.15.

Figure 3.15: Alt square.
patch is in fact much more flexible than I have shown so far, and

in fact, will draw any polygon. Consider this sort of slightly random
series of x and y coordinates:

» X3 = [20 40 60 80 60 40];

» Y3 = [50 60 50 60 40 30];

» patch(X3,Y3,’g’);

gives Figure 3.16.

Figure 3.16: Random polygon.

Try designing/playing about with different shapes. Perhaps sketch
them out on paper first and list down the coordinates before telling
MATLAB.

further ... matlab and data visualization 131

If you have the MATLAB Image Processing Toolbox, then you can use
the command viscircles to draw circles.

A crude alternative, is to scatter plot a single point ((x,y) loca-
tion), and set a large size value for the circle. For example:

» scatter(50,50,1000);

or filled:

» scatter(50,50,1000,’filled’);

3.4.2 Colors

You are already familiar with setting colors for lines, with the nota-
tion: ’r’, or ’b’ (for red, blue, respectively). This is nice and simple
and so totally fabulous ... except there are a limited number of colors
available in this notation (see Box).

MATLAB quick colors:

• y – yellow
• m – magenta
• c – cyan
• r – red
• g – green
• b – blue
• w – white
• k – black

Hence there is an alternative that enables a more exact specifica-
tion of color. In this particular scheme – red-green-blue, abbreviated
to RGB, you set the intensity of red, green, and blue, on a scale of 0 to
1. And supply this in a vector format to MATLAB. For example:

• [0 0 0] – zero intensity of all of R, G, B => black.
• [1 1 1] – 100% intensity of all of R, G, B => white.
• [1 0 0] – 100% intensity R, none for G and B => red.
• [0.5 0.5 0.5] – 50% intensity of all of R, G, B => grey.
• [0.5 1.0 0.5] – light green.

Play around with some RGB value combinations, plotting shapes,
or filled circles, e.g.

» scatter(50,50,1000,[0.25 0.75 0.25],’filled’);

A rendition of the RGB color scale is shown for reference in Figure
3.17.

Figure 3.17: RGB scale. By
SharkD - Own work, GFDL,
https://commons.wikimedia.org/
w/index.php?curid=3375025

3.4.3 Creating color maps

As mentioned earlier – MATLAB enables a range of different color
scales (colormaps) to be used in (esp. contour) plotting and provides
around dozen built-in possibilities (see Box).

colormap (2)
As mentioned earlier, MATLAB

has a number of ’colormaps’ built in,
which are:

• parula (default)
• jet (old default ... avoid ...!)
• hsv
• hot
• cool
• spring
• summer
• autumn
• winter
• gray
• bone
• copper
• pink
• lines
• colorcube
• prism
• flag

and which you can set by:

» colormap NAME

(or colormap(NAME)), e.g.:

» colormap ’hot’

(or colormap(’hot’))

Taking the earlier example of loading and plotting the global to-
pography data:

» data = load(’etopo1deg.dat’,’-ascii’);

» imagesc(data);

gives Figure 3.18, and

132 str = ’do you like bananas?’

» colormap(’hot’);

» imagesc(data);

gives Figure 3.18.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.18: Global topography plot-
ted with the default MALTAB color
scheme.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.19: Global topography plotted
with hot.

You can also define your own colormap. Colormaps are simply a
matrix of [RGB] colors. The most trivial colormap would be:

» cmap1 = [0 0 0];

» colormap(cmap1);

creates and applies a colormap containing a single color (black). Try it
... but ti is clearly not very useful ...

Better, would be:

» cmap2 = [0 0 0; 1 1 1];

» colormap(cmap2);

which creates and applies a color scale containing 2 colors - black
and white and when used for the topography data, gives Figure 3.20.
56

56 Remember, imagesc plots using the
maximum number of colors available,
and in this example, the mid value
between the deepest place in the ocean
and highest point on land, divides the
colors into black and white – within
specifying a particular scale, this color
separation does not occur at zero
(sealevel)

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.20: Global topography plotted
with a basic black+white dual color
scheme.

You can keep adding colors, e.g.

» cmap3 = [0 0 0; 0.5 0.5 0.0; 0.0 0.5 0.5; 1 1 1];

but this is a lot of effort to keep adding single additional colors.
What you really want to do, is to define end-member colors, and then
tell MATLAB to interpolate in between these. Recalling back a couple
of subsections:

» ynew = interp1(xold,yold,xnew);

takes the y-values (yold) at x-values xold, and interpolates onto the
x-values defined by the vector xnew (and assigns the new y-values to
vector ynew). For instance, if we have the following crudely spaced
data57:

57 In MATLAB notation:

xold = [0 3 7 13 16 22 30];

yold = [0.2 0.6 0.7 0.3 0.3

0.1 0.0];















0 0.2
3 0.6
7 0.7
13 0.3
16 0.3
22 0.1
30 0.0















and we wanted to create an interpolated dataset from 0.0 to 30.0 (in
x-axis values) in steps of 1.0, we would first create the new x-axis
vector that the data will be interpolated on to:

xnew = [0.0:1.0:30.0];

and then we would write:

further ... matlab and data visualization 133

» ynew = interp1(xold,yold,xnew,’spline’);

and obtain the interpolated data as shown in Figure 3.21. (Try this.)

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3.21: Comparison of sparsely
sampled data (points) compared with a
more finely spaced spline interpolation
(solid line). (x-axis and y-axis are both
unit-less.)

We can do something similar for the colormaps. Consider the sim-
ple end-member black-to-white white scale:

» cmap2 = [0 0 0; 1 1 1];

We can write this as points along a vector x (the axis not representing
anything in particular – the number of the color, or simply the nor-
malized distance between the extreme end-member colors), together
3 color vectors (for the separate red, green, and blue component val-
ues):

xold =

(
0.0
1.0

)

, rold =

(
0.0
1.0

)

, gold =

(
0.0
1.0

)

, bold =

(
0.0
1.0

)

and:

» xold = [0.0; 1.0];

» rold = [0; 1];

» gold = [0; 1];

» bold = [0; 1];

If we want to create a scale of 11 total (from 0.0 to 1.0 in steps of
0.1) different colors, we can create a new x vector to interpolate on to:

xnew = [0.0:0.1:1.0];

and then either interpolate the 3 color vectors separately:

rnew = interp1(xold,rold,xnew,’spline’);

gnew = interp1(xold,gold,xnew,’spline’);

bnew = interp1(xold,bold,xnew,’spline’);

or MATLAB allows us to interpolate all together if we first combine
the sperate vectors:

mapold = [rold gold bold];

and then:

mapnew = interp1(xold,mapold,xnew,’spline’);

If you now set the new colormap (» colormap(mapnew);) and re-
plot the global topography, you should get Figure 3.22.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 3.22: Global topography plotted
with a user-defined grey-scale.

3.4.4 Placing and making text nice

There is not much to placing text and specifying its properties. The
MATLAB command for writing a string to a figure window, is text.
That’s it! (see Boxes)

For instance, you could write:

134 str = ’do you like bananas?’

» text(25,25,’bananas’);

and the text bananas will appear at location (25, 25) on your plot.
Additional parameters can be added to change font, size, etc (see

Box), e.g.:

» text(25,25,’bananas’,’FontSize’,24,’Color’,[0 1 1]);

for big light blue bananas.

text

text(X,Y,STRING);

will write the string contained in
the variable STRING (or you can
pass the text as a string directly), at
location (X,Y).

Note that by default, MATLAB
alights the left-hand edge of the text
with the X coordinate position, and
the mid-point of the string vertically,
with the Y coordinate. i.e. the string
is left-aligned and centered vertically.

A variety of additional properties
can be set at the time, e.g.

text(X,Y,STRING,’FontSize’,12);

specifies a 12 pt font size. Other
common parameter options include:

• ’FontName’

• ’Color’

• ’Rotation’

• ’HorizontalAlignment’

• ’VerticalAlignment’

See MATLAB help for more details.

When MATLAB displays text, be
aware that there are a bunch of
special characters that may not come
out as the character you want. The
more common ones are:
_ – will make the following char-

acter a subscript, or a sequence of
characters if you place them within a
pair of curly brackets {}.
∧ – will make the following char-

acter a subscript, or a sequence of
characters if you place them within a
pair of curly brackets {}.

4

Further ... Programming

In this chapter we’ll get some (more) practice building programs
and crafting (often) bite-sized chunks of code that solve a specific,
normally computational or numerical (rather than scientific) problem
(algorithms) 1.

1 According to the all-mighty Wikipdeia
(and who am I to argue?) – an "algo-
rithm ... is a self-contained step-by-step set
of operations to be performed. Algorithms
perform calculation, data processing, and/or
automated reasoning tasks."

Search algorithms
Lets assume that you have a

function:
y = f (x)

There are two common cases that
you might want to solve (or approxi-
mate):

1. The value of x such that
the value of f (x) is minimized
(y ' 0).
2. The value of x such that the

value of dy
dx is minimized (first

derivative ' 0.

Lets further assume that you
can place some initial limits on
x : xmin ≤ x ≤ xmax .

A good place to start in both ex-
amples is to test the mid-point of
the limits: f (xmin+xmax

2) (In some
cases you might instead take the
log-weighted mean.)

In case #1 and assuming that dy
dx is

positive, if:
f (xmin+xmax

2) > 0

you replace xmax with xmin+xmax
2 (the

current tested value of x) and if:
f (xmin+xmax

2) < 0

you replace xmin with xmin+xmax
2 .

Keep repeating until the differ-
ence y and zero falls beneath some
specified tolerance.

In case #2, you need to test the
value of f (x) infinitesimally away
from f (xmin+xmax

2) to determine
whether the gradient is positive or
negative (assuming that you do not a
priori know the derivative function).
The idea here is to ensure that the
values of xmin and xmax correspond
to positive and negative (or negative
and positive) gradients. i.e. xmin+xmax

2
replaces xmin or xmax according to
which has the same sign of gradient.

136 str = ’do you like bananas?’

4.1 Nested loops

A helpful device, particularly when dealing with arrays of data in
MATLAB, is to nest loops – i.e place one loop inside another one.
(So far, you have seen single loops, and single loops with conditions
inside, but not nested loops.) A generic code for a nested loop might
look like:

% loop 1 start

for n=1:10

% loop 2 start

for m=1:10

% CODE

end

end

Here, the value of n cycles (loops) from 1 to 10 (i.e. the loop goes
around 10 times). Then ... for each value of n, the value of m also
cycles from 1 to 10. The code in the middle of the innermost loop is
then executed a total of 10 × 10 = 100 times.

Why would you do this? An Example.
Image you are programming a game of Tic-tac-toe (in fact we will,

in a later chapter!). The drawn grid might look like Figure 4.1.2

2 In this case, player x has obviously
already won. What was naughts think-
ing???

Figure 4.1: Tic-tac-toe game grid.In terms of MATLAB and computer programming, we might
create a representation of the grid, and assign 0 to unpicked squares,
a 1 for where a cross is, and a 2 for where a naught is, as per Figure
5.7 (because we cannot numerically represent an actual cross or circle
shape).

Figure 4.2: Tic-tac-toe game grid with
numerical codes overlain.

To store this information, we could create an array in which each
location would have a value of 0, 1, or 2, e.g.





1 2 0
1 2 0
1 0 0






and as per Figure 4.3

Figure 4.3: Tic-tac-toe game grid –
numerical representation.

OK – ignore the existence of the MATLAB function find, and lets
say that you want find the locations of the crosses – ’1’s in the array
code notation. You need to test each an every location in the array
(lets call it tokens) in turn for whether its contents is a ’1’ or not. We
could do this long-hand ...

if ((tokens(1,1) == 1) || (tokens(2,1) == 1) ||

(tokens(3,1) == 1) || (tokens(1,2) == 1) || ...

... and would get desperately tedious pretty quickly. And what if the
grid (array) was 100 × 100? You could have to have 10, 000 tests of an
equality in the if ...

further ... programming 137

The idea then is to loop through all the locations in the array. And
we do this by: For each row (in a loop), loop through all the columns.
Our code fragment would then loop like:

% loop 1 start

for row=1:3

% loop 2 start

for column=1:3

if (tokens(row,column) == 1),

...

end

end

and hence you thereby visit each and every array location in turn –
working across every column, for each and every row, as per Figure
4.4.

Figure 4.4: Tic-tac-toe game grid –
search order: columns then rows.

We could also carry out the search in the opposite order:

% loop 1 start

for column=1:3

% loop 2 start

for row=1:3

if (tokens(row,column) == 1),

...

end

end

(Figure 4.5) Then result would be exactly the same. TO some extend,
which axis direction you choose as the outer loop, is a matter of
personal preference3. 3 When arrays are small, the the overall

computational expense small.

Figure 4.5: Tic-tac-toe game grid –
search order: rows then columns.

You can also search in the opposite directions, e.g.

% loop 1 start

for column=1:3

% loop 2 start

for row=3:-1:1

if (tokens(row,column) == 1),

...

end

end

searches across columns, form left-to-right, but rows in the order
bottom-to-top. This perhaps looks a little like how you might visual-
ize a search on a (lon,lat) grid(?)

The concept is the same even for very large grids (where you
cannot easily draw a graphical representation to help you).

Nor, do the number of rows and columns have to be the same. For
example you might want to access information stored in an array
that has a cell location for every day of the year. In this case, you
might have 12 columns for the 12 months, and 31 rows so that you

138 str = ’do you like bananas?’

can accommodate the number of days in the longest month.4 In fact, 4 MATLAB does not allow the number
of rows to differ, from column to
column – a matrix must have a strictly
rectangular shape. MATLAB and
other programming languages allow
the creation of objects, that are more
flexible.

in this example, the inner loop – days – might have a different loop
maximum, depending on which month, e.g.

% month loop start

for month=1:12

% determine length of month

switch month

case 1, 3, 5, 7, 8, 10, 12

day_max = 31;

case 4, 6, 9, 11

day_max = 30;

case 2

day_max = 29;

end

% day loop start

for day=1:day_max

% CODE

end

end

To test your understanding ... for the matrix:

A =













4 66 13 42 36 14
33 4 0 28 11 22
18 26 7 1 5 19
12 9 23 30 7 2
0 0 2 0 15 33
14 42 17 27 8 0













determine ... NOT using find (or similar), but rather a nested loop,
how many occurrences there are of values 5 6: 5 Hint: Before the next loop starts, you’ll

need to define a parameter to keep
count of the number of values you find
that meet the criteria, and set it to zero.
Then in the (nested) loop, increment the
counter variable by 1 each time you find
a value matching the criteria.
6 Also hint: At the start of the script (af-
ter your initial descriptive comments!),
define A.

1. greater than 9

2. greater than 9 but less than 20

Make this a new script m-file program. Display (disp) the result at
the end (after the (nested) loop has ended).

Next: for the simple tic-tac-toe (3 × 3) grid, at each (column,row)
location, you are going to draw a colored square.

Firstly, at the start of a new script m-file, add:

% **************************
% YOUR COMMENTS ON WHAT THE PROGRAM DOES

% **************************

further ... programming 139

% create a new figure window

figure;

% create a set of invisible axes that will the window

fh = axes(’Position’,[0 0 1 1],’Visible’,’off’);

% scale the axes

axis([0 3 0 3]);

% hold on!

hold on;

Here:

• The line starting fh = ... creates a plotting area with no axes vis-
ible, and filling the Figure window area ([0 0 1 1] in normalized
units). The handle to this is returned (variable fh), just in case we
ever need it later.

• Then, the axes are scaled for convenience – there are 3 rows and 3
columns in the grid we want to create, so a ’reasonable’ choice is
to set axis([0 3 0 3]), although we need not have.

• You know what hold on does, right ... ?

You can then add (after) the nested loop code framework:

% loop 1 start

for column=1:3

% loop 2 start

for row=1:3

...

end

end

To draw a square, the easiest function to use is patch (see earlier).
For the coordinate parameters to be passed to patch, if your current
location in the loop is column=1, row=1 – now taking for convenience,
a notation and orientation where we start counting from the bottom
left-hand corner (unlike in the previous notation and orientation) –
the coordinates for the square are:

(0, 0), (1, 0), (1, 1), (0, 1)

and for which patch will take input:

patch([0 1 1 0], [0 0 1 1],’black’);

(remembering that patch takes a vector of all the x-coordinates as a
1st parameter, and then a vector of all the y-coordinates as the second
parameter)

If you do not more than this, you end up looping through the
(3 × 3) grid, but only even (re-)plotting the same square in the bottom
left-hand corner ...

The mental leap is to generalize the problem and to notice that if
your column (x) and row (y) values are held in variables column and
row, respectively, you could write:

140 str = ’do you like bananas?’

patch([column-1 column column column-1], ...

[row-1 row-1 row row],’black’);

Complete the code and try this. You should end up with 9 black
squares in a (3 × 3) grid ... which will simply look like a huge black
square filling the figure window, as per Figure 4.6 ... :o)

Figure 4.6: 3x3 grid of black squares ...

You could make it a little more interesting by creating a color
value derived from the values of the column and row counters. e.g. if
you write:

patch([column-1 column column column-1], ...

[row-1 row-1 row row],color);

(substituting a specification of ’black’ for whatever color corre-
sponds to the value contained in variable color), and immediately
before this (still in the loop) write:

color = (column + row);

Re-running the script, you now get Figure 4.7.

Figure 4.7: 3x3 grid of colored squares.

You might notice that the colors are the same along diagonals,
because you get the same value of color whether you are at location
(1, 2) or (2, 1). We could make the location colors more distinct by
modifying how we derive a value for color, e.g.

color = (column∧2 + row);

(Figure 4.8)

Figure 4.8: (yawn)

Maybe play about a little creating different patterns of colors by
means of different equations combining the values of column and row.

As a final example, consider teh chess board. A chess board
consists of squares in a 8 × 8 grid. The squares alternate black and
white. To define 8 squares (points) along the x-axis on the bottom
row, you’d write something of the form:

for m=1:8

% SOME CODE GOES HERE

end

Now, if you wanted to define 8 squares along each column (the y-
axis), at each and every x-axis value, you’d need to loop through all
the rows, So you need a loop in e.g. n, inside the loop for m:

for m=1:8

for n=1:8

% SOME CODE GOES HERE

end

end

further ... programming 141

Follow this through to satisfy yourself that for each and every value
of m from 1 to 8, n loops from 1 to 8, and hence visits every point in
turn of a 8 × 8 (n,m) grid.

Actually, now we have got this far, it is good practice to consider
how we’d define the black and white squares. We’ll assume that
black is represented by ’1’ (true) and white by ’0’ (false) and create a
board (array) of all white squares to start with, i.e.

board = zeros(8);

(Refer to help or earlier for the syntax for help on the function
zeros.7)

7 You could alternatively write this:

board = zeros(8,8);

mod

Not ... the opposite of rocker
(which doesn’t exist in MATLAB
anyway) but short for modulo.
Wikipedia helpfully tells us:

"In computing, the modulo operation
finds the remainder after division of one
number by another (sometimes called
modulus)."

Or in MATLAB-speak:

b = mod(a,m)

"returns the remainder after division of
a by m, where a is the dividend and m is
the divisor".

It turns out that as long as a is pos-
itive, you can use to test for whether
an integer a is even or odd by:

b = mod(a,2)

When the returned value b is 0, a is
even, and when b is 1, a is odd.

If we start with a black square (’1’) at the bottom left, we could
define an algorithm for creating the grid as: odd column number
squares are black, as long as the row number is odd, otherwise they
are white.8 So to implement this in code – as we loop through both

8 Look up a picture of a chess board to
convince yourself that this works.

column (m) and row (n) on the board, we test for the column number
being odd and row number odd, OR, the column number being
even and row number being even. If true, the square is defined as
black. The only tricky bit is to determine whether the row or column
number is even or odd. We do this by testing whether there is any
remainder after dividing by 2, using the function mod.

The complete code looks like:

board = zeros(8);

for m=1:8

for n=1:8

if ((mod(m,2)>0 && mod(n,2)>0) || (mod(m,2)==0 && mod(n,2)==0))

board(n,m) = 1;

end

end

end

Spend a little time decoding the if statement for practice ... If you
want to see that it works – code it in a new m-file, run it, and then
plot up board by e.g. using imagesc (cf. Figure 4.9). Beautiful.

Figure 4.9: Chess board grid pattern.

142 str = ’do you like bananas?’

4.2 Algorithms and problem-solving

This (algorithms and problem-solving) is not something that can
really be ’taught’ per se, but rather practised and aided by a logical
state of mind. We’ll go through a series of step-by-step examples.
Hopefully this will also illustrate some general coding approaches.

4.2.1 Example #1: max(!)

So yes, this is a built-in function max in MATLAB, but suspend dis-
belief for a moment ... and pretend that there is not one. What if we
wanted to create one, i.e. function that is passed a vector of numbers,
and returns the maximum value?

So already, from the definition of the problem, you know to create
a new m-file a define a function, that takes as input a variable (a
vector), and returns the largest value in that vector.9,10 9 Note that you do not need to specify

that the input variable is a vector, just
that there is a variable input.
10 Here, my personal naming conven-
tion has:
s_out – the output variable, and s for

scalar
v_in – an input variable, with v

designating vector ...
(This is perhaps, overkill, but leads

little room for any confusion later.)

function [s_out] = maxxx(v_in)

% maxxx

%

% Takes a (single) vector as input, returns the maximum value.

end

You have hence created a (empty) shell for the program. You could
try calling it/running it at the command line ... to check there is no
problem so far, although it is clearly not going to do anything. You
could extend your basic testing by returning just the first element of
the input vector, i.e., before end, add:

s_out = v_in(1);

You are still not solving the problem, but in this step, you have
now demonstrated that your function can take in a (vector) input,
do something with it, and set the output variable (/return a scalar
output). Which in this example just happens to

be the first element of the vectorOK, so ... we need to devise an algorithm to find the largest value
in the vector v_in. The first piece of potentially useful information
you can find, is the number of elements in the vector. You can obtain
this via the function length11. 11 It turns out that length does not care

about the orientation of a vector, and:

A=[1:10];

length(A)

gives the same answer (10) as:

A=[1:10]’;

length(A)

So at the top of the function (below the comment lines), you could
create a variable, set equal to the number of elements in the vector
that you are going to have to process:

nmax = length(v_in);

What about the next part or structure in the program? You are
going to need to look through all the elements of the vector if you are

further ... programming 143

going to find the maximum value, so presumably a loop is required –
one that goes from the first to last element of the vector:

for n = 1:nmax,

end

The crux of the problem is recognising that you need to keep a
running maximum, or a local or temporary maximum value, that
is your maximum value so far, as you progress through repeated
iterations of the loop. With this value, you are going to test whether
each element of the array is larger than it – if true (the element in
the vector being tested is larger than the current or largest-to-date
maximum estimate) – you are going to replace the current maximum
estimate, with the vector element (that you have just found is larger
than your largest so far). We could call this variable, e.g. temp_max to
indicate that is it temporary and not necessarily the largest value of
the vector as a whole.

Within the loop, the test we make is therefore:

if (v_in(n) > temp_max),

temp_max = v_in(n);

end

Almost there. Run the program/function and see what happens.
MATLAB is unhappy about the line where the value of temp_max

is being tested against v_in(n). It may be obvious to you when (in
terms of loop iterations) this is occurring. If not, why not, just after:

for n = 1:nmax,

disp(lay) the value of n. OR, add a breakpoint on the problem line,
so that MATLAB will pause just before the line that gave the error, is
executed.

Either way, you should have found that the value of n is 1, i.e. the
error is occurring on the very first iteration of the loop. Why? As
per the error – MATLAB does not know what temp_max is, and this
occurs, if you have not yet assigned it a value.

So our problem is one of initialization – we need to give temp_max

an initial value, so that when the first iteration of the loop occurs,
and the first element in the vector is accessed, there is something to
compare it with.

There are 2 (probably 99999999) ways to go about this:

1. Seed the value of temp_max with a value so improbably small,
that you are betting that any conceivable array of numbers with
have a number greater than this.12 For example, before the loop 12 There are obvious dangers here,

should a vector of all insanely low
values be given as an input. You could
for instance determine whether any of
the values were higher than the seed
value, and if not, report or return an
error message. So in this case, even if
the function did not work, you would
be told why. A bit like MATLAB
functions in general, no?

starts, you might write:

144 str = ’do you like bananas?’

temp_max = -999999999;

And then go through testing all nmax elements in the vector.
2. Better, would be to initialize your temporary maximum vari-
able with the fist element in the vector. But then, you need to
recognise that you need not test this against the first element, and
the loop can start at 2:

nmax = v_in(1);

for n = 2:nmax,

Finally, remember to set the output variable equal to the maximum
value that you find.13 13 After the loop ends.

The following is the complete working code of the problem14: 14 Note the liberal use of comments, and
also the indentation of the code within
the for loop as well as within the if

conditional.
function [s_out] = maxxx(v_in)

% maxxx

%

% Takes a (single) vector as input, returns the maximum value.

% Determine number of elements in vector

nmax = length(v_in); % Seed temporary (running maximum)

variable

temp_max = v_in(1);

% Loop through all but the first element in the vector

for n = 2:nmax,

if (v_in(n) > temp_max),

temp_max = v_in(n);

end

end

% Set function (return) value

s_out = temp_max;

end

There are 2 further testing or debugging (if you have issues) steps:

1. Firstly, simply go through in your mind, what you think hap-
pens on each iteration. Writing down how the values, e.g. of the
temporary variable change on each iteration, is a good idea. Obvi-
ously you can do this prior to writing the code, to give you an idea
of how it will work (or not).
2. Create a series of test arrays, or varying length, ordered, or
random numbers, integers and/or reals, plug them in, and see if
your function works each and every time.

If you are passably happy with that – write a (new) function that
finds the minimum element in a vector array.15

15 This is in fact employed a little later,
where it is referred to as minxx.

further ... programming 145

Then ... as a 3rd function – return a second variable from the func-
tion – equal to the number of elements that are equal maximum.16

16 If we were cheating, and we are
not ... then one could use the built-in
MATLAB functions as so:

length(find(A==max(A)));

Which says ... find the elements in A,
equal to max(A) and determine the
length (number of elements) of this
resulting vector (find(A==max(A))) ...

(i.e. if the maximum value appears 5 times in the input vector ... you
additionally return the number ’5’.)

The structure of the function will now look like:

function [s_out1 s_out2] = maxxxes(v_in)

% maxxxes

%

% Takes a (single) vector as input, returns the maximum value

and the number of elements equal to that value.

end

which passes back two variables.
The first variable (s_out1) – the maximum value of the elements

in the input vector, is as before. You need to work out the code to
determine the value of s_out2. The key to this, is recognising that
previously, when the value of temp_max was equal to v_in(n), you
did nothing, as you were only interested in v_in(n) > temp_max

and hence updating (replacing) the current value of temp_max. What
you need is an elseif statement, and test whether you have found
a second value in the vector equal to temp_max. If so, you need to
somehow record this occurrence.

A partial solution might look like:

% Loop through all but the first element in the vector

for n = 2:nmax,

if (v_in(n) > temp_max),

temp_max = v_in(n);

temp_n = 1;

elseif (v_in(n) == temp_max),

temp_n = 2;

end

end

where temp_n is where we keep a track of the number of maximum
elements – setting this to a value of 1, when we first find a new
largest value in the vector.

But this does not quite work. Why? Try throwing some test vectors
at it, e.g.

A = [1 5 7 3 8 2 4];

B = [1 5 7 3 8 2 4 3 5 8];

C = [1 5 7 3 8 2 4 3 5 8 7 7 8];

In particular – is the answer to C ... right?
So far, we have accounted for a duplicate (maximum) value, but

the solution (and code algorithm) is not general, i.e. we do not handle
the general case of there being n duplicate maximum values in the
vector.

146 str = ’do you like bananas?’

% Initialize duplicate counter

temp_n = 1;

% Loop through all but the first element in the vector

for n = 2:nmax,

if (v_in(n) > temp_max),

temp_max = v_in(n);

temp_n = 1;

elseif (v_in(n) == temp_max),

temp_n = n+1;

end

end

Here we have to seed/initialize the value of temp_n because we start
by setting temp_max as equal to v_in(1), i.e. we already have 1 in-
stance of the value of v_in(1) being the maximum, by the time the
loop starts.

Again – a key to programming and developing algorithms, is to
follow the behaviour of the code in your head (as well as adding
break points and testing with a variety of inputs, including extreme
assumptions). For instance – assume that the 2nd element in the
vector was equal to the first, and follow the code around – check that
the value of temp_n is incremented appropriately and the output,
if the vector was only 2 long, or there were no larger values in the
remainder of the vector, is right. What if the 1st 3 elements were all
equal? How does that pan out in terms of behaviour and output?

In general – if the code works for a selection of extreme assump-
tions, it will generally work. Use a combination of your head (and
paper and pencil) and testing (and debugging if necessary).

4.2.2 Example #2: sort(!!)

(And yes, MATLAB also has functions for sorting values in an array
...)

In this second set of Examples – imagine that you have a vector
of numbers, and you wish to sort them into ascending order. The
function would take a vector as input, and return a vector of the
same length as output, comprising all the values of the input vector,
but now sorted in order.

How to go about this?
Well – first create the function framework, as before:

function [v_out] = sortx(v_in)

% sortx

%

% Takes a (single) vector as input, returns a vector of the

same length, with all the value sorted in ascending order.

further ... programming 147

end

So far ... so good. What do we need to do within the function?
Well, we could start by finding the minimum value in the array, and
placing it at the start of a new array – the one that will form the
output.

% Initialize the output vector (as empty)

v_out = [];

% Find minimum value

x = minxx(v_in);

% Update output vector

v_out = [v_out x];

Here – one way to build up an array for the output, is to append
to (concatenate) a value to an existing array. The array must start
defined as something ... here, as empty ([]).17 17 Also in this code fragment – you need

to have created that minimum finding
function ...

This will work, but only return the lowest (1st) value, rather than
sorting them all. You might spot that the 3rd through 6th lines
of code, need to be repeated – i.e. you keep calling the find-the-
minimum function, and adding this value to the output vector. But
if this is all you did, the program would run forever and return an
infinite number of repeats of the minimum value (or give you a vec-
tor the length of the input vector with identical (minimum) values
in, depending on how you set up the loop (e.g. for or while)) – this
is because once you have found the minimum value, and added it to
the output array, the value still exists in the input array and will be
found again (and again and again) if you create a loop around it.

The key, at least, the key to creating the particular algorithm/so-
lution I will outline next, is to remove the element from the input
array, that you have just used. e.g. if we find a ’1’ and this is the
lowest value, after it has been added to the output array, it needs to
be deleted from the input array. This means that we need to know
’where’ in the (input) array the minimum value was, so you next task
is to modify your minxx function, to return the position in the vector
that the minimum value occurred at (in addition to the value of the
minimum value itself).18 i.e. your minxx (or whatever you called it) 18 HINT: When you find a new mini-

mum value in the loop, the index (the
position of that minimum value) is
n. So you need to create a temporary
variable that you update with the value
of n, only when a new minimum value
is found in the loop. You will see this
variable with ’1’, consistent with assign-
ing the first minimum value from index
1 in the vector.

function needs to look like:

function [s_out1 s_out2] = minxx(v_in)

where s_out1 is the minimum found value, as before, and s_out2 is
the index position of that number in the vector.

Having obtained the index of the minimum value, you can delete
this entry from the input array by:

v_in(m) = [];

148 str = ’do you like bananas?’

where m is the index.
The code within your modified sort (not minxx) function, might

look like19: 19 Note the notation for catching the
2 returned values from the minxx

function:

[x m] = minxx(v_in);

% Determine number of elements in vector

nmax = length(v_in);

% Initialize the output vector (as empty)

v_out = [];

% Loop through all but the first element in the vector

for n = 1:nmax,

% Find minimum value

[x m] = minxx(v_in);

% Update output vector

v_out = [v_out x];

% Remove used element

v_in(m) = [];

end

For (easy) fun: create a function that sorts in descending order.

For even more (but less easy) fun: create a function that sorts in
descending order ... but ... excludes duplicate values, i.e. no 2 values
should be the same in the output vector.20 20 HINT: modify the maxxx function to

return the index of all the elements
having a value equal to the maximum
value. This will be a vector, which will
be appended to as the loop progresses,
with each value being assigned the
current value of n (the position of the
maximum value in the vector).

4.2.3 Example #3: a gridded problem

We are going to base this next example around the (modern) topogra-
phy of a simple Earth system model (GENIE).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.10: Ocean topography (blues
through red) in the ’GENIE’ Earth
system model. Land is shown in brown.

Load in the file: model_grid.txt21 in the ’usual way’. Briefly check

21 From week #1.

out the new array in the Variable window. If you were told that values
1 through 16 represented ocean cells22, and values above 90, land23

22 If you must know (but you don’t need
to know it at all): the lower the value,
the deeper that part of the ocean, with
1 representing the very deepest ocean
floor, and 16 the shallowest.
23 The values: 91, 92, 93, 94, represent
different compass directions of runoff
on land. (another not interesting and
barely useful fact.)

– it is possible to make out the shape of the continents visually in
the pattern of numbers in the array (albeit they are rendered at low
spatial resolution). The grid of numbers can also be visualized using
the image function (see earlier). See if you can specify the scaling in
such a way that you can render the ocean topography reasonably
well, e.g. as per Figure 4.10.

What you are going to do is to draw this grid ... using the patch

function. We’ll simplify things and assume that each cell is 1 unit
wide and 1 unit high – i.e. the grid goes from 0-36 units in both
longitude (x-axis) and latitude (y-axis) directions. In fact – lets forget
entirely about longitude and latitude for now.

Ultimately, the point of this exercise is to draw land as grey cells,
and assign the ocean cells a color according to their depth. But lets

further ... programming 149

start by drawing a grid of cells (of any color).
So how to start? Make yourself a new script (.m) file. I guess open

a figure window, set hold on, and set the axes from 0-36 in both direc-
tions.

To begin with, simply draw a single cell (the first cell of what will
become the grid). If should appear at the bottom left corner of the
plotting area. If you find you have an odd shape appearing ... you
have got a set of 4 y-coordinate values that is inconsistent (/out of
sequence) with the y-coordinate values. Draw out the coordinates on
a piece of paper and/or write down the 4 vertices of the rectangle, to
help visualize.

You know that you will need to draw a row of 36, 1 × 1 squares
using patch. So, make a loop ...

for i = 1:36,

...

end

(here: i for longitude). And then draw a series of squares, each with
their right-hand edge corresponding to the value of i (so the left-
hand edge is at (i-1)). For now, draw only a single row of cells,
with the y/latitude-axis (which I will use index j for) from 0 (bottom
edge) to 1 (upper edge).24 24 To make the individual cells more

apparent, you can specify a different
edge color, and also make the edges
thicker, e.g.

patch([0 0 1 1],[1 0 0 1],...

’k’, ...

’EdgeColor’,’red’, ...

’FaceColor’,’yellow’, ..

’LineWidth’,2);

(why it needs the 3rd, color option set,
when the face and edge are set sepa-
rately ... is one of life’s little mysteries
...)

The key step here is to add in i into the list of x-coordinates, so
that the x values progressively increase as the loop proceeds. (Leave
the y-coordinate values alone for now.) Again – if you have odd
shapes appearing ... you have got an inconsistent sequence of coordi-
nate values in the x and/or y vectors. Try substituting i=1 into your
list of 4 x-coordinate value and see whether you get the expected list
of 4 (x,y) pairs. Then try substituting i=1 in. (This can all be done on
paper if you like.)

Now, you need to draw the other 35 rows of cells above this.
Think about this for a moment – you have a loop, drawing each of

36 square cells in a row in the first (bottom) row. Now you need
to repeat the drawing of 36 rows ... a total of 36 times. This is a nested
loop. Its form is:

for j = 1:36,

for i = 1:36,

...

end

end

meaning that whatever code goes in the very middle, is carried out
36 × 36 times (and in fact there are 36 × 36 cells in total to draw).

If your code to draw one line of cells was e.g.:

for j = 1:36,

150 str = ’do you like bananas?’

for i = 1:36,

patch([i-1 i-1 i i],[1 0 0 1],’r’);

end

end

you now need to modify the y-axis values in the patch command,
so that they reflect the increase in the value of j as you move up to a
new row (and the j loop progresses towards a value of 36).

See if you can get this working (just a 36 × 36 grid of cells ... colors
of your choice ...).

Once you have this working: get a coffee.25 25 You will need it.

Actually, you won’t need a coffee26 – this is the hardest part done. 26 The margin note above was an alter-
native fact.First, for the land cell designation. In the inner loop, rather than

just draw a colored square regardless of anything, you need to decide
whether to draw a grey ([0.5 0.5 0.5]) or e.g. red square, depend-
ing on whether the model grid at that particular (i,j) location is land
or ocean. Land is designated by a value above 90. So you need to test
the value of model_grid27 – greater than 90 results in a grey square 27 Or whatever you called the array

when you loaded the data in.being drawn, and less than or equal to 90 (or just else), a e.g. red
square. Try this, and if the grid comes out upside down, or back-to-
front or something, you know how to transform the array you have
read in.28 28 You might note that while we tend to

think about plotting of lon-lat as (i,j),
in MATLAB, i corresponds to rows
(lat) rather than columns (lon). So it is
helpful to flip the rows and columns of
the array around, so we can write (i,j)
as (lon,lat) (i.e. (x,y). You might also
find it is necessary to flip the array if it
comes out up-side-down.

Second, to assign colors that depend on the depth. Rather than a
e.g. red cell, when the cell is ocean (90 or less), create a RGB color
that is a function of the depth value.29 This is where the concepts of

29 In this particular model – depth
goes from a value of 1 (deepest) to 16
(shallowest).

algorithms comes in – they need not be long, complicated codes, but
can be simple equations that achieve the desired result. For instance,
given the nature of the RGB scale, and that we have a scale of values
from 1 to 16, what immediately comes to mind is:

vcol = [1 1 1]/model_grid(i,j);

patch([i-1 i-1 i i],[1 0 0 1],vcol);

which has the effect of creating a grey-scale for the depth values from
1 (lightest) to 16 (darkest). The other way around would be:

vcol = 1.0 - [1 1 1]/model_grid(i,j);

patch([i-1 i-1 i i],[1 0 0 1],vcol);

This particular algorithm for converting depth to a unique color,
will clash with the grey coloring of the continents (which were as-
signed a mid-grey) for a certain depth. So try and devise a color scale
(in color!).

How about marking on the continental outline?

1. The first task is to draw the grid – as per above.30 30 You want to draw the complete
grid first, because if you draw on the
coastline lines as you go, you may find
that you end up partially obscuring a
coast line with the next filled cell.

further ... programming 151

2. Then, you want a second nested (i,j) loop, within which you
will test for a boundary between land and sea, and draw a line to
delineate this segment of coastline.

There are a variety of ways to go about all this, some long with
lots of duplicated code, and some cunning31 and compact. We’ll go 31 So cunning in fact, that you could put

a tail on it and call it a fox.for the ultra-crude approach, but leave it as an exercise for you to
think about how it could be simplified and rationalized later on.

We’ll take the case of the ocean being on the right hand side of a
land (continental) cell (i.e. a East coast). We’ll need to search through
the entire grid and hence need a double/nested loop as before:

for j = 1:36,

for i = 1:36,

...

end

end

The plan will be32: 32 Inevitably – you need to formulate
a plan – your algorithm, first, whether
simply in your head, or on paper.1. Test for whether the cell is land (value > 90).

2. If the above is true, test for whether the cell immediately to the
right, is ocean.
3. If the above is (also) true, then we have found a border between
land and ocean and just need to draw the border.

You have done the testing of grid point (cell) values before, in
coloring land one color and ocean (depth) another:

if (model_grid(i,j) > 90)

...

end

To then test the grid point to the right:

if (model_grid(i,j) > 90)

if (model_grid(i+1,j) <= 90)

...

end

end

Here – model_grid(i+1,j) is the cell to the immediately to the right
(greater longitude) than model_grid(i,j).

It is then just a matter of identifying the start and end of the line

that you will draw.33 33 Setting a thicker-than-default line
width, e.g. ’LineWidth’,2 will help the
continental outline stand out.

The only one thing to note here, and if you have coded the loop
as show above, you’ll end up with an array out of bounds error
reported by MATLAB. Think through what happens in the loop
when the value of i reaches 36 – i+1 is then 37, yet the array is only
36 × 36. So in the case of finding the East coast segments of the conti-
nental outline, you need to:

152 str = ’do you like bananas?’

1. Only loop from i = 1:35, so that the value of i+1 is always a valid
array index.

2. Because you still need to determine whether at the edge of the
grid, there is an East coast line, carry out a specific test for the
edge of the grid:

if (model_grid(36,j) > 90)

if (model_grid(1,j) <= 90)

...

end

end

Here – if the cell at the far right edge of the grid (i=36) is land, we
test whether the cell at the far left of the grid (i=1) is ocean.34 34 Remember that the grid wraps-

around in longitude.Note that this code fragment, because the value if j changes, goes
within the outer, 1:36 j-loop (but not within the 1:35 i-loop).

The complete code for this search ... except for the actual drawing
of the edge line, is:

for j = 1:36,

for i = 1:35,

% Search i from 1 to 35

if (model_grid(i,j) > 90)

if (model_grid(i+1,j) <= 90)

% DRAW EDGE

end

end

end

% Special case of i=36

if (model_grid(36,j) > 90)

if (model_grid(1,j) <= 90)

% DRAW EDGE

end

end

end

It remains for you to create a similar code for finding (and draw-
ing) the West coast segments. And then, the North and South coast
segments. Remember in this latter search – the grid does not ’wrap-
around’ and j need only from 1:35 and 2:36 (with no ’special case’).

In a final, optional, example ... of the bathymetry data – questions
such as: ’How many land cells are there? What fraction of the Earths
surface is land?’, ’What (area) fraction of land is within 70 m of the
current sealevel?’, can be answered with 1, or at most, a few lines of
code (and maybe a function call for the calculation of the area of a
1° grid cell). A more involved question might be: how many distinct

further ... programming 153

land masses are there? Or: can we assign a label to them (assuming
we want to in the first place).

Jumping straight into the full resolution 1 degree resolution
dataset is probably not such a good idea, so instead, to start with,
you are going to use the GENIE model grid/topography again.
Further-more, you are only going to be concerned with the land-sea
mask and not even worry about height above, or below, sea-level.

You are going to count up (and sequentially number) the different
land masses35. Obviously, you could do this by eye for this particular 35 By ’different’ – assume that dis-

tinct land masses (which here may be
continents or just islands) are groups
(or single) of land cells that share no
common edges (excluding diagonal
connections). The isolated block of cells
representing Australia ia an obvious
example.

example (but how about counting the unique land masses in the 1
degree topography dataset?). Think about how you are mentally
’doing’ this – i.e. what processes are going through your brain (other
than how long until the end of class) as you decide what makes any
particular land mass distinct from another one. This may well inform
how you go about coding and creating an algorithm to solve this.

A sensible start might be to loop through all the points in the grid.
As you should have gathered – this can be done as a nested loop.
To make it a littler cleverer: rather than setting in stone a specific
count limit in the loops, which in this example would be 36 (for both
longitude and latitude), you can extract the size of the array and
hence the limits to the 2 dimensions by:

[n_lat n_lon] = size(model_grid);

size

size returns the size of an array, as
a vector of length n, where n is the
number of dimensions of the array.

For a matrix, a 2-element vector is
returned with the values correspond-
ing to the number of rows and the
number of columns (in that order).
These values can be handily saved
by assigning the result of size to a
paid of (scalar) variables:

» [n_rows n_cols] = ...

size(MATRIX)

where MATRIX is the matrix array
name, and [n_ronws n_cols] forms
a 2-element vector to be assigned the
result to.

Here: size returns the number of rows and columns of the array,
corresponding to the number of latitude, and longitude bands, re-
spectively. Your code (which should be placed in an m-file) will the
start to look like:

topo = load(’model_grid.txt’,’-ascii’);

[n_lat n_lon] = size(topo);

lon=n_lon

for lat=n_lat

end

end

but with ... suitable comments added of course ... By all means add
some suitable debug lines and test it (the loop behaviour).

zeros

zeros creates an array of dimen-
sion 2 or higher, consisting entirely
of zeros! Actually, this is not as
useless as it sounds, and represents
a simple way to create a large array
of a particular shape that can have
then have (non zero) values set
subsequently. To generate an n × m
matrix of zeros, you use:

A = zeros(n,m);

There is a short-cut if the 2 dimen-
sions are the same (i.e. n = m), and
you can simply write:

A = zeros(n);

Simply list additional comma-
separated integers (or variables
containing values), to extend to 3 (or
more) dimensions.

You are going to need an array, the same size as the topography
dataset, to store the number assigned to each land mass, i.e. each
grid cell needs to be labelled with a land mass number, and some-
thing distinct from this if it is not land at all (i.e. ocean). You can
create an array of zeros easily with the MATLAB zeros function
(see Box). Then as you raster through the grid (via the nested loop),
you can assign land points a value corresponding to the land mass
number, and leave the ocean points as zeros.

To get your hand in – first add to the code above, the creation
of the array of zeros (this is going to need to come after you have

154 str = ’do you like bananas?’

determined the size of the data array and hence the values of n_lat
and n_lon, but before the loop starts). Then, within the loop, test for
whether or not the grid point is land or ocean (see above for what the
values in the GENIE model topography array mean), and if the point
is land, set the value to 1. Plot the results with imagesc and check
that you get just 2 colors – one for ocean (0) and one for land (1). In
fact, you could keep all this code and resulting array. Then for the
array storing the land mass number, create a second array of zeros.
(Remember to name the arrays something meaningful, not just A, B,
..., and comment the code adequately.)

So how are you going to go about identifying new land masses
and numbering them? You have to start somewhere, that somewhere
will be designated by a 1 (the first land mass). How do you know
that this is the first land point, and not the second? You could count
up, for instance – each time you find a land point, you increment a
counting variable by one, e.g.

n_runningtotal = n_runningtotal + 1

remembering that at the start of the code, you need to initialize the
value of n_runningtotal to zero.

This is not quite what you want, for instance, if you run the fol-
lowing:

topo = load(’model_grid.txt’,’-ascii’);

[n_lat n_lon] = size(topo);

land = zeros(n_lat,n_lon);

land_id = zeros(n_lat,n_lon);

n_runningtotal = 0;

for lat=1:n_lat

lon=1:n_lon

if (topo(lat,lon) > 90)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

end

end

end

you should get all the land points numbered in turn (check this), but
not with land points grouped into continuous regions with different
numbers assigned only the distinct land masses. So ... it is getting
closer, but it is still missing something. 36 (It is quite pretty to plot

36 This is not a bad way of working
in fact – get something of a likely
correct form (e.g. nested loop in this
case, setting up some arrays of zeros,
creating a counter) but not quite getting
the answer going first, then refine to get
it doing what you actually want.

though, as per Figure 4.11. Perhaps also try the 2 loops the other way
around, with the lon loop first and outermost, and see what happens
(/is different about it).)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.11: The ’GENIE’ mode land
grid, with land points assigned a
sequential integer (working across and
dow the grid – from West to East, and
then North to South).

As you might imagine, the crux of the algorithm is how to assign
a new identifying land mass number to a land grid point only when
it does not connect to a land point which already has a number –

further ... programming 155

in this case, the same value for the identifying number needs to be
used. In other words: if a newly found land point connects to a land
point with the identifying value 5, then the new point also needs
to be labelled with a 5. So ... and here is the critical bit ... we need
to ’look around’ each new grid point to see if there is an already
labelled point immediately next to it. Pause and think about this.
Maybe mentally, or on paper, work your way through the start of
the grid, label the first land point you find, and work out what the
mental steps are upon finding the next land point, to see if it needs
to be assigned a new number, or not (and is instead connected to a
point which already has a number). This mental/conceptual step
is important and hopefully will lead you to a suitable and working
algorithm that can be written down in code. In essence, all you are
going to be doing is encoding (in code), using conditional tests and
perhaps further loops, the mental steps that you are going through37. 37 Unless you are just thinking about

icecream.

icecream

There is no icecream function in
MATLAB. I checked. In fact, rather
sadly, MATLAB tell me:

icecream not found.

OK. So how exactly are we going to go about it? There is a really
clever way, but we’ll skip over that :o) And, a crude and simple way,
but one that will still solve the problem (although it will turn out
that we will require additional steps – one to get most of the way
there and then several to make minor corrections to the initial algo-
rithm). We are going to keep the counting variable, but now only
update it (increment it by one) if we need a new land mass number.
So, *in practice* then, how are we going to decide if the counter is
incremented and hence what value to assigned to a particular cell?

First, we need to test whether the current cell is ocean or land:

1. If ocean – do nothing, and leave corresponding value in the
land mass array at zero.
2. Else (if land) – we need to work out what value to assign to the
cell in the land mass array, by:

(a) If an adjoining cell is land and has been assigned a value in
the land mass array, then assign the same value to the current
cell.

(b) If all adjoining cells have a zero value, either because they
are ocean, or because they have not been assigned a (non-zero)
value yet (because the loop has not yet reached that far in the
array), then increment the counter and assigned the cell this
new number.

This simple decision tree is something that you could draw a flow-
chart for if it helps. Also work through in your mind to see if it ap-
pears to ’work’.

The next step is coding the ’look around’ (the current grid cell)
bit. Actually, if you think about it, you need not look at the adjoining
cells in all of the N, S, E, and W directions, because if we are looping

156 str = ’do you like bananas?’

through the grid such that we raster across the grid from left (W) to
right (E), and then from the top (N) to bottom (S), cells to the E and S
of the current grid point have not been reached yet and so must have
a zero value. Hence you only need to interrogate the value of cells to
the W and N of the current position (as defined by (lat,lon)). You
can write the conditional test for the adjoining cells being zero (and
hence ocean, as they must have already been visited and hence left
with a zero value), by38: 38 Not all of these parentheses are

necessary – I have written it like this
to make the conditional (hopefully!)
completely clear.

if ((land_id(lat-1,lon)==0) && (land_id(lat),lon-1)==0))

end

It should be obvious that this is testing for the cell immediately to the
North (lat-1) *and* the cell to the West (lon-1), both being zero.

Naturally, your first attempt does not work! Why? Think through
what happens as you start to make your way through the grid. You
only have to think through what happens at the very first grid point
in fact. The first grid point is (1,1) yet you are testing cells with
indices of lat-1 and lon-1 ... which will be zero and hence not a
valid array index39. So you need to avoid testing for lat-1 if lat==1, 39 MATLAB array indices always start

at one. (Whereas in FORTRAN, it is
possible to start counting the array
rows or columns from zero, or even a
negative number.)

and avoid lon-1 if lon==1. There are a variety of ways of structuring
this, some using more and some less, code. One possibility (and not
necessarily the most optimal one) is:

if ((lat==1) && (lon==1))

% on both Western and Northern edges (top LH grid corner)

CODE BLOCK #1

elseif (lat==1)

% on Northern edge

CODE BLOCK #2

elseif (lon==1)

% on Western edge

CODE BLOCK #3

else

% cell lies neither on Western nor Northern edge

CODE BLOCK #4

end

In ’CODE BLOCK #1’, you will simply need to increment the land
mass counter and assign the cell this value40. ’CODE BLOCK #4’ will 40 This will be executed only once

(assuming that the cell is land) because
there is only one situation in which
both lat and lon can have a value of
one – the top LH corner of the grid.

use the conditional code that you saw earlier:

if ((land_id(lat-1,lon)==0) && (land_id(lat),lon-1)==0))

end

and when this is true, increment the land mass counter and assigned
the cell this value. But as part of this conditional structure, you will
also need to test the values of the cells to the North and the West

further ... programming 157

individually. If either has a non-zero value, assigned this value to the
current cell (and do not increment the counter).

The remaining 2 pieces of code are sort of half way between #1
and #4, and will be conditionals testing for the situations:

land_id(lat-1,lon)==0

(#2) and having already excluded the possibility of both lon and lat

being equal to one, or:

land_id(lat,lon-1)==0

(#3) (having excluded the possibilities that firstly that lon and lat are
both equal to one, but also that lat is equal to one (and implicitly;
lon is greater than one)). In both cases you only need to test the
value of one adjacent cell (and if zero, increment the counter etc., or
use the adjacent cells value, otherwise).

The code is inherently simple, but there is now lots of it and a big
chunk of code with lots of conditionals can look intimidating and
difficult to debug or understand. The key is to work through it with a
couple of example (lat,lon) loop values and test what it does under
these conditions, verifying that the algorithm is doing what is should.

The complete code that tests the value of the surrounding cells and
on the basis of this result, assigns a land mass value,looks like:

if ((lat==1) && (lon==1))

% on both Western and Northern edges (top LH grid corner)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

elseif (lat==1)

% on Northern edge

if (land_id(lat,lon-1)==0)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

else

land_id(lat,lon) = land_id(lat,lon-1);

end

elseif (lon==1)

% on Western edge

if (land_id(lat-1,lon)==0)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

else

land_id(lat,lon) = land_id(lat-1,lon);

end

else

% cell lies neither on Western nor Northern edge

if (land_id(lat,lon-1)∼=0)

land_id(lat,lon) = land_id(lat,lon-1);

elseif (land_id(lat-1,lon)∼=0)

158 str = ’do you like bananas?’

land_id(lat,lon) = land_id(lat-1,lon);

else

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

end

end

and sits within the double loop and test for a land cell:

for lat=1:n_lat

lon=1:n_lon

if (topo(lat,lon) > 90)

CODE

end

end

end

Really, it is not as bad as it looks! Much of the code is simply dealing
with the special cases of the grid point being on one or other or both,
of the W/N grid boundaries. Without this, the generic code for the
rest of the grid is simple (the block labelled % cell lies neither on

Eastern nor Northern edge).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.12: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier ... almost ... (!)

If you complete the code with the file loading and creation of the
arrays of zeros, and then plot using imagesc, you should get Figure
4.12. Soooooo close41. Many of the continuous blocks of land have

41 Note that one could also question
the decision to not count diagonal
connections as representing continuous
land. The result is that the single cell
representing Spain and Portugal, is
assigned a unique identifier. However,
allowing diagonal connections would
have the effect of joining North and
South America.

correctly been assigned a unique identifying number (the different
regions of the same color in the figure). But something ’odd’ happens
in Eurasia, creating those stripes of color when it should be a solid
block. It does not help to change the order of the loop (swapping the
inner, lon loop for the outer, lat one) (Figure 4.13) and similar (but
different – why?) artifacts arise (plus now one cell in Antarctica has a
different color from the rest of the continent).

The way to debug this problem and write the code needed to
adjust the algorithm is to again, work though in your head what hap-
pens when the loop is passing over the top of Eurasia. For instance,
you can see that the first, mid-blue (value 4 in the land_id array) row
is correct. But when the next row starts, because it starts at a lower
longitude with ocean to the North, simply looking to the W and to
the N does not reveal the existence of the row of 4s that start slightly
later (in longitude).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.13: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier (color).

As ever, there are a number of (equally correct) ways of correct-
ing this. Here, we’ll take the approach of post-processing the array,
i.e. we’ll leave the code that generates Figure 4.12 alone, but go back
through the land_id array in a new nested loop, and fix the acci-
dental partitioning of Eurasia into differently numbered strips. One
possible solution is given below:

for lat=2:n_lat

further ... programming 159

for lon=2:n_lon

if ((land_id(lat,lon)>0) && (land_id(lat-1,lon)>0) ...

&& (land_id(lat,lon) ∼= land_id(lat-1,lon)))

old_id = land_id(lat,lon);

new_id = land_id(lat-1,lon);

land_id(find(land_id(:,:)==old_id)) = new_id;

end

end

end

In this, we skip the first row (Northern-most latitude) and first col-
umn (Western-most longitude) completely, because one might sus-
pect that these grid points cannot be incorrectly labelled (why?),
hence the 2:n_lat and 2:n_lon loop limits. The issue we are having
and why the previous algorithm did not fully succeed, is that some
of the land masses have been split into sperate strips, where adja-
cent cells sharing the same longitude, have different index values.
i.e. we need to look for grid cells which have a different index value
to the cell immediately to the North, as long as neither is ocean (0).
The way I have structured the if statement is to test for both lat and
lat-1 cells not being 0, AND the two cells not being equal (i.e. hav-
ing a different value). The result of applying this corrector code is
shown in Figure 4.14.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.14: The ’GENIE’ mode land
grid, with land points (almost) assigned
a unique identifier (color).

Finally ... the longitudinal edge of the domain is also creating a
problem, and land, which should be continuous across the longitudi-
nal domain boundary is instead treated as separated (i.e. the Eastern
edge of Eurasia on the LH edge of the plot is one color, but the rest of
Eurasia (RH side) is another ... We can fix this by adding one further
correction:

for lat=1:n_lat

if ((land_id(lat,1)>0) && (land_id(lat,n_lon)>0) ...

&& (land_id(lat,1) ∼= land_id(lat,n_lon)))

old_id = land_id(lat,n_lon);

new_id = land_id(lat,1);

land_id(find(land_id(:,:)==old_id)) = new_id;

end

end

which works though all the rows (latitude) and checks to see whether
the cell in the 1st column has a different value to the one in the last
(but with neither being zero) and then makes a substitution of all
occurrence of the superfluous label for the correct one, as before. The
result of applying this last adjustment to the code is shown in Figure
4.15 and now represents a complete solution to the problem.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 4.15: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier (color).

Actually ... it doesn’t quite represent the final word and if you
were a perfectionist, there is one last step to take. If you inspect the
contents of the index array you will see that some of the possible

160 str = ’do you like bananas?’

values have been skipped42. The problem left for the reader (i.e. you) 42 Because we re-numbered them earlier,
right?is to re-number the land masses such that for n land masses, they are

numbered from 1 to n. 43 43 HINT: You could find the highest
land mass index value, loop through
these values, and for each missing
value that is found, renumber the next
existing value to the missing one. Or
something like that.

This entire example actually took more trial-and-error than I have
owned up to. This is no ’bad’ thing per se and the creation of al-
gorithms for solving problems invariably involves adjustment and
refinement of an initial attempt, and sometimes throwing it all away
and trying something completely different instead. the key step is
to get started and formulate a basic structure for the code and ap-
proach. Thus you refine things partly through working through some
simple cases to explore what the code really does. Remember – to
really test the code you may need to invent cases that don’t actually
exist in a particular data set in order to put your algorithm through
its paces.

further ... programming 161

4.3 Interpreting equations (0) – Basics

162 str = ’do you like bananas?’

4.4 Interpreting equations (1) – Population models

4.4.1 Exponential (and unrestricted) growth

Consider the simple mathematical population model44: 44 Modelling animal and plant popu-
lations using simple equations gives
insights to the population dynamics
(i.e. whether numbers remain stable, or
go up and down slightly from year to
year, or oscillate up and down wildly
- almost to extinction one year and
increasing to pest levels the next).

P(n+1) = λ ∙ P(n)

This defines the number of individuals in the population that there
will be at some point in the near future, based on the number at the
current time, where:

• P(n) ... is the size of the population at generation (or time) n.
• P(n+1) ... is the size of the population at generation n + 1.
• λ ... is the average number of offspring produced, per adult per
generation, less mortality.

Don’t get put off by all the Ns and subscripts and things. All the
equation says is that the population size (number of individuals = P)
at the time of the next generation (n + 1) is equal to the population
at the current generation (n) multiplied by some factor. This factor
is given the Greek letter λ.45 The factor λ includes both gains due 45 We could equally write this in terms

of time and if the units of λ were per
year (yr−1), rather than generation
number n we would have time t (years
since the start (of the model)).

to the production of offspring and losses from the population due
to snowboarding off of a cliff or some other way of dying or being
eaten.

So, we are simply asking; how many individuals will there be
at the time of the next generation (n + 1)? The answer is; the same
number as currently, minus the fraction of the population who snow-
board off of a cliff or die of old age, αP(n), plus the number of births
in the population, which is also assumed proportional to the current
number of individuals in the population, βP(n).

If there are P individuals in the current generation, the number at
the next generation can be written:

p(n+1) = p(n) + β ∙ p(n) − α ∙ p(n)

In code, this would look like:

P = P + beta*P - alpha*P;

Re-arranging, we get:

P(n+1) = (1 + β − α) ∙ P(n)

The only even faintly subversive thing that has happened to the orig-
inal equation, is that all these factors have been included in the value
of λ = (1 + β − α).

Simple, eh? Mostly, that is about all there is to computer mod-
elling. You know how much stuff (rabbits, snowboarders, cloud

further ... programming 163

water droplets, whatever) there is currently (or at a specific point
in time), and you want to predict how much there will be in the fu-
ture, which you take to be one unit of time (time-step) away. You
estimate the change in quantity (rabbits, snowboarders, cloud water
droplets) that occurs over the course of one generation, and add it to
the current quantity.

This model predicts that as long as λ > 1, the population will
increase exponentially, generation by generation, without end. Think
of bacterial cells dividing in a petri dish. On each subsequent gen-
eration (or time step) there will be twice as many cells as there are
currently (assuming that all the cells divide into two at the same rate
and there is no mortality of cells). The value of λ in this example
would be 2.

So to kick off – create a model of this system. You are going to
need a (single) loop – your choice as to whether you fix the number of
iterations (time-steps) beforehand in a for loop, e.g.

for ...

P = P + beta*P - alpha*P;

end

or use a while ... end construction and ensure the expression
evaluates to false when a set number of cycles of the loop is reached
(you’ll need to create a counter for this), or the model might end
when a certain degree of convergence (on a solution) has been
achieved – i.e. when from time-step to time-step, the change gets
smaller and smaller each time and at some point gets smaller than
some pre-determined threshold.46 You might use a variable to govern 46 This of course rather depends on the

solution converging and not oscillating
or exponentially growing ...

how many iterations are executed (however you do this) rather than
hard-code in a value. The value of this variable could be set near the
start of the code, or the m-file could be configured with the number of
iterations passed in as an input parameter. You’ll also need to specify
the initial value of the population.

You’ll probably want to plot the results47 and so you may want 47 Your choice of a linear or log y-axis
scale – use the one that enables the
most information to be presented and
in the most useful way

to save the data of population number vs. generation or iteration
(i.e. 2 columns of data and a number of rows equal to the number of
iterations through the loop plus one (why?)). The save function can
be used for this.

4.4.2 Restricted growth (and an equilibrium state)

In a variant of this ... one might consider that most plant or animal
(or bacterial or snowboarder) populations do not behave like this –
instead they vary around some average level. This is because birth
& death rates vary depending on the size of the population. For
example:

164 str = ’do you like bananas?’

• When the population is large, there may be little food to go
round and the birth rate falls (or death rate increases).
• Or, when the population is very small, all individuals may have
access to as much food as they can eat giving a high birth rate (or
low death rate). For the bacteria in a petri dish, the population
cannot go on expanding for ever – sooner or later the entire sur-
face of the nutrient agar will be covered, leaving no free space for
new cells to sit happily directly on the food. Later, the nutrients
in the agar might start to become depleted. Toxic waste products
might also start to build up, slowing down the rate of growth and
cell doubling in the bacteria.

We can include a density-dependence by modifying the original
equation, to give:

P(n+1) =
λ∙P(n)

(1+a∙Pn)b

There are two new parameters here:

b ... defines the strength of the density dependence and the dy-
namics of the population, and
a ... is a scaling factor.

Try starting with values of:

• λ = 2.0
• b = 0.1
• a = 0.1

and run for e.g. 100 or 1000 generations (or however you are count-
ing the loop in units of). Then systematically investigate the effect
of changing the value of parameter b on the dynamics of the pop-
ulation, keeping the values of the parameters λ and a constant.48 48 This sort of exercise is know as a

sensitivity analysis – i.e. quantifying
the sensitivity of the model behavior or
final result, to the value of a particular
parameter.

Increase the value of the parameter b and investigate how the dy-
namics change. Try values of b in the range 0.1 to 10. Try and find
the approximate range of values of b that give the following types of
dynamic of the population:

1. Monotonic Damping (smooth approach to a stable equilib-
rium).
2. Damped Oscillations (oscillates to start with then dampens
down to an equilibrium).
3. Stable Limit Cycles (regular pattern of peaks and troughs
with the population repeatedly returning to exactly the same size).
4. Chaos (population bombs about all over the place with no
regular pattern).49 49 Actually, some of the behaviour

of population size in the model is
probably not real – for certain ranges of
parameter value, the model is no longer
numerically stable. It is this that gives
rise to some of the strange population
size behaviour.

further ... programming 165

Don’t spend too much time playing. I know how much fun you
are having ;) The key take-home message is to recognise that the
population value at each subsequent generation or iteration (n + 1)
depends directly on the value at the previous one (n).

Here you are using a numerical model to explore how a system
behaves, and how sensitive the behaviour is to a critical parameter
(b in this example). This sort of exploratory investigation can help
you identify critical parameter values that have a profound (and
maybe unexpected) effect – for instance, if parameter b related to
something that was impacted by climate change, you might be able to
determine the point in the future when climate change might make a
population unstable. You might identify a certain population level as
genetically viable (anything below this being un-viable). You might
then be in a position to make recommendations about conserving this
species. And all from just playing around with a computer model!

166 str = ’do you like bananas?’

4.5 Interpreting equations (2) – Pure lovely maths

Here, we are going to code up a graphical representation of the
Mandelbrot Set (Figure 4.16, Figure 4.17) (see Box). But we are going
to do this nice and gently, via a simplified example first.

The Mandelbrot Set, is the set of
complex numbers c, for which:

lim
n → ∞

∣
∣
∣z(n)

∣
∣
∣ ≤ 2

where

z(n+1) = z2
(n) + c

and

z(0) = 0

which ... shares all of the charac-
teristics of gobbledygook, and I
probably haven’t even defined it
mathematically correctly ...

A rendition of the solution is
shown in Figure 4.16 and zoomed-in,
in Figure 4.17.

-2.5 1
Real part

1.5

-1.5

Im
ag

in
ar

y
pa

rt

Figure 4.16: The Mandelbrot Set –
points representing complex numbers
that are members of the set, are shown
in black. Complex numbers for which
the sequence does not converge, are
graphically represented by the white
locations in the plotted domain.

-1.4 -1.3
Real part

0.05

-0.05

Im
ag

in
ar

y
pa

rt

Figure 4.17: ×50 (-ish) zoom in on
the Mandelbrot Set illustrating self-
similarity and the fractal nature of the
set boundary.

4.5.1 Sequence convergence (in 1D)

Consider the sequence:

z(n+1) = z2
(n) + c

Here – each successive, (n + 1)-th value of z, is equal to the n-th value
of z squared, plus c. We would write this in code:

for n=1:n_max

z = z∧2 + c;

end

where the new value of z is set equal to the previous value squared,
plus the value of c. For the code to work – missing so far here is the
initial value of variable z, as well as what variable c is.

As per the Mandelbrot Set definition, we start the value of z of
zero:

n_max=10;

z = 0;

for n=1:n_max

z = z∧2 + c;

end

now also having defined the number of iterations (n_max) that the
loop will go through.

We are interested in whether for a given value of c, the value of z
grows ever larger (without limit for ever), or whether it converges.

You can hopefully see by inspection of the code (and/or equation),
and trying out different values of c that some values of c lead to the
iteration converging, or remaining finite and small, while others lead
to progressively larger values, apparently growing without limit.
Some example (real number) values of c and the sequences of z they
lead to, are shown in the Table 4.1.

We could hence sort through a range of values of c, and for each
value of c, apply the equation:

z(n+1) = z2
(n) + c

iteratively, carrying out a given number of iterations (n). We could
then determine for which values of c the sequence converges, and for
which it does not, e.g. 50 50 Instead of writing

z = z∧2 + c;

faster is:

z = z*z + c;

further ... programming 167

value of c sequence of values of z, as n increases (starting at n=0)

−3.0 0.0 → −3.0 → 6.0 → 33.0 → 1086.0 → ...
−2.0 0.0 → −2.0 → 2.0 → 2.0 → 2.0 → ...
−1.0 0.0 → −1.0 → 0.0 → −1.0 → 0.0 → ...
−0.5 0.0 → −0.5 → −0.25 → −0.4375 → −0.30859375 → ...

0.0 0.0 → 0.0 → 0.0 → 0.0 → 0.0 → ...
0.5 0.0 → 0.5 → 0.75 → 1.0625 → 1.62890625 → ...
1.0 0.0 → 1.0 → 2.0 → 5.0 → 16.0 → ...
2.0 0.0 → 2.0 → 6.0 → 38.0 → 1444.0 → ...
3.0 0.0 → 3.0 → 12.0 → 147.0 → 21612.0 → ...

Table 4.1: Examples of applying the
equation iteratively (different starting
values).

% clear workspace and close open figures

clear all;

close all;

% set (maximum) number of iterations to carry out

n_max=10;

% create sequence of numbers to test (vector)

v = [-3:0.1:3.0];

% fetch number of numbers in sequence (vector length)

n_v = length(v);

% loop through all the numbers in the sequence

for m=1:n_v

% initialize (zero) value of z

z = 0;

% set value of c from vector

c = v(m);

% loop

for n=1:n_max

z = z∧2 + c;

end

% assign value depending on whether converged or not

if (z > 2)

v_conv(m) = 0;

else

v_conv(m) = 1;

end

end

Here, after n = 10 iterations, the code tests whether the value of
z has exceeded 2.0 51 If the value of z has surpassed this threshold 51 Here, we are assuming rather simplis-

tically, that 2.0 is a reasonable threshold
for testing for convergence.

by the end of the 100 iterations, we are assuming that the sequence
for not converge for this particular value of c. If not converging, the
value of the vector v_conv (at the same index as the value of c was
extracted from), is set to 0, otherwise, 1.

We could visualize the values of c for which the iterative solution
converges, by:

figure;

axis([-3 3 -1 1]);

scatter(v,zeros(1,n_v),50,v_conv,’filled’);

xlabel(’Value of c’);

168 str = ’do you like bananas?’

ylabel(’n/a’);

where I have created a dummy y-axis, with dummy (zero values).
Each point is large and filled and colored according to the value con-
tained in v_conv, which is either 1 (converging) or 0 (not converging
after 10 iterations). The result is shown in Figure 4.18.

-3 -2 -1 0 1 2 3

Value of c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n/
a

Figure 4.18: Solution space (blue points)
for the simple sequence.

We can make the plot a little more interesting, by color-coding a mea-
sure of how quickly the sequence accelerates away to high values.
For instance, we could color the points if not converging, as a func-
tion of the highest value of z reached (when n = 10), e.g.

if (z > 2)

v_conv(n) = 1/z;

else

v_conv(n) = 1;

end

It turns out this is not very effective, as after 10 iterations, if not con-
verging, generally very large values have been reached, and so in the
color scheme, all non-converging values of v_conv are still close to
zero.52 52 Nor does it help to simply set:

if (z > 2)

v_conv(n) = z;

else

v_conv(n) = 1;

end

(Try it and see!)

An alternative, is that for any given value of c, we identify how
many iterations it takes to surpass the prescribed threshold (2.0) –
the faster the sequence diverges, the fewer iterations of the loop will
be needed to surpass the threshold. Now we cannot simply loop
from 1 to 10 using a fixed do loop, because the value of 2.0 might be
exceeded long before 10 iterations total has been reached.53 53 Actually, we could use a fixed do

loop, but it is much more efficient
not to – if early on in the loop, the
threshold has been surpassed, why
keep iterating (and wasting CPU
cycles)?

Instead, we could use while. A basic substitution of the current
inner (do) loop would look like:

n = 0

while (n <= n_max)

z = z∧2 + c;

n = n+1;

end

Try this and satisfy yourself that it does exactly the same as before.
OK – to speed things up and not waste computations, we could

also test for the threshold being surpassed at the same time:

n = 0

while ((n <= n_max) && (z <= 2))

z = z∧2 + c;

n = n+1;

end

Now, the loop continues only if there are more allowed iterations
(n_max has not been reached yet), and, the threshold has not yet been
exceeded.

further ... programming 169

This code is faster than before, but your problem is pretty simple
and you may not notice.54 54 If you would like to explore the

efficiency of your program a little
further:

1. At the very start of the code, add the
line:
tic;

and at the end of the program, add:
toc;

Giving you a timing of the code
execution.

2. Comment out all the lines of code
for the graphics, so that you are
left only with the calculations (and
initialization).

3. Force the program to carry out
a more challenging number of
calculations, e.g.

v = [-3:0.000001:3.0];

n_max=100;

The final step is to now take the value of n that is reached when
the while loop terminates, and use that to plot the color-scale.

% loop

n = 0

while ((n <= n_max) && (z <= 2))

z = z∧2 + c;

n = n+1;

end

% assign value depending on whether converged or not

if (n == n_max)

v_conv(n) = 0;

else

v_conv(n) = 1.0-n/n_max;

end

end

Here, the test for convergence of the sequence is out counting vari-
able n having reached a value of n_max (i.e. for all the maximum
allowed iterations of the loop, the value of z has remained less than
or equal to 2.0).

Potting this now, looks like Figure 4.19.

-3 -2 -1 0 1 2 3
Value of c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n/
a

Figure 4.19: Solution space (blue points)
for the simple sequence, with the rate
of divergence forming the color scale
of light blue (slowest) through yellow
(fastest divergence).

4.5.2 Sequence convergence (in 2D)

Now to the Mandelbrot set.
The idea is basically the same as before – we are going to gen-

erate a sequence, and find out whether it converges, or if not, how
quickly it diverges and whizzes off in value. The equation is very
similar to before (see Box), with the next value equal to the current
value squared, plus a constant, and we are varying the value of the
constant.

The big complication is that c, is now not a simple real number
(and one that we could simply plot along the x-axis), but a complex
number (see Box).

A complex number z, is a number of
the form:

z = a + bi
where i is the square root of −1
(or i : i2 = −1).

If we square z, we have:
z2 = (a + bi) × (a + bi)

= a2 + a × (bi) + (bi) × a + (bi)2

= a2 + 2 × a × b × i + (b)2 × (i)2

and remembering what i2 equates to:
z2 = a2 − b2 + 2 × a × (bi)

It is helpful to think of the real and imaginary components of the
number, as x and y values on an x-y plot55 and treat them exactly as

55 And in fact, this is exactly how we
will be plotting things later.

per you would vectors.
How to put this into code?
Well, the number c now has two parts – a real an imaginary part.

Lets call them variables x (real) and y (imaginary).
The number z also has two parts. We could represent these by

variables a and b. If we simply had the equation:

zn+1 = z(n) + c

we could write (within a loop):

170 str = ’do you like bananas?’

a = a + x;

b = b + y;

For the equation

zn+1 = z2
(n) + c

we now have:

a = a∧2 - b∧2 + x;

b = 2*a*b + y;

(see Box). Except ... although we have taken the value of a, updated
it, reassigned it back to the variable a, when it comes to updating
the value of b, we have already updated a (and we should not have).
The simplest solution is to make the old and new values completely
explicit:

a_old = a;

b_old = a;

a = a_old∧2 - b_old∧2 + x;

b = 2*a_old*b_old + y;

The equation above (zn+1 = z(n) + c) in code, for n_max iterations
(of n), looks like:

do n=1:n_max,

a_old = a;

b_old = a;

a = a_old∧2 - b_old∧2 + x;

b = 2*a_old*b_old + y;

end

Again, we could replace the do with a while as as before, apply a
convergence criteria to terminate the loop (early):

while ((n <= n_max) && ((a∧2+b∧2) <= 2∧2))

a_old = a;

b_old = a;

a = a_old∧2 - b_old∧2 + x;

b = 2*a_old*b_old + y;

end

or faster would be:

while ((n <= n_max) && ((a*a+b*b) <= 2*2))

(because multiplication is faster for computers than raising a number
to a power).

Mathematically, thats it. What remains is to create a set of values
of c to test for convergence on, and because complex numbers can be
represented in x-y space, we can create a 2D grid of real and imag-
inary component values, just as we did early for lon-lat values in
plotting maps. For example:

further ... programming 171

x = [-3:0.1:3.0];

y = [-3:0.1:3.0];

would create a range of real and a range of imaginary parts of the
complex number c = x + yi.

However, as per for lon-lat, we want all combinations in a 2D grid,
and so we use meshgrid:

[xx, yy] = meshgrid([-3:0.1:3.0],[-3:0.1:3.0]);

At this point – pause.

1. You have the loop framework code to test whether the maximum
number of iterations has been reached, or whether the test of con-
vergence has failed.

2. You have the code in the iteration loop, to square one complex
number (z) and add a second (c) to it.

3. You have create a pair of matrices – one of values of a (xx) and
one of b (yy) which together, map out a 2D space (/grid) to be
searched.

Next, the full code will be provided to you (as an alternative to you
trying to piece fragments together), but it is your job to make sure
you understand it ...

172 str = ’do you like bananas?’

% clear workspace & close open figure windows

clear all;

close all;

% create a parameter to contain the threshold value

thresh = 2*2;

% maximum number of iterations

n_max = 10;

% create initial grid ...

% from -1 to +3 in both dimensions, ...

% with a step resolution of 0.1

%[xx,yy] = meshgrid([-3:0.1:3.0],[-3:0.1:3.0]);

% determine total number of points to test

m_max = numel(xx);

% reshape x and y matrices into 2 columns of vectors

v(:,1) = reshape(xx,[m_max,1]);

v(:,2) = reshape(yy,[m_max,1]);

% create a 3rd vector column ...

% for storing a measure of convergence/divergence

v(:,3) = zeros(m_max,1);

% loop thought the x-y vector columns

for m=1:m_max

% set the value of complex number c

x = v(m,1);

y = v(m,2);

% initialize z(n=0)

a = 0.0;

b = 0.0;

% initialize the count

n = 0;

% iterate and check for convergence

while ((n <= n_max) && ((a*a + b*b) < thresh)),

% copy old value of z (n)

a_tmp = a;

b_tmp = b;

% update z (n+1)

a = a_tmp*a_tmp - b_tmp*b_tmp + x;

b = 2*a_tmp*b_tmp + y;

% update count

n = n+1;

end

% set measure of convergence/divergence

if (n <= n_max),

v(m,3) = 1.0/n;

else

v(m,3) = 0.0;

end

end

% take results vector, and ...

% reshape back into matrix form (for plotting)

zz = reshape(v(:,3),[length([-3:0.1:3.0]),length([-3:0.1:3.0])]);

further ... programming 173

In this code, you should note that I have avoided a double/nested
loop for looping through the 2D space of the real (a) and imaginary
(b) parts of the complex number c. Instead, I have simplified this to a
single loop, of all elements. The total number of elements in the grid
can be obtained using the numel function56. 56 In the code, it does not matter

whether you write:

m_max = numel(xx);

or

m_max = numel(yy);

as the 2 matrices are exactly the same
size.

Knowing the total number of elements in the xx and yy matrices, it
is a simple matter to convert these into vector form:

v(:,1) = reshape(xx,[m_max,1]);

v(:,2) = reshape(yy,[m_max,1]);

and then to add a 3rd column, that will hold the results:

v(:,3) = zeros(m_max,1);

You can plot the resulting grid of convergence/divergence values
using imagesc:

imagesc(zz);

as per Figure 4.20.

-3 3
Real part

3

-3

Im
ag

in
ar

y
pa

rt

Figure 4.20: Simple, low resolution
Mandelbrot set rendition.

-3 3
Real part

3

-3

Im
ag

in
ar

y
pa

rt

Figure 4.21: Simple, low resolution
Mandelbrot set rendition (now high-
lighting points that are members of the
solution set (black) vs. not (white).

To obtain a higher resolution plot – simply increase the resolution
of the x and y vectors used by the meshgrid57. Also – the maximum

57 Note that you also have to make the
same changes at the end when you
reshape the results to the matrix zz.

of iterations allowed, n_max.
To create the simple black/white plot (e.g. Figure 4.16), I created

a color scale which as all white, apart from black at the very start of
the scale (corresponding to the lowest values). To do this, near the
start of the code (before any of the loops), or, after both loops have
finished, add:

% create color scale

brotmap = [0 0 0;

1+zeros(9,3)];

and which looks like:

» brotmap

brotmap =

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

174 str = ’do you like bananas?’

defining black on the first row, and white on the next 9 rows. This
gives a color scale of ten rows, that corresponds to the maximum
number of iterations in your code, and hence the maximum number
of different values that zz can take.58 58 Other choices for number of rows

would have been perfectly acceptable in
this particular example.

Then, before you call imagesc, add:

cmap = colormap(brotmap);

The result is shown in Figure 4.21.

A more flexible way to define the grid limits and the resolution, is
instead of writing in directly the specifications passed to meshgrid,
e.g.:

[xx, yy] = meshgrid([-3:0.1:3.0],[-3:0.1:3.0]);

is to first set the grid limits:

x_min = -2.5; x_max = 1.0; y_min = -1.5; y_max = 1.5;

define the resolution – here the number of divisions:

xy_res = 2000;

and then for meshgrid:

[xx, yy] = meshgrid ...

([x_min:(x_max-x_min)/xy_res:x_max], ...

[y_min:(y_max-y_min)/xy_res:y_max]);

This particular line is ’messier’ than before, but now it is much eas-
ier to change the grid limits, and/or the resolution, and when you
convert the results vector to a matrix, it is now just:

zz = reshape(v(:,3),[xy_res+1,xy_res+1]);

Try playing about with Mandelbrot Set plots – changing the x- and
y-limits (x_min,x_max,y_min,y_max) as well as the resolution (xy_res)
of the plot.

Figures 4.22, 4.23, 4.24 give examples of different regions (zooms)..

-3 2

Real part

2.5

-2.5

Im
ag

in
ar

y
pa

rt

Figure 4.22: Initial Mandelbrot Set
magnification.

-1.1614 -1.1565
Real part

0.28729

0.28241

Im
ag

in
ar

y
pa

rt

Figure 4.23: Example Mandelbrot Set
zoom.

-0.80566 -0.80078
Real part

0.18041

0.17553

Im
ag

in
ar

y
pa

rt

Figure 4.24: Example Mandelbrot Set
zoom.

These example plots also employ a slightly more complicated color
scheme:

brotmap2 = [0 0 0;

jet;

flipud(jet)];

which defines, as before, black as the color corresponding to the low-
est values – in this case the solution set (a sequence that converges).
But then it adds the built-in MATLAB jet color scheme to the end of
this. And then ... for good measure, it adds on another copy of jet,
but this time inverted59 (colors occurring in the opposite sequence). 59 The flipud accomplishes this inver-

sion.

further ... programming 175

The real advantage of defining x-y limits it this way, is that you can
re-formulate the code as a function, get the position of the mouse
on the screen, and click to zoom by some fixed and predetermined
amount, or to define a box to zoom to, and pass the new, updated
x-y limits back to the function to re-calculate the sequence, and then
re-plot the now zoom-ed in region of solution space.

In re-formulating your script as a function – you take as input,
the x- and y-limits (four variables total), and return as output, an
array of results values (zz). You would call this function from a script
that does the actual plotting of the figure. The script would also set
initial (default) x- and y-limit values and ... once the figure is drawn,
take mouse input for a single click (to define the center of a zoomed
in region) or two mouse clicks (to define the opposite corners of a
zoomed in region) and then re-draw the plot.

Example code of a script (make_brot.m), and the corresponding
function (fun_brot.m), are provided via the links.60 60 Simply type:

» make_brot

to start, left mouse-button click to zoom
to that point, and right-button mouse
click to end (the plot window remains
open however).

Zoom is controlled by the parameter
xy_mag in make_brot.m.

http://www.seao2.info/teaching/201718.GEO111/fun_brot.m
http://www.seao2.info/teaching/201718.GEO111/make_brot.m

5

Programming applications – games!

Games are great examples of many of the different facets of computer programming and MATLAB cov-
ered to date. They invariably contain algorithms and require problem-solving in the code, will contain
multiple functions and sub-programs, loops, conditionals, graphics of some sort. They will invariably be
complex, and hence put debugging skills to the test. They often even contain physics (and science)! They
also provide an important motivation for developing the code – a specific and hopefully fun, end-product.

178 str = ’do you like bananas?’

5.1 Tic-tac-toe

Tic-tac-toe1 – Figure 5.1 – ’is a paper-and-pencil game for two players, 1 Also called ’Noughts and crosses’.

X and O, who take turns marking the spaces in a 3Œ3 grid. The player who
succeeds in placing three of their marks in a horizontal, vertical, or diagonal
row wins the game.’ It is as common a muck and inevitably everypony
knows how to play it, so we don’t need to spend time defining the
rules.

Figure 5.1: Tic-tac-toe. By Symode09
- Own work, Public Domain,
https://commons.wikimedia.org/
w/index.php?curid=2064271.

Here we’ll devise a basic version requiring 2 (mostly) human play-
ers, but note the possibility of developing an AI computer player.
We’ll also initially not make use of the MATLAB GUI, so keep the
code as simple as possible, but note that as a further possibility for
development.

IMPORTANT: In the sections that follow – a number of code frag-
ments are given to you. In fact, basically the complete code (includ-
ing the final algorithm for determining winning patterns, that you
would not be expected to have been able to come up with alone). The
idea is not simply to copy-paste the code fragments and go home.
The key is getting the structure of the program (and how the various
sperate functions are created and utilized) right. If you find yourself
having no idea ’where’ to put a particular code fragment ... you have
probably not understood how the program is constructed and are
simply going through copy-paste motions. note that you can always
simply write your own code from scratch – there are many (infinite?)
different ways of creating the program and writing the code to solve
the different steps. You might even find that easier as it should be
more obvious to you ’where’ to put different lines.

A schematic of the complete (final) code structure is shown in
Figure 5.2 as a guide.

The following is a brain-dump on what we need to go about de-
signing and writing the game2,3: 2 You can devise all sorts of strategies

for creating the game, but you do need
some sort of strategy before you start to
write any code.
3 Despite the messy, additional
automatically-generated MATLAB
code, some of these are actually easier
in a GUI.

1. The game is almost wholly visual and so we need to think about
the graphics at the outset. For instance:

• We need a Figure window!No axes showing would be nice.
• We need to draw the grid of two pairs of lines, at 90 degrees
to each other.
• We then need to add a cross or a zero to the graphic.
• If there is a winner, we need to draw a line through the
winning diagonal or row/column.

2. Associated with the adding of a cross or zero – we need to find a
way of a playing identify which box they are choosing, and apply
the cross/zero according to the selected box and player identity.

programming applications – games! 179

3. We need to keep a list of empty boxes in the grid and only allow a
box to be chosen if it is empty.

4. We need to test for a winning line of crosses or zeros.
5. We also need some directions to be given to the players – who’s

turn it is, and who wins, or if there is a draw, that the game is
over. To simply things, these messages can be sent to the com-
mand line.

Figure 5.2: Schematic structure of the
complete code.

Some of these things you have seen and you will know (hopefully)
how to go about it, such as drawing the grid, printing messages at
the command line. Others are not so obvious and may prove tricky,
so we’ll tackle those first – to my mind, these are:

1. Choosing the box.
2. The mechanics of drawing the cross or zero.
3. Filtering the chosen position to identify a specific box, and
hence position the cross/zero neatly.

Before we go through these and progressively build up a working
game, lets write a shell program script that we can test ideas and
code in. A possible way to start off follows:

% **************************
% *** Tic-Tac-Toe game! ***
% **************************

% close currently open windows

close all;

% clear variable space

clear all;

% create a new figure window

figure;

% create a set of invisible axes that will the window

fh = axes(’Position’,[0 0 1 1],’Visible’,’off’);

% scale the axes

axis([0 3 0 3]);

% hold on!

hold on;

This should mostly be self-evident. You need not have close all

... but you may not wish to accumulate Figure windows for ever. Bea-
sue this is a script m-file, not a function, the variables and their values
remain in the MATLAB workspace even after the program is ter-
minated or finishes. clear all simply ensure that someone a value
from a previous run of the program, doesn’t somehow interferer with
the next run.4,5 4 It shouldn’t do, and there should be

no variables used anywhere, that are
not initialized to a specific value first.
5 If you prefer to frame the program
as a function ... with no inputs or
outputs, then that is fine, but remember
that you’ll need to add breakpoints to
interrogate any of the variable values as
they all become private.

The line starting fh = ... creates a plotting area with no axes
visible, and filling the Figure window area ([0 0 1 1] in normalized

180 str = ’do you like bananas?’

units). The handle to this is returned (variable fh), just in case we
ever need it later.

In scaling the axes – as there are 3 rows and 3 columns in the
game area, it seemed ’reasonable’ to set axis([0 3 0 3]) , although
we need not have.

Maybe before getting into any of the listed complexities, we could
draw the game grid to give us some visual perspective on things.
We could do this perfectly correctly, by adding the code to the main
m-file/program file, but it is much neater to put sections of code that
do specific things, and particularly if you might want to run these
sections of code again, in a subprogram, which could be a script or a
function. Here, even though there will be no inputs or outputs, we’ll
use a function (to be consistent with additional functions that we will
be creating).

This is my function for drawing the grid:

function [] = draw_grid()

%draw the game grid

grid_th = 2.0;

grid_col = [0 0 0];

line([1.0 1.0],[0.0 3.0],’LineWidth’,grid_th,’Color’,grid_col);

line([2.0 2.0],[0.0 3.0],’LineWidth’,grid_th,’Color’,grid_col);

line([0.0 3.0],[1.0 1.0],’LineWidth’,grid_th,’Color’,grid_col);

line([0.0 3.0],[2.0 2.0],’LineWidth’,grid_th,’Color’,grid_col);

end

You should comment your version better!
The 4 main lines, simply draw the 4 grid lines – 2 horizontal and

2 vertical. Because the line width and color appear 4 times – one in
each line command line, I have set the value of a paid of parameters
at the start – if I ever want to change line thickness and/or color, I
need only make an edit in a single place (where the parameters are
defined) rather than in each and ever line command line.

Somewhere after hold on, in your main program (script m-file),
add the line6: 6 Remember you are not passing any

parameters to this function, nor is it
returning anything back to youdraw_grid();

Run it so far. It should look like Figure 5.3, depending on the line
width and colors you choose.

Figure 5.3: Tic-tac-toe game grid drawn.

5.1.1 Mouse behavior

OK – so a key part of the game is being able to select a particular
grid square (cell), in order to place your (cross or circle) marker. One
could do this e.g. at the command line by specifying a coordinate
location, e.g. (1,1) for the bottom (or top) left cell, but this would

programming applications – games! 181

be pretty tedious and would mean flipping back-and-forth between
Command Window and Figure Window.

The MATLAB function ginput is provided to return the coordi-
nate of the mouse pointer when one of the buttons is clicked. The
coordinate returned is in the same units as your axes. Nothing is re-
turned if you click outside the Figure Window.7 ginput also returns 7 Because we defined the game area as

the entire area of the Figure Window, it
should not be possible to click in the
Figure Window but outside of the game
area, so we do not have to deal with
that possibility occurring.

which of the 2 (or 3) of the buttons was clicked. The ginput function
also needs t be told how many mouse clicks to return – we need only
one (per turn in the game).

So to the code, you could add:

[x,y,button] = ginput(1);

which sets the variables x and y equal to the (x,y) location of the
mouse button click, and the variable button to the ID of which mouse
button it was.

If for now, you take the ’;’ off of the end of the line, and run your
program – try clicking the mouse in the game area, and note that
hopefully, an (x,y) location within the 0-3 axes area is reported, plus
the ID of which mouse button you used.

So far, so good.

5.1.2 Drawing the ’objects’

One strategy in programming, is to get *something* happening and
working first, and worry about the details and quite what you really
wanted, later. So lets draw *something* in response to the mouse
click, and not yet worry what exactly we draw.

Again – creating subprograms and functions are a great way of
reducing clutter in the main program, helpful in debugging, and all
but essential if you need to apply the same (or almost the same) code
more than once. The need to draw a number of crosses, and also a
number of circles, fits the bill. So lets create a pair of functions for
drawing first a cross, and then a circle.

To begin with, the 2 functions will look almost identical, and differ
only in name:

function [] = draw_cross(x,y)

%draw cross

end

for the cross, and identical (except for name for the circle).
Both function take a pair of parameters, x and y as inputs, which

will be the (x, y) locations to draw the objects.
We should draw *something* (in the function). I choose:

dz = 0.25;

182 str = ’do you like bananas?’

patch([x-dz x-dz x+dz x+dz],[y-dz y+dz y+dz y-dz],’b’);

which is not a cross (nor a circle). You should recognise this as a blue
square(!) (It’ll do for now.)

Assuming the (x, y) location passed into the function is the centre
of the object, x-dz and x+dz create x-coordinate vertices symmetri-
cally either side (of x), and likewise for the y-coordinates.

Create a similar shape for draw_circle ... maybe picking a differ-
ent color, or a different shape.

We should be in good shape at this point – you have a main pro-
gram that draws the game grid, and finds the (x, y) coordinates of
a mouse button click. And you have a pair of functions to draw a
shape centered on (x, y).

You could test the code further by allowing multiple mouse-clicks
and shape drawing – in the main program, after you have drawn the
game grid – create a while loop that initially, is endless.

game_on = true;

while game_on

[x,y,button] = ginput(1);

draw_cross(x,y);

end

(but with comments, of course).
You’ll have to CTRL-C to get out of this (or close the window), but

if you click a number of times first, you start to get something that
looks like if your luck was otherwise, this could be a 10 million dollar
modern art piece (Figure 5.4).

Figure 5.4: Tic-tac-toe game – object
drawing test.

Now ... as an experiment and test of your coding8, try making the 8 If you need a hint – if

other shape appear if the other button is clicked – ginput returns a
value of 1 to the variable button if it is the left mouse button, and 3 if
it is the right. (See Figure 5.5.)

Figure 5.5: Tic-tac-toe game – object
drawing + mouse button test.

(Once you are done with it – delete (or comment out) this alterna-
tive mouse button click code.)

5.1.3 Identifying specific boxes

There is still much to do ... but an obvious and significant next step
is to place the objects in specific locations – i.e. centered in the box in
which the mouse button occurred. So we need to test the values of x
and y, and identify a specific grid box (and its indices). 9 9 There is a simpler and sly-er way of

doing this, which would be particularly
useful if we have a really large grid and
having 100s of elseifs is not practical.

The function round, returns the
rounded up integer value of a real
number. So round(0.49) returns 0,
while round returns 1.

We could derive the value of xi
simply, in a single line, by:

xi = round(x+0.5);

where the +0.5 bit ensures values in the
range 0.0 − 1.0 returns 1 (and 1.0 − 2.0,
2).

Lets imagine that the grid is counter from the bottom left hand
corner, from 1 to 3 in both x and y directions. For x we could write
something like:

if (x < 1)

xi = 1;

programming applications – games! 183

elseif (x < 2)

xi = 2;

else

xi = 3;

end

where xi stands for a variable containing the x-direction index (or
’integer’). You could write something similar for the y-direction.

Now, when we call draw_cross (or draw_circle) we pass the value
of xi (and yi), minus 0.5 – to create a value representing the mid-
point of the cell. i.e.

draw_cross(xi-0.5,yi-0.5);

Now ... suddenly ... the game seems to be coming together in
terms of the graphics (Figure 5.6). (Obviously we are still missing a
lot, including correct shapes.)

Figure 5.6: Tic-tac-toe game – object
drawing now arranged in a grid.

5.1.4 Remembering turns (and arrays!)

A key to the game is that one a nought/cross has been placed, you
cannot place anything more there. So we need to keep track of which
cells have already been chosen. In fact, we need to keep track of
what is in each cell (and we may as well create a single array for this,
rather than 2 (or 3)).

We will create a 3 × 3 array to store the information in, with each
(row,column) pair of the MATLAB array, corresponding to an (xi,yi)
pair (cell location in the game grid).

You have already seen how to create an n × m array of e.g. zeros.
In your program – somewhere near the start, and certainly before the
while loop, you can add10: 10 Or call the array variable something

better ... there is no completely obvious
and helpful variable name for what it
will end up holding.

tokens = zeros(3);

Another important thing you’ll come across in programming is
devising notations for representing states in a model or game or
whatever. Pause and think about the possible states that each cell in
the game grid can have.

1. Not yet chosen.
2. Assigned to a Cross.
3. Assigned to a Naught.

We could hence decide to assign values in the tokens array:

0 == Not yet chosen.
1 == Assigned to a Cross.
2 == Assigned to a Naught.

184 str = ’do you like bananas?’

(so the elements of the array can take a value of 0, 1, or 2, as illus-
trated in Figure 5.7). The array has been initialized to all zeros, and at
this point the game as not yet started and the game grid is empty, so
this works so far.

Figure 5.7: Tic-tac-toe game grid with
numerical codes overlain.

Now ... in the loop, as the xi and yi indices are derived – use them
to assign a value to the array.11 You can then test for the value of

11 It is a personal preference whether
to simply remember that MATLAB
indexes arrays differently to reading a
normal (x,y) location, or try and make
the contents of the array, as viewed,
look like the game grid.

the location that has just been chosen, to decide whether the move is
legal or not:

if (tokens(xi,yi) == 0),

draw_cross(xi-0.5,yi-0.5);

tokens(xi,yi) = 1;

else

disp(’Illegal move! Choose again.’);

end

(here setting the value of tokens at that location to 1, because we are
assuming still the ’cross’ player in the variable and function naming
notation).

5.1.5 Putting it all together

OK. Pause. Consider where you are at; what you have working ...
and what remains to do.

Done:

• Drawn grid.
• Created functions to draw the 2 different game pieces.
• Recovering the (x,y) mouse click location, and converting that
into the game grid (x,y) location.
• Checking to see whether a game cell is already occupied and
not allowing the move if so.

To-do:

• Alternate the player turns.
• Test for the game finishing.
• Draw ’correct’ symbols(!)

In terms of player turn – this is a simple binary state – either it is
the turn of player #1, or it isn’t (and hence the turn of player #2). So
we could create a (logical) variable player1, to keep track of whose
turn it is.12 If we start with player #1 starting, near the top of the 12 Equally, we could have defined a

variable player, that took a value of 1
(for player 1’s turn) or 2 (player 2). We
would then need to change its value
after a player had taken a turn, from 1
to 2, or 2 to 1. This turns out to be more
awkward to implement than simply
taking the NOT of a variable state.

main program (and before the while loop), we could set:

player1 = 1;

Now it is simple to alternate between the player turns, and after
the current player has taken their turn, we can simply write:

programming applications – games! 185

player1 = ∼player1;

which will go within the while loop and after a player has taken a
turn.:

if (tokens(xi,yi) == 0),

draw_cross(xi-0.5,yi-0.5);

tokens(xi,yi) = 1;

player1 = ∼player1;

else

disp(’Illegal move! Choose again.’);

end

At this point, we are still not differentiating between the different
players – we need to draw a different symbol depending on which
player it is, and also set the corresponding element in the array to a
different value (1 for player 1, and 2 for player 2). So we need to test
for which player it is currently13: 13 Note that we need only have one

occurrence of the line player1 =

∼player1;, although it would have
still worked fine to have put this line
at the end of the code in the if section,
and also the else section.

if player1,

draw_cross(xi-0.5,yi-0.5);

tokens(xi,yi) = 1;

else

draw_circle(xi-0.5,yi-0.5);

tokens(xi,yi) = 2;

end

player1 = ∼player1;

(All this goes still within the if test of whether the move is legal or
not.) If you have not written your own code without referring to this
first, make sure that you understand how and why it is how it is. Do
not just type it in blindly ...

The output of the forced turn alternation starts to look like Figure
5.8.

Figure 5.8: Tic-tac-toe game – object
drawing now arranged in a grid and
with forced turn alternation.

Now we need to think about the end-game of the end of the game.
One way in which the game ends, is if there are no free cells left. We
could:

1. Search through the 3 × 3 grid, testing each cell in turn as to
whether it has a value of zero or not.

2. find ... find the vector of indices of locations in which a value of
zero occurs, and test whether this vector is empty14: 14 See Box. Note that if find finds

nothing, it returns the empty vector [].
remaining = find(tokens == 0);

if isempty(remaining),

break;

end

You could also add a message before break-ing out of the while

loop.15

15 An alternative to the use of break,
would be to set the value of game_on to
false.

isempty

MATLAB says: ’Determine whether
array is empty’, and:
TF = isempty(A) returns logical

1 (true) if A is an empty array and
logical 0 (false) otherwise.

186 str = ’do you like bananas?’

Almost there ... and perhaps the single most hard part – detecting
for a ’win’. Probably, the easiest way, which would not be true for
many other games, is to pre-define the various winning patterns, and
look to see if they occur. For instance, one winning pattern is shown
in Figure 5.8 and would be represented matrix form by:





1 0 0
1 0 0
1 0 0






We could define a series of 3 × 3 arrays to represent these, but
we’d end up with 8 different arrays and array names. Better, to create
a 3D array, with the 3rd dimension having length 8.16 If you did this 16 If you like – make an analogy with

the month temperature data, where you
had 12 slices (the 3rd dimension) of a
2D (lon,lat) array of points.

(create a 3 × 3 × 8 array ... we’ll call it array variable winning), we
could simply loop from 1 to 8, to access each possible solution in
turn. How to employ it? Well, it is not obvious.

A slightly different alternative is to use find, and for each played,
obtain the list of linear indices of the grid cells containing their sym-
bol. You can text the figure example (and matrix above) by creating
the corresponding matrix in MATLAB:

A = [1 0 0; 1 0 0; 1 0 0];

If you then do find for 1s:

» find(A==1)

ans =

1

2

3

So one winning pattern vector would be [1 2 3].
Be careful here – find return the ’linear indices’ of the array loca-

tions where the condition is true. In linear index – rather than give a
(row,colunn) index, MATLAB counts continuously, down the first col-
umn, then down the next, etc etc, to give an index as shown in Figure
5.9.

Figure 5.9: Linear indices of a 3 × 3
matrix.

If we define a winning pattern as its 3 linear indices:

winning = [1 2 3];

(for the first pattern), we can determine whether the elements of
winning appear in the linear indices of all of the players squares
(extracted from the array by find(A==1)) by using the MATLAB
function ismember:

» ismember(winning,find(A==1))

ans =

1 1 1

programming applications – games! 187

where the three 1s indicate that each of the elements of winning,
appear in the result of find(A==1)17. Only if three trues (1s) are re- 17 The ’1’ because this is the notation for

player 1.turned, does the pattern completely match. So we can calculate the
sum of the result of ismember and whether this is equal to 3, to indi-
cate to us that the winning pattern exists.

Your job – define the 8 × 3 array winning, containing the 8 different
winning patterns (rows), in terms of a linear index (i.e. what find
returns).18,19,20 18 The way t go about it is to create a

single winning pattern, and text the
code and that it works, then define the
remaining 7.
19 Also – write down on paper, the
linear indices of the 3 × 3 array – that
will help, e.g.:



1 4 7
2 5 8
3 6 9





20 HINT: The first few patterns are
defined:

winning=[1 2 3; 4 5 6; ...];

I’ll give you the code for the rest, e.g. for player 1, which comes in
the code (in the loop) just after you have set the value of the current
cell in tokens to 1:

pattern = find(tokens==1);

for n=1:8

test_for_win = ismember(winning(n,:),pattern);

if (sum(test_for_win) == 3),

disp(’Player 1 WINS!’);

game_on = false;

end

end

(and similar code is needed for player #2).
Lastly, it is also left up to you, to improve the shapes/symbols

used to mark the squares of each player. The cross is relatively easy.
The circle is harder.21 21 A polygon with a very large number

of sides would do.

6

Numerical modelling – zero-D / equilibrium

190 str = ’do you like bananas?’

6.1 Zero-D Energy-balance model of the climate system

In this Section, you are going to create, and then use in a series of
applications, a zero-D equilibrium global ’climate model’ – the sim-
plest representation of the energy-balance of the Earth’s climate that
it is possible to make. The model assumes that the climate system
is in balance, with no net gain or loss of energy, and hence that the
energy absorbed from incoming (short-wave) solar radiation equals
the (long-wave) radiative loss from the Earth’s surface (or top-of-
the-atmosphere) (Figure 6.1). The equations are outlined in the Box
and you’ll need to rearrange them in terms of T (mean global surface
temperature).

Energy balance modelling (1)
The surface energy budget at the

Earths surface, to a zero-th order
approximation, can be thought of
as a simple balance between in-
coming, sort-wave radiation that is
absorbed, and out-going, infra-red
radiation.

On average (over the Earths surface
and annually), the energy flux per
unit area received from the sun, can
be written:

Fin = (1−α)∙S
4

where S is the solar ’constant’ which
has a present-day value (given the
notation S0) of 1368Wm−2

(NOTE: the 1
4 appears because the

cross-sectional area of the Earth is
1
4 of its total surface area – i.e. you
take energy intercepted by the Earth,
which has an effective area of π ∙ r2,
and spread it out over the entire
surface – an area of 4 ∙ π ∙ r2.)

Albedo (α), is the fraction of
incoming solar radiation that is
reflected back to (-wards) space –
varies hugely across surface types
(and angle of incoming radiation).
A commonly used mean global
approximation is to set: α = 0.3.

Net outgoing infrared radiation
proceeds according to black body
emissions:

Fout = ε ∙ σ ∙ T4

where ε is the emissivity, σ is the
Stefan-Boltzmann constant (in units
of Wm−2), and T the temperature in
Kelvin (K) (273.15K == 0.0°C).

For a perfect black body radiator,
we would set ε=1.0. However, it
turns out that the Earth is not a
smooth and perfectly matt black
sphere radiating directly from the
surface to space ... there is an atmo-
sphere and water surface over ∼70%
of its surface etc etc. A common
modification is then to reduce the
effective emissivity of the surface to
less than 1.0. A value of 0.62 is given
in Henderson-Sellers [2014], making
the expression for the out-going flux:

Fout = 0.62 ∙ σ ∙ T4

See Figure 6.1.

The exercises that follow are structured and you need to pay
attention to which m-files you are creating from scratch, which ones,
having been created and coded up, you do not then further edit, and
which are functions and which are script files ...

The sequence of work is as follows:

6.1.1 In this first Subsection (’The basic EBM’), you’ll create a script (#
scr_11) m-file containing the Energy Balance Model (EBM), and

1 This is not a suggested name of the
m-file, but an ID to help you not get
confused as to which script or function
is being referred to in the text ...

test it.

(See Figure 6.2.)

6.1.2 Next, you’ll turn your EBM script (scr_1) into a function (fun_1)2

2 Once the EBM function has been
created, you do not at any point edit it
any further!

– passing in the solar constant and albedo as parameters, and
returning the surface temperature. (And test it.)
(See Figure 6.3.)

6.1.3 In the penultimate Subsection (’Calculating the evolution of the solar
constant’), you’ll create a new function (fun_2), which will take
time (counted from the formation of the Sun) in Ga, and return the
value of the solar constant at that time (S(t) (Wm−2)).
(See Figure 6.4.)

And then ...

6.1.4 ... finally (Subsection ’Evolution of Earth’s surface temperature’), you’ll
create one last script (scr_4), with a loop in time in it, and from
within this loop, you’ll call first the solar constant function (fun_2),
taking time as an input and returning the value of S(t), which
you will then pass into the EBM (# fun_1), returning the surface
temperature at time t – T(t).
(See Figure 6.5.)

You can also take the EMBM function (now ignoring the solar
constant function), and play some theoretical games with it in order
to understand how sensitive global surface temperature is to key
variables (solar constant and albedo):

numerical modelling – zero-d / equilibrium 191

6.1.5 In the Subsection ’Parameter sensitivity experiments using the EBM – #1’,
you will create a new script (scr_2) with a single loop in it. Within
the loop, you will make a call to the EBM function (# fun_1) that
you created.3 3 DO NOT put code the loops into the

EBM function – leave the function alone
...

(See Figure 6.7.)

6.1.6 Then, in ’Parameter sensitivity experiments using the EBM – #2’ – an ex-
tension to the previous Subsection work, you will create another
new script (scr_3), this time with a double (nested) loop in it. As
before – within the loop, you will make a call to the EBM func-
tion. Note that there is going to something of a diversion in this
Subsection that will further help illustrate nested loops for you.
(See Figure 6.9.)

6.1.1 The basic EBM

Figure 6.1: The pattern of absorption
bands generated by various greenhouse
gases and aerosols (lower panel) and
how they impact both incoming solar
radiation (upper left) and outgoing
thermal radiation from the Earths
surface (upper right). (Figure prepared
by Robert A. Rohde for the Global
Warming Art project.).

To kick off – create a new script (m-file) (’scr_1’ in the summary
notation) and code up the analytical solution to the basic global mean
energy budget at the surface of the Earth (see Box) in a program
structure illustrated schematically in Figure 6.2.4 The equations for 4 Note that the code is relatively simple

and does not involve (yet) loops or
conditionals or anything like that.
Although ... I am sure it will involve
lots of nice juicy comments and sensible
variable names(?)

Simply set up the values of the
various constants and parameters
you need at the start of the code, then
solve for T at the end of the code. The
structure (omitting % comments) of your
code may look like:

% section for constants

(variables you do not expect

ever to change)

...

% section for parameters

(variables you might adjust)

...

% solve for T

T = . . .

in-coming and out-going radiation (energy) were given previously.
You simply need to re-arrange these in terms of T (i.e. T = ...) and
write them as code. This will form the basis of subsequent, more
complex (and later, time-stepping) models. You will need to find
(from the Internet?) the value of the constant you need ... and will
need to be careful with units of this.

Figure 6.2: Form of the basic EBM
model.

For now – prescribe the value of S – for which the modern value
is 1368 Wm−2 (S0) as well as the value of surface albedo (α = 0.3 by
default) – somewhere near the start of the program. Then run it.

If you found a reasonable value for the solar constant, and did
not screw-up the units on the Stefan-Boltzmann constant, then you
should have an equilibrium (global, annual mean) surface tempera-
ture of around 14°C5 ... If not – debug. Assuming that the code ran

5 Remembering to convert from Kelvin
(K) to degrees Centigrade (°C).

without errors but gave a nutty answer:

1. Check that the units are correct.
2. Check that the equation has been re-arranged correctly – a
common source of errors is incorrect placement of parentheses
... or not placing parentheses around multiple variables you are
divining something all by.
If it helps you to avoid confusion and potential errors and bugs
by breaking down calculations into multiple steps using tempo-
rary/intermediate variables and partial calculations ... then do
it!
3. If still ’no’ – maybe take the 2 component equations (for Fin and
Fout), plug S into the equation for Fin and then play with different

192 str = ’do you like bananas?’

values of T to find a value for Fout that is approximately equal – is
the value for T sane? If not, double-check the units and values in
both component equations.
4. If still ’no’ – WHAT HAVE YOU DONE???

Once it is working, have a quick play about, changing the value of
S and albedo (α) (saving the m-file each time and re-running) to get
a vague feel for how sensitive the surface temperature is to these two
parameters.

Figure 6.3: Form of the basic EBM
model as a function.

6.1.2 The EBM as a function

We’ll now make your model mode flexible so that it can be applied
to the subsequent Examples. So – turn it into a function6 that takes in

6 Refer to earlier in the text and also
help on the required structure/syntax
of a function. Recall the basic structure
of a function m-file, has as its VERY
FIRST LINE:

function [OUT] = ...

FUNCTION_NAME(IN)

where OUT represents one (or more)
variables that are passed out (the
’result’ of the function), FUNCTION_NAME
is the name of your function, and
IN is the name (or names, comma-
separated) of one (or more) variables
(parameter values) that are passed into
the function. (The very last line of the
function should have an end.)

For example, to pass in two variables,
IN_1 and IN_2, you’d have:

function [OUT] = ...

FUNCTION_NAME(IN_1,IN_2)

2 parameters – the solar constant (S) and the mean global albedo (α).
The function should return the global mean surface temperature, T.7

7 Note that the parameters passed
into, and returned by, the function,
can be called anything you want. As
long as they are useful (and clearly
defined/explained in a comment
somewhere).

(See Figure 6.3)
Try playing with the function in the same way as before, but now

passing the different values of S and α (rather than having to edit the
m-file, save, and re-run each time). To use the function (assuming you
called it e.g. fun_1), and assuming the 2 passed parameters are in
the order: S, α and are given their default values, you’d write (at the
command line):

» fun_1(1368.0,0.3)

(and get a value close to 14°C returned, and if not – debug it ...).

Figure 6.4: Schematic structure of
code for calculating the solar constant
(output) as a function of time (input).

6.1.3 Creating a function for the evolution of solar constant through ge-
ological time

In this Sub-subsection, as a precursor to simulating how Earths sur-
face temperature may have changed through geological time, you are
going to code up a function that calculates (and returns) the value of
the solar constant as a function of time.

So far you only have a function equating solar constant (S) to
temperature (T). What you need is some way of equating time (t) to
the value of the solar constant at that time S(t) (which you can then
turn into temperature). We’ll remedy this toot sweet.

Start by creating a new (blank) m-file and define it as a function
that takes in a variable for time, t (in units of Ga) and spits out (aka,
returns) the calculated value of S(t) (Wm−2) (this will be ’fun_2’ in
the on-going notation).

The background to the equation that will go into your function is
given in the Solar constant Box. In this, you’ll first need to substitute
the modern value of the solar constant (S(t=0) or S0) into the equation
to leave it in terms of S(t) (the solar constant value at time t).

numerical modelling – zero-d / equilibrium 193

Your function, aside from the all-important 1st line (and end at
the end) and appropriate % comments, need have little more in than
a definition for any constant you might want to use, such as the
modern value of S(t=0) and perhaps the reference time8 (t0) (4.57 Ga)

8 Which is also equal to the current time
(since the formation of the Sun).

... and a single line for the equation giving the value of S(t).
When you think you have done this – check it – plug in values of

time into your function, i.e.

» fun_S(4.57)

for passing the time now into a function called ’fun_2’ in the on-
going notation (which in this example should return a value of 1368
(Wm−2)).

As a little test – see if you can adjust your function so that rather
than passing in time, measured since the formation of the Sun, you
pass in time relative to now (i.e. » fun_S(0.0) would then give you a
value of 1368).

(As a recap – time here is in units of billions of years, and is
counted from the formation of the Sun. Hence, today, is time 4.57
Ga.)

Solar constant
The long-term evolution of solar

luminosity Lt as a function of time t
can be approximated [Gough [1981];
Feulner [2012]) by:

Lt
L0

= 1
1+ 2

5 ∙(1− t
t0

)

where t0 is the age of the sun –
4.57 Gyr (4.57×109 yr) and L0 is
the present-day solar luminosity
(3.85×1026 W).

The value of L0 is equivalent to a
flux (Wm−2) of 1368 Wm−2 incident
at the top of the atmosphere at Earth
– the present-day solar ’constant’
S0. In the equation, L can hence be
substituted for S to give the value of
S (Wm−2) at any time (S(t)), i.e.

S(t)
S(t=0)

= 1
1+ 2

5 ∙(1− t
t0

)

or, in terms of the value of S at time
t and using using the notation S0 in
place of S(t=0):

S(t) = S0

1+ 2
5 ∙(1− t

t0
)

Note that in the formula, t is
counted (in Gyr) relative to the
formation of the Sun (i.e. present-
day would be: t = 4.57).

The reference value of t: t0, is t0 =
4.57 Gyr.

The reference value of S: S0 = 1368
Wm−2.

6.1.4 Using multiple functions and calculating global surface temper-
ature as a function of geological time

Finally ... you are going to bring it all together and calculate and
then at the end (of the program), plot, the surface temperature of the
Earth, at 100 Myr intervals, and spanning approximately the age of
the Earth and much of its potential long-term future.

Start by creating a new (yet another blank m-file) script (’scr_4’)..
You are going to need a loop in time, perhaps looping from 0.0 to
10.0 Ga (with the step size being 0.1 Ga). Within the time loop, you
will:

1. Pass to your solar constant function your time variable, and
obtain the corresponding value of S(t).
2. Call your zeroD EBM function to calculate the corresponding
surface temperature, passing it the value of S(t) that you have just
calculated.
3. Store in an array, or pairs of vectors, the current time in the
loop alongside the corresponding value of T. (For hints on the
various different possibilities in doing this – see Section 6.1.5.)

Once the loop has completed, plot surface temperature (y-axis) as
a function of time (x-axis).

Likely bug possibilities include mistakes with nested parentheses
(()). A schematic of the program structure is shown in Figure 6.5.

Figure 6.5: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, and solar constant
and EBM functions.

194 str = ’do you like bananas?’

Assuming that you have managed something like Figure 6.69 –
9 Note that a line has been added to
highlight t = 0 (i.e. the present-day) –
see line (see earlier).

what strikes you, in light of (hopefully) what you know about the
past history of climate and evolution of life on this planet, about your
model projection (for the past)? What is ’missing’?

As an additional step and noting that the time-scale is not entirely
helpful in terms of knowing when ’now’ is, you could:

1. Draw on a vertical line (hold on) at 4.57 (’now’, relative to the time
of formation of the Sun).

2. Transform the x-axis time scale to time relative to now.

To do this – as you loop through time relative to the formation of
the Sun, when you save the current time for plotting, you could
subtract 4.57 from the loop value.

3. Or ... you could save the time as given in the loop, but transform
the x-axis time scale to time relative to now by subtracting a value
of 4.57 when you come to plot, e.g.:

» plot(x-4.57,y);

or more explicitly so you can see what is going on:

» plot((x(:)-4.57) , y(:));

Note that you do not have to plot the entire dataset and could set
the x-axis limits to e.g. −4 → +4 Gyr relative to present.

-4 -3 -2 -1 0 1 2 3 4

Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

Figure 6.6: Simple EBM projection of
the evolution of Earth surface tempera-
ture with time. Time at the present-day
is highlighted by a vertical line (drawn
using the MATLAB line function).

6.1.5 Parameter sensitivity experiments using the EBM – #1

Now to utilize your new function (’fun_1’ in the summary notation).
Create a new blank script (’scr_2’) and define 2 parameters near the
start – one for the value of S and one for α, then further down the
code, call your function (fun_1), passing it these 2 parameters but
remembering that you need to assign the result of your function to
some variable10. So far so boring, as this is in effect what you had 10 i.e.

T = fun_1(1368.0,0.3);

assigns the result of your temperature
calculation to the variable T.

been doing in ’playing’ with the function previously.
Common in numerical modelling is quantifying how sensitive a

system is to the choice of parameter values – called a sensitivity exper-
iment. You may already have gotten a feel for roughly how sensitive
T was to changing S on its own, or changing α on its own, but what
about when both parameters vary together?

Lets start with a simple 1-D case, and consider just a change in
the value of S. To automate generate different values of S and call
the function, you are going to need a loop11. There are two ways of 11 You are going to put the loop in the

script (# scr_2), NOT the function (#
fun_1).

An entire plane of Hell is reserved
for anyone coding the loop in the
function.

constructing the loop12:

12 In both cases a for ... loop.

numerical modelling – zero-d / equilibrium 195

loop option #1 You could loop directly through the range of values of S
that you are interested in, e.g.

for S0 = 1000:100:1500

% CODE GOES HERE

end

in which S will go from 1000 to 1500 Wm−2 in steps of 100 Wm−2

13. 13 You can pick a different range and
increment ... this is just a quasi-random
example to illustrate ...

Perhaps a little inconveniently, this does not pass through the
modern value (1368 Wm−2), although when you plot as a contin-
uous line (e.g. in plot) or otherwise interpolate the results, maybe
this does not matter. You could have addressed this by construct-
ing a slightly less convenient form of the loop, e.g.:

for S0 = 1068:100:1568

% CODE GOES HERE

end

which now passes exactly through the modern value of S.

loop option #2 Alternatively, you could have an integer count for the
loop, and then derive a changing value of S0 from this. For exam-
ple:

S0_modern = 1368.0;

for m=-5:5

S0 = S0_modern + 100*m

% CODE GOES HERE

end

Look carefully through this code and follow what is going – as
m counts from -5 to 5 (in steps of 1), 100 times the value of m is
added to the modern value of S (S0) 14, meaning that S ends up 14 The variable definition S0_modern =

1368.0 at the top of the code fragment.going from S0_modern - 500, to S0_modern + 500 Wm−2 (in steps of
100 Wm−2).

loop option #3 Or ... as a variant on #2:

S0_modern = 1368.0;

for m=1:11

S0 = S0_modern + 100*(n - 6)

% CODE GOES HERE

end

which does exactly the same (do a mental check on this) but now
counts m starting from a value of 1.

To practice your coding skills – try coding up all 3 variants and sat-
isfy yourself that you are happy how they all work, and how they are
equivalent.

So what does it matter, and/or is one ’better’ than the others?
Although all are equivalent in effect, the advantage with the second

196 str = ’do you like bananas?’

and third versions is that you explicitly have an integer counter. For
the first version, you’d have to add lines, e.g.:

count = 0;

for S0 = 1068:100:1568

count = count + 1;

% CODE GOES HERE

end

And why might we want some sort of an integer counter in the
first place? Well, you might want to save the data(!), i.e. the calcu-
lated (by your function) value of T vs. the inputted value of S. This
data will need to go into an array, with one row corresponding to
each value of S.

There are two-and-a-bit obvious alternative ways of saving the
data (assigning calculated values to sequential locations in an array):

save option #1 Create the necessary array(s) beforehand, e.g. using the
zeros function. For instance, to create a vector with 11 rows (and 1
column), suitable for saving the value of T calculated by each call
to the EBM function, you could write:

data_T = zeros(11,1);

which would create a (single) column vector with 11 rows. You’d
need an equivalent vector (e.g. data_S in this example) for storing
the corresponding value of S used in the temperature calculation.
These vectors are created before the loop starts.
Then within the loop (and after the calculation of T), you’d assign
your values of S and T by using whichever index you created15: 15 i.e. which of the two OPTIONS you

chose earlier.
data_S(m) = S;

data_T(m) = T;

or:

data_S(count) = S;

data_T(count) = T;

where m and count are integers, starting at a value of one, and
incrementing by a value of one on each successive execution of the
loop. m (or count) represents an index that allows you to store the
result of each successive calculation (as well as the corresponding
input value) in a vector.

save option #2 Related to the above – you should recognise that creat-
ing 2 sperate vectors is messy, when you could easily create just a
single matrix instead. To create the array, we now use:

data = zeros(11,2);

which creates a matrix of zeros of 11 rows by 2 columns.
Within the loop, data is now assigned:

numerical modelling – zero-d / equilibrium 197

data(m,1) = S;

data(m,2) = T;

save option #3 Or ... MATLAB will allow you to ’grow’ a vector, one
element at a time (but not for matrices).16 The the code within 16 The vector automatically grows in

length as you add values to it. If you
don’t believe me, try the following:

» A=1;

» A(2) = 2;

» A(3) = 3;

You could instead define at the start f
the code (before the loop) a vector of
zeros of the correct length, the ’correct
length’ being the number of time
around the loop. See function zeros. Or
even NaNs ...

the loop actually looks identical, but instead of creating a pair of
vectors (or a matrix) of a size (number of rows) that matches the
number of iterations of the loop, you create an empty vector (or
matrix)17:

17 Try the code without creating empty
vectors at the start, and see what
happens? Why is MATLAB unhappy?

data_S = [];

data_T = [];

and then within the loop:

data_S0 = [data_S; S];

data_T = [data_T(m); T];

However, note that you cannot grow a matrix by adding data for
a single cell, as a matrix always has to have a complete number of
rows and columns. Instead, you’d write:

data = [];

during initialization before the loop starts, and then in the loop:

data = [data; S T];

So pick one (i.e. a way of saving a pair of values each time around
the loop) and code it up, or better, try all!

Finally, at the end of your program (after the end of the loop),
you can now plot (plot or scatter) how T varies as a function of S0,
having saved all the values of S you tested, plus the corresponding
calculated temperatures, in a handy matrix (or pair of vectors). Note
that regardless of whether you use plot or scatter), you need to
specify to MATLAB that you want the values in the 2nd column of
the array (y-axis), plotted against the first column (x-axis).18

18 Refer back to the earlier chapters
on plotting of e.g. the CO2 or glboal
temperature data you analysed, and
also recall how to specify e.g. all the
rows in the first column of an array.

The structure of your code should look like Figure 6.7. and your
resulting figure (depending on the range you assume for S), some-
thing like Figure 6.8.

Figure 6.7: Schematic structure of the
model configured to carry out a single
parameter sensitivity study.

1100 1200 1300 1400 1500 1600 1700

Solar constant (W m -2)

-5

0

5

10

15

20

25

30

T
em

pe
ra

tu
re

 (
de

gr
ee

 C
)

Figure 6.8: Sensitivity of global mean
surface temperature vs. solar constant
(mean surface albedo held constant at
an albedo value of 0.3).

6.1.6 Parameter sensitivity experiments using the EBM – #2

In this Sub-subsection, we’ll extend the parameter sensitivity anal-
ysis of your model to 2D, assuming for instance that you are now
interested in how T also varies as a function of α (surface albedo). So,
you’ll need to vary both S and α, and in all combinations of the two.
In fact, in a grid pattern, with S increasing in steps on one axis (as
before), and α on the other.

Hopefully, you might have guessed that you’ll need a nested loop(?)
– one loop going through all possible values of α, for each and every
possible value of S??

198 str = ’do you like bananas?’

OK – that was easily the greatest and least interesting diversion
in pedagogical history, but nested loops should now come almost
as second nature to you :o) So how about coding up the nested loop
for the question we were meant to be addressing – carrying out a 2D
sensitivity test of the parameters S and α. See if you can create this.

Start with a new (script) m-file (’scr_3’). For constructing the loop
– you have already seen the 1D example of parameter sensitivity
code, and also an example of creating a nested loop for a 2D grid.
Your chess board columns (m) become S, and rows (n) become α.
You don’t need to do anything so awful as that if ... statement –
instead just call your function (fun_1) for solving the global surface
temperature (passing it the values of S and α generated in the loop).
A schematic of the program structure is shown in Figure 6.9.

Figure 6.9: Schematic structure of the
model configured to carry out a double
(in terms of solar constant AND now
albedo) parameter sensitivity study.

For saving the data (within the loop), you cannot simply index
the locations you want in a 2D array (matrix) that did not previously
exist and expect it to ’grow’ as before, because a matrix must have all
complete rows and columns and you are generating the results (value
of T), one cell at a time, while you’d need a complete row or column
of results in order to append to the results array. Instead, near the
start of the code (before the loop), create a matrix of the size of the
parameter grid. For example, if you were going to loop through 10
different values of S and 10 of α, you could write:

data_output = zeros(10);

(creating a 10 × 10 array of zeros). Or if for example, you had 20
different values of S, and 10 of α:

data_output = zeros(10,20);

(20 columns times 10 rows).
Within an (n,m) loop you then assign your calculated value of T to

the appropriate location:

data_output(n,m) = T;

Don’t forget that you’ll also need to know the values of S and α that
correspond to the column and row numbers. Perhaps save these as 2
individual vector (as per before) or ignore them for now.

2 4 6 8 10

Solar constant (W m -2)

1

2

3

4

5

6

7

8

9

10

11

A
lb

ed
o

-20

-10

0

10

20

30

40

50

Figure 6.10: Global mean surface
temperature (°C) as a function of solar
constant and surface albedo grid point
number.

-25

-20
-15

-15

-10

-10

-10

-5

-5

-5

0

0

0

5

5

5

10

10

10

15

15

15

20

20

20

25

25

25

30

30

30

35

35

40

40 45

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

Solar constant (W m -2)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
lb

ed
o

-20

-10

0

10

20

30

40

50

Figure 6.11: Global mean surface
temperature (°C) as a function of the
value of solar constant and surface
albedo.

One slight complication if you use a pair of counters for indexing
the results array, and increment their value each time around their
respective loops (rather than having a integer count for the loop itself
(i.e. n and m)) – the innermost counter must be reset in value each
time the outer loops starts:

count_outer = 0;

for ...

count_outer = count_outer + 1;

numerical modelling – zero-d / equilibrium 199

count_inner = 0;

for ...

count_inner = count_inner + 1;

% CODE GOES HERE

end

end

(Try it instead by initializing both prior to the outer loop, and see
what happens ...)

Be careful here that you increment the value of the count variable
before using it to index the position in an array – an index of zero is
invalid in MATLAB. Or, you could initialize the count variable to a
value of 1 before the start of the loop and increment its value after
you use its value to index a location in the results array.

When you *think* you have this working and have generated
a matrix of T values19, plot the resulting surface of T vs. the two 19 HINT: create a 2D array of the appro-

priate size first, before the loop starts,
using zeros, and then populate it with
the values of T as the loop loops.

parameters. Rather than using e.g. imagesc (Figure 6.11)20, try

20 Note that the temperature grid points
are plotted as a function of column and
row number and that the plots ends
up ’up-side-down’ compared to the
coutourf version.

contour21 or contourf (e.g. Figure 6.10).

21 You’ll need to employ meshgrid based
on the same 2 vectors of values that the
loop creates for S0 and α.

200 str = ’do you like bananas?’

6.2 ’Daisy World’

Figure 6.12: Daisy World

There is an absolutely classic paper from the early 1980s – Watson et
al. [1983] – that illustrates how simple (biological) feedback on the
climate system can lead to a close regulation of global climate over an
appreciable span of the Earths past (and future). The premise for this
model is a planet covered in bare soil (essentially, as per in the earlier
EBM), but on which 2 different species of daisies (could be any pair
of plants with contrasting properties) can grow – one white (high
albedo) and one black (low albedo) as per Figure 6.1222. Because the

22 As pointed out in Watson and Lovelock
[1983], the actual ’colors’ are immaterial
– just that their albedos differ.

two species modify their local (temperature) environment and their
net growth depends on how close the local temperature is to their
optimum growth temperature, a powerful climate feedback operates
and as the solar constant increases, the abundance of daisies switches
from black to white – driving an increasing cooling tendency of the
planet surface in the face of increasing solar-driven warming. This
regulation emerges as a property of the dynamics of the population
ecology and interaction with climate and does not require an explicit
regulation of climate to be specified. Just dumb daisies doing their
day-to-day stuff.

We’ll code up this model ... but as before, in discrete stages (aka,
the following Subsections).23 23 Note that what immediately fol-

lows is just a summary list ... not the
instructions themselves ...8.2.1 This will be the simplest addition to your previous model24. You’ll
24 i.e. the one comprising a loop
through time, and within this loop,
calls to your function to convert time
to solar constant, and take the solar
constant (and albedo0 and solve for
mean global surface temperature. This
was ’# scr_4’ in the previous Section
notation.

create a new ’fixed daisy’ function (here called fun_3) which
will take no(!) inputs, and return a value for mean global albedo.
You’ll also copy-rename yourself a new script (’scr_5’ – based on
your previous m-file scr_4) and in it, take the albedo value gener-
ated by the call to the daisy function, and pass it into your EBM
function (m-file fun_1).
(See Figure 6.13.)

8.2.2 Now, in the next stage it gets a little more complicated, because in
a further new function (’fun_4’ – copy-renamed-and-edited from
fun_3), you’ll modify the equations such that the relative abun-
dance of each daisy type is now responsive to the value of global
temperature and incorporates some population dynamics of the
daisies.

In the main (time since the Sun formed) loop (in scr_5), the
situation thus becomes – the relative fractions of dark and light
colored daisies is now a function of global surface temperature,
yet ... global surface temperature, through the mean (fractional
area weighted) albedo of the daisies, is a function of the relatively
fractions of dark and light colored daisies – a circularity (feedback
loop). We’ll resolve this circularity (i.e. come to a steady state

numerical modelling – zero-d / equilibrium 201

solution) by creating an inner loop in scr_5 that comprises only
the daisy (abledo) function (fun_4) and the EBM function and
keeps looping until ... well, we’ll start by simply prescribing a
fixed number of iterations of the loop.
(See Figure 6.15 for a schematic of the code setup.)

8.2.3 Finally (almost) – we’ll allow the daisies affect their *local * (temper-
ature) environment. Now it gets more interesting (honest!). Al-
though the code structure is exactly the same as in the last step25, 25 A loop through geological time, as

per in the previous Section. Within this
main loop, you’ll have a sub-loop with
just the daisy function followed by the
EBM function.

you will require a further copy-rename-and-edit of the previous
daisy function (’fun_4’ → ’fun_5’) and one further copy-rename-
and-edit of the previous script (’scr_6’ → ’scr_7’) that calls the
daisy function.

8.2.4 In a minor extension to the previous work, we can modify the loop
involving the daisy function and EBM function such that it will
proceed until an adequately accurate solution (f0r global tem-
perature) has been converged upon (rather than looping a fixed
number of times).

OK then – here goes ...

6.2.1 ’fixed daisy’ daisy-world

To start: read Watson and Lovelock [1983]. You should be able to take
away from this some of the essential information that you need to
specify and keep track of. For now, we’ll just concern ourselves with
defining the albedo of bare ground (soil) and the albedo of each daisy
together with how much area is covered by each species of daisy.

As summarized above – create a new function (fun_3) and config-
ure it so that it returns a single parameter – albedo. For now it has
no inputs.26 How it relates to your previous program and code for

26 A funny sort of function, although
pretty well much like pi.

how the Earth’s surface temperature evolves over geological time, is
illustrated in Figure 6.13.

Figure 6.13: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant
and EBM functions, and now the ’daisy’
albedo function.

In the daisy/albedo function (fun_3) near the top, define yourself
some parameters for the daisy model:

% define model parameters - daisy albedo

par_a_s = 0.3; % albedo - bare soil

par_a_b = 0.1; % albedo - black daisies

par_a_w = 0.5; % albedo - white daisies

% define model parameters - daisy land fraction

fb = 0.01; % (land) fraction - black daisies

fw = 0.01; % (land) fraction - white daisies

(or using whatever parameter names you prefer). Here, the albedo
values associated with each daisy type are fixed and will be used
regardless of what the model does. The values have been chosen,

202 str = ’do you like bananas?’

assuming equal proportions of black and white daisies, to given an
average of 0.3 – the albedo of bare soil and also the assumed value
in the previous EBM. You’ll modify and play with this value all too
soon enough. The surface area fraction values are just initial values to
start the model off with.27 27 As you’ll come to see subsequently,

these cannot be zero. Or rather, a daisy
species can start with a fractional area
of zero, but you’ll never ever get any
of that species growing, regardless of
the environmental conditions (because
there are none to start with!).

These parameters relate to the symbols in the equations that fol-
low, as follows:

αs – par_a_s (albedo – bare soil)
αb – par_a_b (albedo – black daisies)
αw – par_a_w (albedo – white daisies)
Fb – fb (land) fraction – black daisies
Fw – fw (land) fraction – white daisies

Next, and actually the only line of any note in the function – you
need to calculate the average albedo28 – calculated based on the area

28 Note that it is very easy to accidently
prescribe a total area covered by daisies
of >100%. You should ideally put
a check (if ... end) in the code
before it tries to calculate anything for
whether the total area initially covered
by daisies exceeds what is possible. If
this is the case, your code might spit
out a warning message (a simple disp

command would do). You might also
terminate your program (see exit).

weighted average of: bare soil, white daisies, black daisies. The cal-
culation is simple and you already have the areas of the two species
of daisy as fractions. You weight the contribution to global albedo by
the albedo of each daisy by its fractional area. You then just need to
calculate the fraction of the Earths surface that is bare soil – the area
fraction not covered by daisies. In maths-speak, the mean albedo is
given by:

α = Fw ∙ αw + Fb ∙ αb + (1.0 − Fw − Fb) ∙ αs

where αw, αb, and αs, Fw, and Fb are as defined above. Bare soil is
simply whatever the fraction of the planet is not covered by daisies,
i.e. (1.0 − Fw − Fb).

You simply need to translate all this into MATLAB code using
the parameters you defined earlier (for αw, αb, and αs, and Fw and
Fb). The code will look pretty well much like the equation, but you
substituting whatever variable/parameter names you have chosen for
the symbols in the maths:

% calculate mean albedo

albedo = Fw*par_a_w + Fb*par_a_b + (1.0 - Fw - Fb)*par_a_s;

To be neater, we could also pre-calculate the fraction of bare ground,
Fg, and make ourselves a slightly shorter (and easier-to-debug) mean
albedo calculation, e.g.

% calculate fractional area of bar ground

Fg = (1.0 - Fw - Fb);

% calculate mean albedo

albedo = Fw*par_a_w + Fb*par_a_b + Fg*par_a_s;

Add these lines of code, which will be the one and only calcu-
lation that this particular MATLAB function ((fun_3), Figure 6.13)
carries out, just before the end of the function.

-4 -3 -2 -1 0 1 2 3 4
Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- fixed daisies

Figure 6.14: Evolution of global surface
temperature and the two populations of
daisies with time ... but with no change
allowed in the daisy populations
(d’uh!). The fractional coverage of
white daisies is shown by large empty
circles, and for black, by small filled
black circles. Data points for mean
surface temperature are color-coded by
temperature (color scale not shown).

numerical modelling – zero-d / equilibrium 203

That is actually it. All the variable/parameter values are specified
and fixed in the daisy function (see above), so nothing particularly
exciting is going to happen ... Regardless – run the the complete
model with the value of albedo now depending on the fraction of
white and black daisies – it should look identical to before in terms
of the evolution of surface temperature with time (it must, because
the default parameters above ensure that the mean albedo is always
0.3 and the daisies don’t even know anything about growing (or
dying) yet). Model (surface temperature) output, including how the
populations of the 2 species of daisy also vary with time, is shown in
Figure 6.14).

You might play briefly with the prescribed daisy area fractions (Fb
and Fw) and albedo values (par_a_b and par_a_w) and e.g. check that
when you specify a configuration with 100% of land area covered by
black daisies, the climate is much warmer throughout the simula-
tion, and when white daisies are assigned an initial value of 1.0, the
climate is always much cooler compared to in the default simulation.

6.2.2 ’dumb daisy’ daisy-world

Step #2 in the evolution of the Daisy World model, and for a modifi-
cation which will actually make something ’happen’ (i.e. the simula-
tion will be different to that of the default EBM based simulation of
mean global temperature response to increasing S0). The daisy popu-
lation is now going to grow and die (but unlike Southern California,
not burn), with their relative fractions changing over time until an
equilibrium is reached (for a particular specified value of S0). Watson
and Lovelock [1983] give a simple population model formulation for
the change in area fraction covered by both sorts of daisy with time
(also see Box) that we will implement here.

Daisy population dynamics (1)
For an area fraction occupied by

white and black daisies of Fw and Fb,
respectively, the change in occupied
fractional area with time (t) can be
written:

dFw/dt = Fw ∙ (x ∙ βw − γ)
dFb/dt = Fb ∙ (x ∙ βb − γ)

where x is the free (i.e. not occu-
pied by daisies of any color) area of
(fertile) ground, equal to:

x = 1.0 − Fw − Fb

(assuming here, unlike the more
general case in Watson and Lovelock
[1983], that all the land area is po-
tentially fertile), β is a temperature-
dependent growth function (one
for each species of daisy), and γ the
mortality rate (as a proportion of
the area covered by that species of
daisy per unit time). The value of γ
given in Watson and Lovelock [1983]
is 0.3, but this could be a parameter
that you could play about with and
investigate its effects.

To simplify things to start with,
growth is a function only of the
global mean temperature (in °C):

βw = 1.0 − 0.003265 ∙ (22.5 −
T)2

βb = 1.0 − 0.003265 ∙ (22.5 −
T)2

(where the value of 22.5 °C is a ref-
erence temperature and represents
where optimal (maximum) growth
occurs).

The unit of population in Daisy World is fractional area covered
(rather than an absolute number of individuals as we had before,
but these are pretty much completely interchangeable). So from
generation-to-generation (or on each subsequent time step, if you
prefer to think of it that way), the fractional area of each species
will grow or shrink, depending on whether mortality is higher than
growth. Both growth and mortality are formulated as being depen-
dent on the fractional area (at the previous time-step), i.e. growth in
covered area depends on how much is already covered.29 Similarly,

29 Note the parallels with before – the
new fractional area is dependent on the
previous area, whereas before it was
the new population size (number of
individuals) that was dependent on the
previous population size.)

mortality also depends on the current areas of daisies. The growth
rate is further modified by the available fractional area, such that as
the area left shrinks, the growth rate shrinks. (Effectively, this is per-
haps trying to account perhaps for shrinking resources available for
further growth. It also has the effect of adding numerical stability to

204 str = ’do you like bananas?’

the model and helps presents over-shoots where the total fractional
area covered by daisies far exceeds 1.0 ...). ?

How then to implement changing areas and growth of daisies in
code? (We’ll come to how to translate the equations into code after
ensuring we have the basic structure of the program built. A general
programming Plan of Action is given in the margin.)

Figure 6.15 gives a schematic of the overall code structure for this
model. The new difficulty here is that the relative fractions of dark
and light colored daisies is a function of global surface temperature,
yet ... global surface temperature, through the mean (fractional area
weighted) albedo of the daisies, is a function of the relatively frac-
tions of dark and light colored daisies – a circularity (feedback loop).
We resolve this circularity (i.e. come to a steady state solution) by
creating an inner (nested) loop that comprises only the daisy function
and EBM function.

DON’T PANIC. There are actually only 2 (or 3-ish), relatively in-
cremental changes, compared to previously. Start off by noting what
is the same – both the function for calculating the solar constant as a
function of time (fun_2) and the EBM model (fun_1) (temperature as
a function of solar constant and albedo) are exactly the same as be-
fore. The loop in (geologic time) and hence some of the script (scr_6)
is also the same. What is different and yet to-do?

Programming strategy:

• In general – start by identifying
any constants – i.e. fixed and invari-
ant, fundamental values, such as π
or the Stefan-boltzmann constant.
These values could be hard-coded
into the equation as numbers, but
better is to replace them with vari-
ables that you’d define at the top of
the m-file as this makes for neater
and easier-to read MATLAB code.
• Next identify any parameters

– values that are not fundamental
properties of the universe, but
may be considered invariant for
sequential uses of the equation.
The characteristic albedos of the
two species of daisies is a good
example – these values are ’fixed’,
although, one day you might change
them. If the code file is a script
– define MATLAB variables and
assign values to them, near the
start of the code file. Otherwise, if
a function, you may need to pass
these parameters into the function
and so they need to appear in the
function definition on the 1st line of
the code.
• Identify any output variables,

i.e. result(s) of the calculation. In a
function, these are invariably pass
back out and hence need to appear
in the function definition on the 1st
line of the code. Output variable
may also be input variables – i.e.
a calculation may take the current
value of a variable (as an input),
update it, and then pass it back
out. In which case, the variable will
need ot appear as both input and
output. Perhaps pick distinction
variable names to avoid confusion,
e.g. var_in and var_out.
• You may have local variables

(i.e. used only within the script and
out outside of it). If scalars, these
need not be defined and initialized,
unless used as e.g. a counting or
running-sum variable. If in doubt,
maybe also define and initialize e.g.
to zero local variables.
• Otherwise, it is mostly just

a case of writing the maths, in
MATLAB – changing symbols
where necessary and replacing
the letters (invariably) used in the
equations with your variable names.

1. Lets start with the daisy (albedo) function (which will be based
on the previous, fun_3 one). You could deal with the inputs and
outputs first. As as well as T, the previous values of the fractional
areas of the two daisies (Fw, Fb) are also required by the function
(which is different from before where the values were assumed
and the respective parameters set at the start of the function30).

30 So if you are copy-pasting the previ-
ous Daisy function, you need to delete
the lines:

par_f_w = 0.01;

par_f_b = 0.01;

This is because each time the daisy fractional area function is
called, the fractional areas are updated (hence why they are in-
puts). And outputs. Because the daisy function is updating the
fractional areas, these two parameters also need to be outputs too.
So the very first thing to do is to modify the function definition,
re-saving it as fun_4 (see Figure 6.15), so that the inputs are:

T, Fw, Fb

and the outputs are:

α, Fw, Fb

(see help of various sorts on functions, but it not at all a funda-
mental change as to compared to before). Of course, you need to
substitute the maths symbols for the actual variable and parameter
names you choose to use.

Then, the only other development in the function, is to imple-
ment the equations for daisy growth/death (see Box) and update

numerical modelling – zero-d / equilibrium 205

the values of Fw, Fb.

Figure 6.15: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant,
EBM, and ’daisy’ albedo functions.
Note the creation of an inner loop,
with EBM, and ’daisy’ albedo functions
called from within this, while the solar
constant remains called form the start
of the outer loop as before.

2. How to translate the given daisy population/growth equations
into code? We could start by substituting the value of γ for its
literature value of 0.3 to make it a little less scary. And also set the
growth rate function, β to 1.0 for now, so that does not distract us
either. The now simpler equations look like:

dFw/dt = Fw ∙ (x − 0.3)
dFb/dt = Fb ∙ (x − 0.3)

which says that the change in fractional area (dF), from one iter-
ation (generation or time step) to the next is proportional to the
current fractional area (F) multiplied by some stuff (x − 0.3).

We could re-write this in terms of a (loop) iteration number (n)
and also ignoring for now which daisy (black or white) we are
talking about:

F(n+1) = F(n) + F(n) ∙ (x − 0.3)

or rearranging:

F(n+1) = (1.0 + x − 0.3) ∙ F(n)

which says quite simply that the next fractional area estimate, is
equal to the current one, multiplied by (1.0 + x − 0.3). This should
look pretty familiar to you now and you should know how to code
this up, e.g.

for n=1:100

F = (1.0 + x - 0.3)*F;

end

taking 100 loop iterations as an example. But ... we are not writing
the population and albedo update code directly in the loop, but
rather, it is going into fun_4 and the function is called from within
the for n=1:100 ... loop (Figure 6.15). So rather (schematically):

for n=1:100

fun_2()

fun_4()

fun_1()

end

and within the function:

F = (1.0 + x - 0.3)*F;

The value of x in the equation is simply the fraction of the
planet not covered in daisies. And if we also bring both daisies
and their respective fractional areas back into the picture:

x = 1.0 - Fb - Fw;

Fb = (1.0 + x - 0.3)*Fb;

Fw = (1.0 + x - 0.3)*Fw;

206 str = ’do you like bananas?’

3. Now you are in a position to worry about the temperature
dependent functions for growth, which were:

βw = 1.0 − 0.003265 ∙ (22.5 − T)2

βb = 1.0 − 0.003265 ∙ (22.5 − T)2

These are actually pretty simple – you take temperature, sub-
tract it from a value of 22.5 and square it, multiply it by 0.003265
and subtract from 1.0 ...

bb = 1.0 - 0.003265*(22.5-T)
∧2

bw = 1.0 - 0.003265*(22.5-T)
∧2

Really – just as it looks written down mathematically. So now the
content of fun_4 will contain:

x = 1.0 - Fb - Fw;

bb = 1.0 - 0.003265*(22.5-T)
∧2

bw = 1.0 - 0.003265*(22.5-T)
∧2

Fb = (1.0 + x*bb - 0.3)*Fb;

Fw = (1.0 + x*bw - 0.3)*Fw;

4. So far, in fun_4 you have updated the area fraction remaining
(bare ground), updated the growth factors for the two species of
daisy, and then updated the fractional areas of both species of
daisy. Remaining, in this function, is to take the new fractional
areas, and update the mean albedo (which is then returned from
the function as an output):

% update mean albedo

albedo = x*par_a_s + Fw*par_a_w + Fw*par_a_b;

After this function returns the new updated values of mean
albedo (and the two fractional daisy areas in case we want them
for plotting later), the EBM function (fun_1) is called (in the inner
loop) (Figure 6.15).

5. Lastly, the initialization of the main program (scr_6) will be a
little different from before. Because the daisy function now takes
as input, Fw and Fb – you’ll need to give these variables each an
initial value (near the start of the program) so that first time the
function is called, there is a value for the equations to work with.
Similarly, temperature T now also becomes an input to the daisy
function (and it is not set anywhere else beforehand in the very
first iteration of the loops), so it also needs an initial value to be
assigned.31

31 For completeness, you could also
initialize S0 and α, but it is not strictly
needed, as they are calculated and
defined before they are first used.

-4 -3 -2 -1 0 1 2 3 4
Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- identical daisies

Figure 6.16: Evolution of global surface
temperature and the two populations of
daisies with time ... but now assuming
that the growth of each depends on the
global mean surface temperature.

If you have set this daisy population dynamics enabled EBM (a
DPDE-EBM!) up correctly, and drive it with your -4.0 to +4.0 Ga solar
constant calculating script, you should get something like Figure 6.16.

OK, so actually, this is not different in terms of the global mean
temperature response (to solar evolution), to before. But then again,

numerical modelling – zero-d / equilibrium 207

you have set both species of daisy with the same temperature growth
response. In other words, as the white daisies with a high albedo
grow, so to the black ones with a low albedo. Equally. And their dif-
ferent albedos balance, meaning that α still never changes. One thing
you could try to liven things up a little is to change on of the value
of β (and/or γ) so that their population dynamics are not identical.
Now, if the relative abundance of white and black daisies changes, so
too with global mean albedo and hence global temperature.

6.2.3 ’clever daisy’ daisy-world

The last step is to give each species of daisy a different environmental
preference for growth (why? because that is how the World works –
different plants and ecosystems tend to inhabit different environmen-
tal regimes as a result of being (evolutionary) adapted to different
environmental parameters). Watson and Lovelock [1983] assume that
both species of daisy have the same temperature preference but mod-
ify their local environment differently – white daisies inducing a local
cooling relative to the global mean temperature, and the presence of
black daisies driving a local heating (see Box). The result is Figure
6.17.

Daisy population dynamics (2)
To make the different species of

daisies interact differently with
the environment, the temperature-
dependent modifiers of growth are
made functions of the local (to the
daisy population or individual),
rather than global, temperature:

βw =
1.0 − 0.003265 ∙ (22.5 − Tw)2

βb =
1.0 − 0.003265 ∙ (22.5 − Tb)2

There are all sorts of says of defining
how the local temperature deviates
form the global mean. In Watson
and Lovelock [1983] this is simply
reduced to a simple deviation that
scales linearly with the difference be-
tween mean global and local (daisy)
albedo:

Tw = T + q ∙ (A − Aw)
Tb = T + q ∙ (A − Ab)

(noting that A is mean planetary
albedo here, not alpha as was the
case in the original (non daisy
enabled) EBM, while Ab and Aw

are the albedos of black and white
daisies, respectively).

q is a simple scaling factor that
describes how strongly the local
temperature deviates from the mean
(or conversely, how efficiently heat
energy is mixed between differen
daisy fractions) and is assigned a
default value of 10.0.

In the code – first copy fun_4 → fun_5, and scr_6 → scr_7, re-
membering to now call fun_5 from within the inner loop in scr_7.
(Otherwise, the structure of the model is the same as before.)

In fun_5, modify the equations of the growth factor β for each
species of daisy as per the equations in the Box. Now, instead of us-
ing T (the global mean temperature) in both growth equations, each
equation has its own local temperature – one associated with black
daisies (Tb) and one with white (Tw). The local temperatures are cal-
culated as deviations from the global mean, as per the equations in
the Box. You’ll need to calculate Tb and Tw in the code first, before
calculating the values of β.

Now the behaviour of the system and the evolution of global mean
surface temperature with time, is very different. Towards the start of
the experiment, and at very low values of S0, the global mean tem-
perature is too cold to support a daisy population (of either type).
As the value of S0 increases, initially global mean temperature fol-
lows the path it did before, in the absence of daisies (or with fixed, or
equal populations). At a certain point, black daisies, because of their
advantage that they absorb more sunlight and drive a locally warmed
climate, take off in population and rise to dominate 70% of the land
surface. The global mean temperature transitions sharply to a much
higher temperature state. As S0 further increases in value, they in-
crease slightly further in dominance (and global temperature climb a

208 str = ’do you like bananas?’

little further in response) until locally they reach their optimal tem-
perature for growth. Past this (optimal temperature) point, white
daisies start to grow and slowly replace the black ones. Global cli-
mate is almost perfectly stabilized during this interval. Beyond this,
there is a short interval where black daisies die out and white daisies
go on to reach their own (local) temperature optimum. Beyond this
again, everything suddenly goes extinct in a rapid warming feedback
of increasing temperatures, declining white daisy numbers, further
solar radiation absorption and warming, etc etc. How everything is
dead and I how you are feeling happy with yourself.

-4 -3 -2 -1 0 1 2 3 4
Normalized solar constant

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- interactive daisies

Figure 6.17: Evolution of global surface
temperature and the two populations of
daisies with time.

You could code this modification in – adjusting the (local) value
of T that each species of daisy ’sees’ (as per the Box and the refer-
ence). Or ... we could simply give them different temperature optima,
which is what the value of 22.5°C accomplishes in the temperature-
dependent growth modifier equation. For now, this is the way-
simpler approach and involves only a minimal edit to your existing
daisy function. So where in the equation for βw and βb you currently
have values of 22.5 (°C) in each – try making these different. Rea-
sonable would be to assume that the white daisies are more adapted
to hot climates and hence have a higher temperature tolerance, with
black daisies being better adapted to colder climates, using their
higher albedo and presumably local heating to make up for a colder
ambient environment. (You could be able to come up with something
not entirely dissimilar to Figure 6.17.)

6.2.4 Efficient and ’clever daisy’ daisy-world

The purpose of the inner loop is to calculate the equilibrium plane-
tary temperature for each value of S0. It may be that an equilibrium
is reached much sooner than the 100 loop iterations that are allowed.
So rather than running the inner loop for the fixed number of itera-
tions each time, you could make the overall calculation more efficient
by testing whether the change in global temperature between one
iteration and the next, is lower than some small threshold value –
indicating that the iterative calculation has converged.32

32 Remember, the command break will
exit the current loop you are in.

Note that while the Daisy World equations can be written in terms
of the population (or area fraction) at the nth generation, strictly, they
are formulated in terms of the population (area fraction) at time t.

Daisy population dynamics
In the published Daisy World

paper, the population dynamics are
written in terms of time:

dFw/dt = Fw ∙ (x ∙ βw − γ)
dFb/dt = Fb ∙ (x ∙ βb − γ)

and hence in the form:

dx
dt = f (x)

Hence we can construct the model
via:

F(t+Δt) ≈ F(t) + Δt ∙ F(t) ∙
(x ∙ β − γ)

i.e. at each successive time-step, we
take the previous fraction (F(t)) and
add to this, our approximated (for-
ward in time differencing) change in
fractional area value.

7

Numerical modelling – Dynamic (time-stepping)

All models are wrong, but some are useful as the saying goes.
Which is actually pretty unfair, as numerical models, in deliberately
approximating some aspect of the Real World, are in fact a priori
designed to be wrong; just sufficiently not wrong, to be useful.

210 str = ’do you like bananas?’

Forward-in-time (Euler) finite differencing

Commonly in numerical models, you find that the underlying equa-
tions may be of the form:

dx
dt = f (x)

i.e. the rate of change of some variable x, is some function of itself
(x).1 1 The equations need not be a function

of time.Invariably, we wish to make a projection of the state of the system
(value of x in this example), forward in time. If the increment in time
is Δt, then we wish to know the value of x at time t + Δt, i.e. x(t=Δt).

There is a Taylor expansion for this ... and switching to partial
derivative notation, we can write:

x(t+Δt) = x(t) + Δt ∙ ∂x
∂t + Δt2

2 ∙ ∂x2

∂t2 + Δt3

6 ∙ ∂x3

∂t3 + O(Δt4)

where O(Δt4) represents 4th order (and smaller) terms (which can be
considered as an ’error’ term (if not accounted for explicitly)), that
will be smaller in magnitude than Δt3

6 ∙ ∂x3

∂t3 .
If we drop all the higher order terms, and solve for dx

dt , we get:

∂x
∂t = x(t+Δt)−x(t)

Δt + O(Δt2)

which is just saying that we can approximate (if we accept the error
in the approximation represented by O(Δt2)) the gradient ∂x

∂t (or dx
dt)

by the difference between the value of x at time t + Δt, minus the
value of x at time t, divided by the increment in time, Δt.

In terms of creating a numerical model and coding it up, our next
value of x in time, can be approximated:

x(t + Δt) ≈ x(t) + Δt ∙ dx
dt

Coding Euler

How to implement this in code?
Consider the radioactive decay of an amount of radioactive sub-

stance. Assume an initial activity A (don’t worry about what the
units of this activity are), and the substance decays such that after 1
day, the new activity is equal to half the original activity. We could
write (or you might see given to you):

dA
dt = −0.5 ∙ A

where t is time in days.
This simply says: the rate of change in A with time (days), is equal

to minus (because it is decaying rather than growing) 0.5 times its
value.

We could also write this:

numerical modelling – dynamic (time-stepping) 211

∂A
∂t = A(t+Δt)−A(t)

Δt + O(Δt2)

and hence in our model, we know that the value of A at each succes-
sive point in time can be written:

A(t + Δt) ≈ A(t) + Δt ∙ dA
dt

and hence

A(t + Δt) ≈ A(t) − 0.5 ∙ A(t) ∙ Δt

or

A(t + Δt) ≈ A(t) ∙ (1.0 − 0.5 ∙ Δt)

If, in code, we represent the time-step Δt by dt, we have:

A = A*(1-0.5*dt);

and in a loop of 100 steps and initializing the initial activity to one:

dt = 1.0;

A(1) = 1.0;

time(1) = 0.0;

for n=1:100,

A(n+1) = A(n)*(1-0.5*dt);

time(n+1) = n*dt;

end

or if you prefer:

dt = 1.0;

A(1) = 1.0;

time(1) = 0.0;

n = 1; for t=dt:dt:100*dt,

n = n+1;

A(n+1) = A(n)*(1-0.5*dt);

time(n+1) = t;

end

(these codes are equivalent – in the first, you loop with a counter, and
then have to derive actual time, and in the second, you loop in time,
but then have to keep a counter in order to index the output data
arrays).

Try both out and explore different values of dt (Δt).
Also add a plot of the results arrays. And try coding the results

output in the form of a single matrix, rather than 2 vectors. For this,
rather than create the array (of zeros) of the correct size at the start,
try something like the following:

dt = 1.0;

data(1,1) = 0.0;

data(1,2) = 1.0;

n = 1;

212 str = ’do you like bananas?’

for t=dt:dt:100*dt,

n = n+1;

data(n,:) = [t (data(n-1,2)*(1-0.5*dt))];

end

where the first column of data is time, and the second is the activity.

Other simple finite differencing schemes

We can also write the Taylor expansion as:

x(t−Δt) = x(t) − Δx ∙ ∂x
∂t + Δx2

2 ∙ ∂x2

∂t2 − Δx3

6 ∙ ∂x3

∂t3 + O(Δt4)

This leads to the backwards difference operator:

∂x
∂t = x(t)−x(t−Δt)

Δt + O(Δt2)

Subtracting the second expansion form the first, leads to:

∂x
∂t = x(t+Δt)−x(t−Δt)

2∙Δt + O(Δt3)

which unlike the forwards and backwards operators, is 2nd order
accurate. This is know as the centered difference operator. Effectively,
it is just saying that the gradient of the function at time t (dx

dt), can be
approximated by the average of the gradient between time t and time
t − 1, and between time t and time t + 1.

numerical modelling – dynamic (time-stepping) 213

7.1 Catch the ball (ballistics and simulating trajectories)

In considering dynamic, time-stepping representations of physical
(/biogeochemical) systems, we’ll start with a simple, ballistics exam-
ple – that of the trajectory of a thrown ball.

Figure 7.1: Schematic of the thrown-ball
system.

The system we’ll consider is shown schematically in Figure 7.1. In
essence: we want to determine d – the horizontal distance (in m) that
the ball travels before it hits the ground. The initial conditions are:

1. The ball is thrown from an initial height h (m).
2. The ball is thrown with an initial speed s0 (ms−1).
3. The ball is thrown at an initial angle φ with respect to the hori-
zontal.

We’ll neglect any air desistence or spin imparted to the ball, and for
the purpose of calculating its height, we’ll ignore its diameter, i.e.
we’ll consider that the ball is level with the ground when its centre
is at height zero. Over and above this, you’ll only need to know the
gravitational constant (i.e. gravitational acceleration): g = 9.81ms−1

(i.e. the ball is being thrown on an Earth-like planet close to sealevel).
To simply things and the construction of the code and encapsula-

tion of the physics of the model, we’ll break it down into 4 steps:

Part I Considering only horizontal travel.

Part II Considering only vertical travel.

Part III Considering both horizonal and vertical travel and testing for when
the ball hits the ground.

Part IV Add some graphical output.

Figure 7.2: Schematic of the code for
simulating the horizontal movement of
a ball.

Part I Start with a new m-file (which can be a simple script file). For
the structure of the code – Figure 7.2 is given as an example to guide
you. First, you are going to need to define some constants (g), pa-
rameters (the initial height h, initial speed (s0), initial angle (θ) of the
ball). Because you are going to use a time-stepping approach (rather
than solve the system analytically), you are going to need to create
a loop in time, starting at time zero. Can you guess the time-step
you need? No? Then we need to make the time-step a parameter that
we can change later, to ensure that the system is solved well (i.e.
accurately and without numerical instability). You could call this pa-
rameter e.g. dt (for dt) and set it2 to an initial (guessed) value such as 2 In the parameter definition section of

the code.0.1s. How long should you run the simulation for? This is also a sort
of unknown at this point, at least until you have run the simulation a

214 str = ’do you like bananas?’

couple of times to get a feel for what the longest time the ball stays in
the air might be. So why not pick 100s to start with. Again, create a
parameter to hold the value of the maximum model simulation time
and assign its value in the parameter definition section of the code.

Assuming a time-step parameter name of dt and a maximum time
parameter, max_t, if your current time is called t, your loop structure
will look like:

for t = 0:dt:max_t

%SOME CODE

end

with time t starting at zero, and progressing to max_t in steps of dt.
What else do you need? You need a variable to represent the hori-

zontal position of the ball (delineated here in the text as p, with units
of m). This will start at zero and be updated within the loop. So also
in the parameter section, why not define your horizontal position
variable p and assign it a (initial) value of zero.

Lastly, you need to know the horizontal component of the balls
velocity.3 You can calculate the (initial) horizontal component of 3 In the absence of air resistance, hori-

zontal velocity does not actually change
throughout the simulation (i.e. in each
iteration of the loop, it will have the
same value).

velocity from the given initial conditions of initial speed (s0) and
initial angle of trajectory (φ)4. For now, pick any ’reasonable’ values

4 Just as long as you can remember
how to calculate the sides of a right
angled triangle given the length of the
hypotenuse, which here is the speed.

REMEMBER that MATLAB uses
radians for calculating with angles, not
degrees.

for s0
5 and φ 6. In the figure, the horizontal velocity component is

5 On September 24, 2010, against the
San Diego Padres, Chapman was
clocked at 105.1 mph (169.1 km/h) –
the fastest pitch ever recorded in Major
League Baseball. If you convert 169.1
km/h into units of ms−1, this will give
you some reasonable upper limit for
your initial thrown velocity.
6 Obviously, the angle should lie be-
tween zero and 90 °(or else the throw
is going backwards and/or into the
ground). BE CAREFUL as MATLAB
assumes that angles are in units of
radians, so either work in units of
radians throughout, or convert from
degrees into radians when you calculate
the velocity component based on the
angle.

designated u.
Along with the schematic of the code structure, this should be all

you need to create a basic code (but one at this point that does not
actually ’do’ anything). You should have a constant defined, and then
5 parameters – 3 representing the initial conditions of the model (the
parts Figure 7.1 colored in red), plus 2 parameters for the maximum
time and time step length. You also have 3 variables in the code so far
– time t, which is part of the loop, (horizontal) position p, which you
should have initialized to zero before the loop starts, and (horizontal)
velocity component u, which you should have initialized calculated
from s0 and φ. There should be nothing in the loop so far.

Check that it runs without error even though it is doing nothing
useful! Maybe add some debug (e.g. a line in the loop using disp)
to check that the loop really does loop from zero to max_t in steps of
dt.7

7 Note that depending on whether or
not max_t is divisible by dt with no
remainder, your loop might not exactly
finish at a value for a of dt.

Now to add some code to the loop. During each time-step, i.e.
each time around the loop, dt time (s) passes. In time dt, if the hor-
izontal velocity of the ball is u, you should be able to calculate how
far it moves, right?8 You need to add this increment in distance trav-

8 Distance = velocity times time:
dp = u × dt

elled to the current value of the position variable p9. Do this.

9 i.e. with code like

p = p + delta_p;

which you have seen endless times
before now and should becoming
wearily familiar ...

Re-run the code. Check it works at all (if not: debug). Try adding
debug code within the loop that displays the current time (t) plus
value of p at each time-step, e.g.

numerical modelling – dynamic (time-stepping) 215

for t = 0:dt:max_t

%CODE TO UPDATE POSITION

disp([’current time = ’, num2str(t), ’, position = ’, num2str(p)]);

end

so that you can track what is going on. (You can make a fancier out-
put if you wish and add in the relevant units to the output.)

Strictly, when updating the position of the ball in the first iteration
of the loop, time is dt at this point, not zero, which is what the loop
thinks (you already have a position of zero at time zero – the initial
conditions). So rather than starting the loop at zero, why not make a
minor modification, and start the loop instead at a value of dt.

You should have a working model at this point, albeit only for the
horizontal position of the ball.

Part II Now for tracking the vertical position (and velocity) of the
ball. Copy your previous m-file – use this as a starting point for the
new model.10 10 So for instance we will now interpret

p as the vertical, not horizontal position
of the ball.

Figure 7.3: Schematic of the code for
simulating the vertical movement of a
ball.

Think about what is different about the physics of the system
(Figure 7.1) from before – this is going to directly inform how you
adjust and add to the code. To start with, you should have noticed
that the initial position (p(0)) of the ball, does not start at zero, but
rather at height h (see Figure 7.1). This is one change to make in the
code (i.e. having defined h as a parameter, you subsequently use h
to set the initial value of p). Also – the initial velocity component, v,
is different from before (and in fact is assigned a different letter in
Figure 7.1). So go back to your triangle trigonometry, and calculate of
the initial vertical velocity component. Change the name of whatever
variable you used for u to something distinct that you’ll remember
stands for v in the equation. Overall, the code structure looks like
Figure 7.3.

You could, and indeed should, test the code so far. It should in fact
do something very similar to before, with position p increasing, lin-
early, as a function of time (i.e. as the loop progresses in the number
of iterations carried out). The only differences you should see are that
p starts from value h and the rate at which p changes will be greater
or less than before, depending on the value of θ you assumed.11 11 What value of θ would result in

an identical change in d with time
(comparing the previous horizontal-
only model with the new vertical (only)
one)?

So far so good. Except balls generally do not continue travelling
vertically for ever. You are missing gravity in this (vertical-only)
model. Your variable for v (vertical velocity) now needs to change
as a function of time and you’ll need to update its value within the
loop12. How are you going to update v? Well, the change in velocity 12 Before or after the updating the

position? Actually, a slightly tricky
question.

with time is called acceleration and in this example the only force
exerting any acceleration on the ball is gravity. Mathematically we
can approximate the change in velocity, Δv as:

216 str = ’do you like bananas?’

Δv = −Δt ∙ g

where g is the acceleration due to gravity. Note the appearance of a
minus sign in the equation if we are considering a coordinate system
with distance upwards.

So in the loop, calculate the change in velocity during the time-
step, and then update the value of v13.14 13 Hint:

v(t+1) = v(t) + Δv

where v(t+1) is the new (at the next
time-step) velocity and v(t) the current
velocity
14 Note that in this example and as
per Figure 7.3, we update the vertical
position in the loop first (at the start of
the loop), and then update the velocity
afterwards.

Re-run the model ... what happens? Does this seem ’reasonable’ ...
? At this point you might consider whether you really do need to run
the model for as long as 100s. Play about with the assumed initial
angle and also the velocity and get a feel for what is the longest the
ball lasts in the air (i.e. until its position becomes negative).

Part III You should now have 2 working models (sperate m-files)
– one for the horizontal position of the ball, and one for the vertical
position (and vertical velocity) of the ball. You now want to combine
the 2 sperate parts of the model.15 15 I suggest basing the combined model

on the vertical model (as it is the
more complicated of the 2) and hence
copying-and-renaming the 2nd script
(i.e. so you end up with 3 different
m-files in the end).

How to merge? Mostly, the code content of the 2 individual mod-
els was identical. What you do need to copy across from the horizon-
tal model and add in is:

• The calculation of the initial value of u.
• The initialization of the horizontal position.
• The calculation of the change in horizontal position each time-
step.
• The updating of the new horizontal position.

By now, you should have noted a slight problem – in both previ-
ous (sperate) models, the variable p was used to represent both the
horizontal AND vertical position of the ball. D’uh! duh

exclamation informal
used to comment on an action per-

ceived as foolish or stupid, or a state-
ment perceived as obvious. As in:

"I used the same variable name twice
and which is why the model did not
work – duh!"

My solution would be ... a vector to store the current position –
just of one row and two columns, i.e. exactly as you might write
a position in (x, y) notation. The horizontal position (x) is hence
assigned the first element (p(1)) and the vertical position, the 2nd
(p(2)). If you do this (i.e. resolve the variable clash this way), you’ll
need to edit how you set the initial conditions in the code, e.g.

p(1) = 0;

p(2) = h;

as well as how the position is updated in the loop. You can leave the
name of the increment in position (Δp) the same if you wish (as this
is a temporary variable whose value is replaced each time around the
loop in any case), e.g.

dp = dt*u;

p(1) = p(1) + dp;

numerical modelling – dynamic (time-stepping) 217

dp = dt*v;

p(2) = p(2) + dp;

Hopefully this works and runs ... Maybe add some output within
the loop to track its progress, such as:

for t = 0:dt:max_t

%CODE TO UPDATE POSITION

disp([’(’, num2str(p(1)), ’,’, num2str(p(2)), ’) @ t = ’, num2str(t)]);

%CODE TO UPDATE VELOCITY

end

You should end up with output, depending on how you con-
structed the string to be displayed by disp (and what initial condi-
tions you chose ...), like:

» ball_uv

(0.5,1.866) @ time 0.1

(1,2.634) @ time 0.2

(1.5,3.3038) @ time 0.3

(2,3.8755) @ time 0.4

(2.5,4.3491) @ time 0.5

(3,4.7247) @ time 0.6

(3.5,5.0021) @ time 0.7

(4,5.1814) @ time 0.8

(4.5,5.2626) @ time 0.9

(5,5.2458) @ time 1

(5.5,5.1308) @ time 1.1

(6,4.9177) @ time 1.2

(6.5,4.6065) @ time 1.3

(7,4.1973) @ time 1.4

(7.5,3.6899) @ time 1.5

(8,3.0844) @ time 1.6

(8.5,2.3808) @ time 1.7

(9,1.5792) @ time 1.8

(9.5,0.67938) @ time 1.9

(10,-0.31849) @ time 2

(10.5,-1.4145) @ time 2.1

...

...

which is far far far from exciting ... but does at least confirm a con-
stant change in horizontal position with time, and a vertical position
that initially increases above the initial condition (h = 1.0) but subse-
quently drops back and eventually falls below zero. And the point at
which it reaches zero is the value of d of course.

The very least we could do at this point is to detect when the ball
has reached the ground and terminate the loop. I’ll leave this code
for you to devise, but you’ll need:

1. A conditional statement (if ...) to test whether the vertical
position has dropped below zero. This would go in the loop just
after the position of the ball has been updated, And ...
2. The MATLAB command to exit a loop, which you have seen
before (look it up if you have forgotten).

218 str = ’do you like bananas?’

Now you might note that when the ball reaches the ground (tech-
nically: its height falls below zero) and the loop exists, you may al-
ready be way below zero. In fact, if you are even the least little bit
observant, you might note that the change in height per time-step at
the end of the simulation is quite large (order meters) and hence it is
unlikely you’ll ever capture the moment that the ball is very close to
the ground. Unless you shorten the time-step, that is. So play about
with a shorter time-step (you only need change the value you as-
signed to the parameter representing Δt in the code). How short does
it have to be in order to catch the moment the ball reaches the ground
(passes zero) to within e.g. 10cm?16 What about 1cm? 16 i.e. to have the loop terminate when

the height is no more than −10.0cm.Finally – as an alternative to creating a for loop, pre-defining a
maximum number of time-steps (or maximum time) and then having
to exit the loop once the ball reaches zero height about the ground,
try re-writing the loop as a while loop, with the condition (for the
loop to continue looping) that the ball has a height above the ground
that is greater than zero. (This makes for a neater solution to the
problem.)

Part IV Some graphics fun.
It would be kinda fun (really) to show the ball ’flying through the

air’. There are a variety of ways of doing this. We’ll start with the
simplest first and use scatter.

As a departure from previous plotting, we don’t want to plot at
the very end (after the loop)17 but rather, plot each position as it is 17 Although if you stored the position

of the ball at each time-step, you could
re-play the trajectory afterwards.

calculated, within the loop.
In the code – open a new graphics figure window, before the loop

starts, and set hold on, by adding the lines

figure;

hold on;

Within the loop, you want to plot each (x, y) position as it is calcu-
lated (after the position has been updated, that is) by:

scatter(p(1),p(2));

(feel free to add additional parameters to scatter to make the points
smaller or larger, or filled, or whatever). Comment out any debug
(disp) lines.

Well, not so exciting. The plots sort of appears all at once and
there is no sense of animation or of the ball moving. MATLAB is just
way too fast for its own good18. 18 This is a Trump-ism. In truth, MAT-

LAB is about the slowest piece of *$&%
about.

You can make the loop proceed slower, by adding a time delay –
i.e. each time around the loop, MATLAB will take whatever time it
needs to carry out the calculation and plot the current position PLUS

numerical modelling – dynamic (time-stepping) 219

whatever additional time you tell it to chill out for. The command is
pause and you might initially try e.g.

pause(0.05);

which should insert a 50ms delay into the loop. Run it.

pause

MATLAB says: "pause(mjs) pauses
the MATLAB job scheduler’s queue so
that jobs waiting in the queued state will
not run."

Garbage.
pause(n) will pause the execution

of the code by n seconds.

Now it has all got really trippy. If you tell it no different, MATLAB
insists on auto-scaling the (x and y limits of the) plot. As the position
of the ball increases (initially) in y-axis direction, and (constantly)
along the x-axis direction, MATLAB periodically re-scales the axes.
Annoying. So before the loop starts and after you create the figure
window, why not prescribe axes limits(?) Having played with the
model you should have a reasonable idea for what the maximum ver-
tical and horizontal distances are associated with ’reasonable’ choices
for the initial conditions (s0 and θ). Don’t forget the command for
specifying a scale for the axis limits is axis. (Figure 7.4-esk maybe?)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizontal distance (m)

V
er

tic
al

 d
is

ta
nc

e
(m

)

Figure 7.4: Trajectory of a ball!!

You can have all the trajectories appearing on the same plot if you
comment out the figure command in your script, and open a single
new figure window at the command line (» figure). Then each and
every time you run the script, the new trajectory will be added on
top. You could also try turning your script into a function so that
you do not need to edit the values of s0 and θ in the code, but pass
them into the program as parameters instead (the function needs not
return anything however).

Having developed some visualization for the trajectory of the ball,
this is a good point to experiment with the length of the time-step
and determine at what point (time-step duration) the numerical ap-
proximation starts to break down – i.e. as compared to a simulation
with a very short time-step (or an analytical solution), when (what
longer time-step duration) does the trajectory start to visually differ
(and the distance travelled before the ball hits the ground, change)?

e.g. Figure 7.5 illustrates a 0.1s time-step and Figure 7.6 a 0.2s
time-step (contrast with Figure 7.4).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizontal distance (m)

V
er

tic
al

 d
is

ta
nc

e
(m

)

Figure 7.5: Trajectory of a ball (with a
poor time-step choice).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Horizontal distance (m)

V
er

tic
al

 d
is

ta
nc

e
(m

)

Figure 7.6: Trajectory of a ball (even
poorer time-step choice).

If you are keen ... you can make more of an ’animation’ out of the
ball trajectory plotting. One trick would be to re-plot the position
of the ball a second time, but now in white (hence covering up the
previous drawing). Better is to ask MATLAB to delete the last ball
object.

When you call scatter as a function, a handle is returned that is
the ID of the points plotted. You can use this ID to delete the point
again! e.g. close all the currently open windows and try the follow-
ing:

220 str = ’do you like bananas?’

» h=scatter(1,2);

and you get a circle plotted at location (1, 2).

» delete(h);

... and ... it is gone (but leaving (re-scaled) axes in place).
If, in your loop, after updating the position of the ball, you have:

pause(0.025);

delete(h);

h=scatter(p(1),p(2),50,’filled’, ...

’MarkerFaceColor’,[1 0 0],’MarkerEdgeColor’,[0 0 0]);

you should see a red ball (with a black outline) smoothly sailing
across the screen.19 20

19 You could make the animation a little
smoother by decreasing the time-step
and also playing about with the delay
(pause).

20 A slight complication here as that
as it stands, the code will not work
because in the first time around the
loop, when you get to delete(h),
MATLAB is unhappy because the
handle h has not yet been defined
anywhere. The easiest way to fix this
is outside the loop, to plot the initial
position of the ball (and obtain its
handle). e.g.:

figure;

axis([0 10 0 5]);

hold on;

h=scatter(p(1),p(2),50,’filled’);

Now when the loop starts, there is a
’ball’ to delete!

A further refinement would be to add a term to account for air resis-
tance – as the ball travels through the air, friction will act to deceler-
ate the ball.

You could represent the effect of friction in a similar way to how
you accounted for gravity, except (a) friction will affect both velocity
components, and (ii) friction will act to decelerate the ball, regardless
of its direction of travel (up or downwards). Friction also differs
from gravitational acceleration in that the deceleration will not be
constant, but instead a function of velocity. Furthermore, can assume
that friction will scale with the square of the velocity (rather than
linearly).

In your basic code:

dp = dt*u;

p(1) = p(1) + dp;

dp = dt*v;

p(2) = p(2) + dp;

dv = -dt*g;

v = v + dv;

you would add (to the end of the loop):

du = -dt*f*u
∧2;

u = u + du;

dv = -dt*f*v
∧2;

v = v + dv;

Here, f is a parameter that scales the impact of air resistance on
velocity. It is not clear, at least in this simplistic formulation, what its
value should be. So this (the value of f) is something to explore and
test the effect of.

numerical modelling – dynamic (time-stepping) 221

7.2 Dynamics in the zero-D Energy-balance climate model

In this next Example making use of time-stepping, we will make the
zero-D energy-balance climate model (very) slightly more interesting,
or at least, (very) slightly more realistic.

The time-dependent behavior of the initial version of the energy
balance model is trivial. In fact: there isn’t any. The system is al-
ways in equilibrium as constructed. Why? No thermal inertia – i.e.
nothing in the physical system as defined in the equations has any
heat capacity and the outgoing (long-wave / infrared) energy flux is
always assumed to be in exact equilibrium with the incoming (short-
wave) flux. So we need to add an ocean, or rather: a box (a variable
in the MATLAB code) to store the heat content, or temperature, of
the ocean, and update this (temperature) in the event of there being
any imbalance between gain and loss of energy at the surface of the
Earth.

Specific Heat Capacity
According to wikipedia: "An ob-

ject’s [or here: ocean] heat capacity
(symbol C) is defined as the ratio of the
amount of heat energy transferred to
an object and the resulting increase in
temperature of the object:"

C = Q
ΔT

where Q is the (change in) energy
(so could equally be written ΔQ if
you prefer) and ΔT the associated
change in temperature. Units are:

• C — JK−1

• ΔT — K
• Q — J

Typical units for specific heat capac-
ity are:

Jg−1K−1

(or Jkg−1K−1)The science behind the new model is based directly on the basic
energy balance equations you had before, except this time, you are
not going to assume that the 2 equations are equal (and hence solve
for T). Instead, you are going to calculate the net energy gain (or
loss) over a given interval of time and use the specific heat capacity
of a substance (assuming water here)21 to link this energy change,

21 Once again – be very careful with the
units. Or all will be lost ...

to a temperature change (see Box). This will be the basis of the ’dy-
namics’ of the climate model and will dictate how quickly the mean
surface temperature responds to any imbalance in loss vs. gain of
energy.

You will assume the following:

• The average mixed layer depth of the ocean is 70 m.
• The average fraction of the Earths surface that is ocean is 0.7.

(both from Henderson-Sellers [2014]) – Figure 7.7. You’ll also need to
know:

• The specific heat capacity of water.

(see Box) but you can find this out for yourself ... Note that you do
not need to know e.g. the radius of the Earth as we are constructing
the model on a global average per m−2 basis as before (i.e. we are
considering a representative 1m2 of surface, of which 70% is water (or
0.7m2) with a depth of 70m.

Figure 7.7: Schematic of the dynamic
EBM.

Figure 7.8: Schematic of the script for
the basic dynamic EBM

The form of the program is shown schematically in Figure 7.8.
You’ll need to create yourself a new script (scr_1) to make this.
Much of this and the main sections of code should look familiar.
Break the code down into logical sections. Start by defining any con-
stants you need, as well as parameter values. For the time loop, we

222 str = ’do you like bananas?’

are going to start off with a fixed total duration and a fixed time step
(a little later, we’ll relax these constraints). And to make things really
simple to start – assume a 100 year duration (starting at T = 1.0) and
a loop time increment , ΔT = 1.0 (year). So you are not even going to
need to initialize and update a loop counter in the code!

In the loop itself, you firstly need to calculate the energy imbalance
(assuming there is one) between incoming solar radiation absorbed
and out-going infrared radiation loss. For this – taken the equations
given to you earlier for absorbed solar radiation and infrared loss,
and simply calculate the difference (rather than re-write in terms of T
as you did for the equilibrium EBM) – ΔF.

From the energy flux imbalance (ΔF), which is in units of Wm−2,
i.e. Js−1m−2, you’ll need to calculate how many J of energy (per m2)
are lost or gained over the course of your time-step. Your time-step
is in units of years ... so you’ll need to calculate how many s in a
(average) year, and multiply the energy change s−1 by this number
(to give the energy change per time-step). The energy change can
then be used to update the temperature of the mixed layer ocean ...
as long as you have already calculated the heat capacity of the ocean
that is ...22.

22 Assuming specific heat capacity is
in units of Jg−1K−1, you need to find
the mass of the ocean box in g, noting
that the density of (pure water at 0C) is
1 gcm−3.

Start by determining the volume of
the ocean box in cm3, convert to g, and
then multiply the specific heat capacity
C by this, to give the heat capacity of
the ocean box.

This is the number of J of energy
needed to raise the temperature by 1K.

A possible sequence of calculations (assuming you have calcu-
lated the heat capacity of the ocean box once, before the loop starts)
follows23:

23 It is much easier and less prone to
bug, if you split things into five steps.

1. Calculate incoming energy flux, Fin.
2. Calculate outgoing energy flux, Fout.
3. Calculate the net energy change (per m2 per s) at the Earths
surface, ΔF.
4. Calculate the total energy imbalance (per m2) over a year, in J.
5. Using the heat capacity of the ’ocean’ , calculate its temperature
change.

After the loop, plot something helpful at the end. If successful, you
should see something similar to (actually, identical to) Figure 7.9
(assuming a 1 yr time-step).

0 10 20 30 40 50 60 70 80 90 100

Time (yr)

0

5

10

15

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM spin-up

Figure 7.9: 100 yr spin-up of the basic
EBM.

Figure 7.10: Schematic of the script for
the basic dynamic EBM – now with
added loop count(!)

Next, you are going to play a little with the time-step in the model.
So, rather than a simple loop from 1 to 100 (years) with an increment
of 1, you are going to generalize the increment as Δt. If dt is your
parameter representing the increment in time (presumably, conve-
niently defined hear the start of the code)24, and max_t the maximum

24 Don’t forget to convert dt into units
of s when you use it in the energy
calculation.

time (here: 100 years) (also conveniently defined near the start of the
code?), then:

% start of time-stepping loop

numerical modelling – dynamic (time-stepping) 223

for t = dt:dt:max_t,

% SOME CODE GOES HERE

end

Now you will need to crete yourself a loop counter in order to store
the results (for subsequent plotting), because dt will not necessarily
be an integer and hence you will not be able to use t to index your
data storage vector (/array). The modification needed is only minor
however – see Figure 7.10.

The only slight complication is in knowing the size of the output
vectors, assuming that you have created them (using zeros) up-front
in the code (and as per the Figure 7.8 schematic), rather than growing
the vectors as the loop progresses (see earlier). Initially, you would
have been able to simply write e.g.

data_time = zeros(100,1);

data_T = zeros(100,1);

One strategy is simply to pick a number larger than you think the
number of times the loop will execute. The downside being that you
might create a vast array with only a small portion of it ever being
used. Better in this example would be to append to the vectors as
the loop progresses and not attempt to define them beforehand (i.e.
Figure 7.8 rather than Figure 7.10).

By playing around with different parameter values for Δt, you
should discover that some care has to be taken with the choice of
time-step duration, e.g. Figure 7.11 has a time-step of 3.5 years,
which clearly is on the verge of going doolally. 25

25 For practice (fun!?), you could turn
the script into a function. Make two
parameters as inputs: (1) the total
simulation duration, and (2) the time-
step, both in units of yr.

Doolally
Mad, insane, eccentric.

0 10 20 30 40 50 60 70 80 90 100

Time (yr)

0

5

10

15

20

25

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM spin-up

Figure 7.11: 100 yr spin-up of the
basic EBM, but with a poor choice of
time-step ...

So far, so far from exciting – you have been simply time-stepping
the model to equilibrium, for which there was an analytical solu-
tion anyway (with ocean heat capacity irrelevant to this). However, it
should be apparent that it takes some years (how many) for the sys-
tem to reach equilibrium. This would have important implications for
a (real world) system in which the one of the terms in the radiative
balance equation changes relatively rapidly (or on a time-scale com-
parable to the adjustment time of the system). The concentration of
CO2, and radiative forcing due to the ’greenhouse effect’, is just such
an example.

A follow-on Example to this, takes the time-stepping (dynamic)
zero-D EBM and calculates the warming impact of a prescribed CO2

concentration (technically: mixing ratio) in the atmosphere.

The Greenhouse Effect
The effect of changing CO2 concen-

trations on the global energy budget
is typically written in terms of a
virtual (long-wave) radiation flux
applied at the top of the atmosphere.
The flux anomaly, ΔF, as a function
of CO2 concentration (technically:
mixing ratio) (CO2) relative to a ref-
erence (pre-industrial) concentration
(typically: CO2(0) = 278ppm) can be
approximated:

ΔF = 5.35 ∙ ln(CO2
CO2(0)

)

The complete basic EBM energy
budget now looks like:

Fin = (1−α)∙S0
4 + 5.35 ∙

ln(CO2
CO2(0)

)

Fout = 0.62 ∙ σ ∙ T4

First off: copy either of your previous dynamic EBM scripts (scr_1,
scr_2), re-naming to e.g. scr_3.

Then, check out the CO2 radiative forcing (Greenhouse Effect) Box.
This will guide you as to how you are going to modify your energy

224 str = ’do you like bananas?’

budget (within the time-stepping loop) – basically, you are simply
adding a 3rd term (a second incoming term) to the heat budget.

From your previous experiments, you should have determined
what value the equilibrium temperature ended up as (in the absence
of CO2 forcing and with a modern solar constant). You should make
this your new initial condition for calculating the planetary tempera-
ture from and set the appropriate parameter. (If you don’t, the results
of all your subsequent experiments will be dominated by the climate
system adjusting from your initial condition rather than cleanly re-
sponding to whatever perturbation you have applied (/experiment
carried out).)

Test the model with a fixed, assumed CO2 concentration (by set-
ting the value of your parameter for CO2 concentration) and check
that the mean surface temperature responds in a reasonable way.26,27 26 What is ’reasonable’? Well, you could

conduct a pair of experiments – one
in which you do not modify CO2, and
one in which your double it. The IPCC
and there (now) five Assessment reports
have much to say about the climate
system response to a doubling of CO2.
So you can conduct a reality check
on your model based on existing and
widely available climate sensitivity
information.
27 By way of reference: assume that the
pre-industrial concentration (mixing ra-
tio) of CO2 in the atmosphere (CO2(0))
is 278 ppm.

For reference:

• Peak of last glacial — ∼ 190ppm
• Pre-industrial — 278ppm
• Current — ∼ 400ppm
• End of century — ∼ 900ppm
• Cretaceous — ∼ 834 − 1112ppm(?)

Next, you will load in a CO2 data-set and drive your dynamic zero-D
EBM as a function of time, with a changing concentration of CO2 in
the atmosphere.

The program (scr_3) structure is going to be similar to Figure 7.12.
To complete it, you need to:

Figure 7.12: Schematic of the dynamic
EBM driven by a history of CO2 (read
in from a file).

1. Add in code to load in the CO2 dataset. You are going to use
the ice-core derived record from week #1
(etheridge_etal_1996.txt).
2. From the resulting data array – determine the minimum and
maximum years and the total length (number of rows) of the data.
All these values might usefully be stored in variables in your code.
3. Create results vectors of the same length. Create one vector for
each of: year, CO2 value, temperature. (Create a single, 3-column
array instead if you prefer.)
4. Edit the time loop such that it runs from the minimum to maxi-
mum year (with a time-step of 1 year).
5. Also in the loop – save the current year, CO2 value, and associ-
ated calculated temperature.

Be careful that indexing of arrays in MATLAB (for accessing the CO2

value, or saving data to the appropriate row in the vector or array) –

numerical modelling – dynamic (time-stepping) 225

MATLAB always starts at a value of 1. You will either need to derive
an index from the current year28, or add a loop counter (it is simple 28 e.g. current year minus start year plus

one.to do the former and it takes less lines of code).
When you have this working you should get something like Figure

7.13 (but note that this was done with not quite the same CO2 dataset
...). If you want to be fancy you can add a horizontal line indicating
the pre-industrial equilibrium solution (using line).

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

Time (yr)

14

14.2

14.4

14.6

14.8

15

15.2

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM forced with observed CO
2

Figure 7.13: Transient EBM response
to observed changes in atmospheric
CO2. For reference, the pre-industrial
equilibrium global temperature is
shown as a horizontal black line.

Finally, the lagged behavior of the climate system (as encapsulated
in your EBM) is maybe not obvious as the forcing (CO2) is varying.
Common in model experiments and characterization, is to create
artificial and deliberately simplified forcings and perturbations, so
as to more readily diagnose the response time and characteristics of
a system. Crete an artificial CO2 data-set, spanning the same time
interval as the real data, and at the same frequency, but substitute
an idealized CO2 forcing in which CO2 stays constant (at 278 ppm)
up until year 1999, then at year 2000, increases to 400 ppm, and stays
there. The result of such an experiment should look like Figure 7.14.

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

Time (yr)

14

14.2

14.4

14.6

14.8

15

15.2

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM forced with observed CO
2

Figure 7.14: Transient EBM response to
(fake) changes in atmospheric CO2.

Other common model scenarios are linear ramps (up, and/or
down) and compound increases, such as a 1% per year increase in the
concentration of CO2 (each and every year) starting ca. 1960.

To quantify the impact of the ocean heat reservoir on the transient
climate response – try modifying one of your original equilibrium
EBM function such that rather than a value of S0, you instead pass
in the CO2 concentration. You’ll need to add in the CO2 radiative
term to the energy balance equation (see earlier Box on CO2 radia-
tive forcing) as you solve for T. Take (and rename) the dynamic EBM
script (scr_3), and in place of the lines of code in the loop that cal-
culated the radiative imbalance and then updated the global surface
temperature – simply call your modified EBM function.

The aim here is to be able to run the same experiment of changing
CO2, but with the assumption that the climate is always in equilib-
rium. Compare the equilibrium vs. dynamic model results (giving
an estimation of the importance of the non zero heat capacity of the
planet in creating a lag in temperature in response to a forcing).

A further refinement would be to add a deep ocean heat reservoir
(with e.g. diffusive exchange between deep and surface (mixed layer)
boxes).

8

Numerical modelling – To infinity (1D) and beyond(!)

228 str = ’do you like bananas?’

8.1 1-D energy-balance climate model

Although the Earth is, of course, fundamentally three-dimensional,
there are many situations in Earth, Ocean, and Atmospheric sciences
when an environmental system can be approximated with a model
having just one single (length) dimension. For instance, the struc-
ture (e.g. temperature properties) of the atmosphere generally varies
vertically much more quickly in distance than it does in the horizon-
tal. Similarly, the changes in the physical, biological, and chemical
properties of the ocean are generally much more pronounced with a
change in depth rather than for the same distance in latitude or lon-
gitude. Because the horizontal gradients in environmental properties
in such systems are often relatively small, the horizontal fluxes and
exchanges of matter and energy will also be small, particularly com-
pared to vertical transport. The behaviour of some processes which
are in reality are operating in a three-dimensional system world can
therefore often be usefully analysed by considering their behaviour in
just one dimension.

The simplest possible1 example of a 1-D model is to build on the 1 :o)

EXAMPLE OVERVIEW:

1. Define model grid (latitudes)
2. Calculate zonal surface area
3. Calculate zonal cross-sectional area
4. Calculate incident solar radiation
5. Set up plotting as a function of

latitude

(zero-D) EBM from before. Well ... perhaps not the simplest, but
relatively fun. If you like that sort of thing ...

The idea is: rather than to treat the entire Earth as a single homo-
geneous surface characterized by a single surface temperature (and
hence single value of outgoing radiation flux), you are going to split
the Earths surface up into latitudinal bands. Why latitude and not
longitude? Simple inspection of global temperature distributions
indicate that the meridional2 gradients are much more pronounced 2 According to the mighty Wikipedia:

"along a meridian" or "in the north-
south direction".

that the zonal3 gradients. Obviously, a model would be improved
3 "along a latitude circle" or "in the
west-east direction"

by resolving both meridional and zonal gradients and energy flows,
but if you are going to simplify a climate model to just a single di-
mension, picking latitude seems as good a way to go any any. You
can also think in terms of how incoming solar radiation changes
most – ignoring day-night changes as the Earth rotates – low vs. high
latitude regions have the greatest contrast in incoming energy (and
hence temperature), and one might suspect that flow of (heat) energy
from the Equator towards the poles might be about the single most
important transport in the climate system.

We can make a further approximation by noting that the input
of solar radiation is roughly symmetrical about the Equator (and
assuming that we are going to consider only an annual average cli-
mate state of the Earth).4,5 So, for this exercise, you need actually

4 The actual distribution of the conti-
nents on Earth together with how the
ocean then circulates on a large-scale
completely ruins in this assumption
practice, or rather: should a particular
degree of ’realism’ be required.

5 Because of the (non-zero) obliquity of
the Earth, there is a slightly imbalance
in the annual averaged solar radiation
received by each hemisphere – dictated
by which hemisphere is in its summer
when the Earth is closest to the Sun.

only model one hemisphere (and assume that the other one acts

numerical modelling – to infinity (1d) and beyond(!) 229

identically and that the resulting temperature distribution can be
copied/mirrored).

#1 Zonal area of the Earths surface
The area of a zonal band of the

Earth surface, from latitude φ1 to
φ2 (in radians), can be found by
integrating the circumference of a
circle: 2 ∙ π ∙ r, where r = r0 ∙ cos(φ)
and r0 is the radius of the Earth:

∑
φ2
φ1

2 ∙ π ∙ r0 ∙ cos(φ) ∙ δx

and where δx is an increment in
length tangential to the surface equal
to r0 ∙ sin(δφ) and which for small δφ
as can be written as r0 ∙ δφ.

In the limit δφ → 0:
∫ φ2

φ1
2 ∙ π ∙ r2

0 ∙ cos(φ) dφ

The zonal area between latitude φ1

and φ2 is thus:

2 ∙ π ∙ r2
0 ∙ (sin(φ2) − sin(φ1))

and which is why when you inte-
grate from -90°to +90°(or -π/2 to
+π/2) you recover the surface area
of a sphere: 4 ∙ π ∙ r2

0.

OK – so the first step is to divide up the Earth (or one hemi-
sphere), into bands, with each band being subject to the same en-
ergy budget as before, including an ocean-dominated heat capacity
component, and which will lead to each band having its own char-
acteristic temperature. (Assume for now that each latitude band is
characterized by the same fraction of ocean and mean mixed-layer
depth.) You can chose how many bands to make. Actually, if you do
it the ’easy’ way it will not matter how many you want6 and which,

6 Within reason, but ... as you’ll find
later, there is a numerical stability
penalty to having too many (but simply
requiring a shorter time-step to fix.)

as you might have guessed, uses loops. The hard way is to write out
all the equations explicitly7.

7 If you are unsure how a loop is going
to pan out in terms of updating the
fluxes and calculating the temperature
of each zonal band, maybe write out
the equations in full initially (for one
hemisphere), e.g. for 3 bands: 0-30°N,
30-60°N., and 60-90°N.

You are going to do construct something like this:

for n = 1:n_max

% CODE GOES HERE

end

where n_max = 90.0/dlat and dlat is the width of each band8.

8 If you loop in n (latitudinal bands),
you can pre-define the northern and
southern edge of each band for conve-
nience, and then simply by indexing the
appropriate array with n, recover the
latitude, e.g.

% define model grid - N edge

grid_n = [dlat:dlat:90];

% define model grid - S edge

grid_s = [0:dlat:90-dlat];

where dlat is the increment in latitude
between bands.

For each band, it would be nice to write exactly the same equa-
tions as before. Except ... you can’t. Why? (Hint: spheres have curved
surfaces – who would have guessed? And the surface gets more
oblique with respect to incoming radiation as the latitude increases,
meaning that the same (per unit area) solar flux is spread over an
increasing area.)

• For outgoing radiation / energy loss, you need to know the sur-
face area of each band, assuming that each band occupies an equal
number of degrees of latitude, and how this varies with latitude.
A small hint can be found in Box #1. Or the Internet will, as usual,
know it all.

• For incoming solar radiation, you need the cross-sectional area of a
band on a sphere.
The original mean incident solar energy per unit area was S0/4
on the basis that the total received radiation was π ∙ r2

0 ∙ S0 spread
over (i.e. divided by) a total surface area of 4 ∙ π ∙ r2

0. You already
have the total surface area of a zonal band around the Earth (Box
#1) which you need for calculating the long-wave energy loss from,
but now you need the area perpendicular to the incoming solar
radiation (i.e. the cross-sectional area). The area of a complete disk
is π ∙ r2

0 and to cut a long story short ... and see Box #2 ... the area
of a portion of a disk, is:

A = r2
0
2 ∙ (−2 ∙ φ1 + 2 ∙ φ2 − sin(2 ∙ φ1) + sin(2 ∙ φ2))

which is *so* much less fun than before :(

Actually, both equations are so little fun, that, assuming that you

230 str = ’do you like bananas?’

defined vectors to hold the northern and southern edges of the zonal
bands (see later), I’ll give you the necessary code fragment for free:

% calculate zonal surface area (units radius)

loc_sa = 2.0*pi*(...

(sin(pi*grid_n(n)/180)-sin(pi*grid_s(n)/180) ...

);

% calculate cross-sectional area

loc_ca = 0.5*(...

- 2.0*pi*grid_s(n)/180 + 2.0*pi*grid_n(n)/180 - ...

sin(2.0*pi*grid_s(n)/180) + sin(2.0*pi*grid_n(n)/180) ...

);

where loc_sa is the surface area of the zonal band, and loc_ca is
the cross-sectional area (grid_n and grid_s hold the northern and
southern edges, respectively, of the zonal bands).

#2 Zonal cross-sectional area
The cross-sectional area of a

zonal band ... is a pig to calculate.
You start with the area of a circle
bordered by a cord, which can be
thought of as a line of latitude. This
itself, is derived by calculating the
area of a segment and subtracting
a triangle ... no seriously. I wish I
could be bothered to draw you a
picture. Google is full of hits for a
circular segment.

Inconveniently, this is written in
terms of the angle of the segment, ψ:

A =
r2
0
2 ∙ (ψ − sin(ψ))

Again, you need a picture. If we
re-write ψ in terms of latitude φ:

φ = (π−ψ)
2

then we can reduce this to (recognis-
ing, e.g. that sin(π − 2 ∙ φ) is simply
sin(2 ∙ φ):

A =
r2
0
2 ∙ (π − 2 ∙ φ − sin(2 ∙ φ))

All we need to do then, is to
subtract the smaller, high-latitude
chord-bounded circular segment
from the low-latitude one. Simples.

Obviously(!) you ratio loc_ca by loc_sa to get out the relative
change in solar flux for that latitudinal zone (as you did for a disk/-
sphere and ended up with S0/4). Note that MATLAB just hates units
of ° for angles – you need your latitude values, when you calculate
the sin of the southern and northern boundaries of the zonal band, in
units of radians.

You are going to to be time-stepping through the simulation (as
per the previous EBM with a heat reservoir), and your time-stepping
loop needs to go outside (around) the latitude band (n) loop. The
’code goes here’9 is going to be similar to the code as before, for up-

9 Along the lines of:

% (1) calculate net radiation

imbalance (W m-2)

% (2) update temperature (of

ocean mixed layer)

(with the results array having a zonal
band number dimension as well as of
time).

dating the temperature of the surface (equivalent to the temperature
of your ocean mixed layer heat reservoir), but obviously you need a
vector to store the temperature of each zonal band.

You are ready to go ... or should be. Probably easiest is to adapt
your function from before (and save under a different m-file name)
and retain the ability to pass in a time-step and also maximum sim-
ulation duration. Amazingly, given the cr*ppy unpleasant trigonom-
etry involved, it seems to work(!) – illustrated in Figure 8.1. As ever,
if you give it a particularly inappropriate time-step, funky and mean-
ingless things can happen (not shown).

0 10 20 30 40 50 60 70 80 90
-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 8.1: Basic 1-D EBM with no
latitudinal heat transport and for a
single hemisphere only.

In an extension to this Example, we note that although the dis-
tribution of surface temperatures with latitude looks not entirely
unreasonable (colder at the poles is good!), you really need data10

10 Not the Star Trek, Next Generation,
one.

of some sort to be sure the model projection is not bonkers. You had
a dataset of annual mean global surface air temperature data before
(which you dutifully plotted). You could either eye-ball some num-
bers from and try and guess appropriate or representative values as
a function of latitude and compare to your EBM, or calculate a zonal
mean. Actually, MATLAB makes this obscenely simple for you using

numerical modelling – to infinity (1d) and beyond(!) 231

the mean function11. 11 A function to calculate the arith-
metic mean, rather than a nasty and
vindictive function.

mean

MATLAB help, helpfully says:

Average or mean value.

S = mean(X) is the mean

value of the elements in X

if X is a vector.

For matrices, S is a row

vector containing the mean

value of each column.

The only things then to watch out for are:

1. If the array is in the wrong orientation, you’ll find yourself
averaging along lines of latitude. This is simple to check as you’ll
get no noticeable latitudinal gradient in temperature. You should
also find in that case that the length of the vector returned by mean

matches the longitude grid rather than latitude.
2. Correcting #1 requires flipping the matrix around with the
transpose operator (’).
3. Units – units of the temperature dataset are K whereas your
model is in degrees Centigrade.

Once you have fixed any obvious data problems, you should end
up with something like Figure 8.2 (January) or Figure 8.3 (July).
Still to be done is to create an annual average zonal mean from the
data that can be contrasted directly with the annual average EBM
output, rather than just a single month of data. Fixing this is left as
an exercise for the reader, as they say ... -80 -60 -40 -20 0 20 40 60 80

-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 8.2: Basic 1-D EBM with no
latitudinal heat transport (red filled
circles). Overlain is the zonal mean
observational data for January (blue
circles).

-80 -60 -40 -20 0 20 40 60 80
-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 8.3: As per Figure 8.2 but for
July.

Irrespective of the month (and this might well hold true for the
annual mean too), the EBM doesn’t exactly provide an ideal fit to the
observations. In particular: the North pole is rather too cold and the
tropics maybe a little on the warm side. Actually, we are only really
looking at half the model-data picture at the moment, and although
in the EBM the Southern Hemisphere is a mirror image of the North,
it would help to actually see this. So in addition to creating a annual
mean zonal temperature profile to plot against the EBM – also (cal-
culate, or mirror, and) plot the corresponding model projection for
the Southern Hemisphere. Something is still missing (in terms of
the model accounting for the observations) – what? Hopefully you
correctly guessed (i.e. scientifically and logically deduced) that it is
meridional heat transport – from the (overly) warm tropics to the
(too) cold poles.12

12 We have also ignored e.g. how surface
albedo increases as incident angle de-
creases – i.e. solar radiation is generally
absorbed more strongly by surface that
are perpendicular to the radiation and
reflected more efficiently if radiation
is glancing at a shallow angle to the
surface. However, this would only exac-
erbate our problem and leave the poles
even colder.

Extending this Example further, we’ll add some meridional trans-
port of heat energy (to fix the process missing from the previous
version).

We can encapsulate something of the effect of heat transport along
the latitudinal temperature gradient, either by adding a term to rep-
resent eddy diffusion and analogous to Fick’s law, or by analogy to
thermal conductance (albeit with a very poorly conducting atmo-
sphere). They actually both amount to the same thing and will end
up with similar looking equations. Taking the thermal conductance
approach, the flux of heat energy from one latitudinal band to the

232 str = ’do you like bananas?’

next, J (W), can be written13: 13 The equation is conventionally
written as negative, assuming the point
of reference is the higher temperature,
which loses heat energy.

J = −k ∙ A ∙ ΔT
Δz

where k is the thermal conductivity (Wm−1K−1), ΔT is the difference
between the temperatures of two adjacent zonal bands (T1 − T2),
and Δz the distance between the bands (measured at the mid-point
latitude14).15 14 Similar to before, if you loop in n

(latitudinal bands), you can pre-define
the central latitude of each band for
convenience:

% define model grid mid-point

grid_mid = ...

[0+dlat/2:dlat:90-dlat/2];

although ... this comes in useful only
for plotting (e.g. temperatures against
the mid-point latitude of the zonal
bands, as the separation in latitude is
always dlat and hence the separation in
distance is always the same(!)).
15 This is effectively the same as for the
diffusion of CH4 in a soil column in the
other 1D modelling example, with the
exception of the addition of an explicit
area (A) term here, which we did not
worry about before because the model
was constructed on a unit area (1 cm2)
basis and hence area did not appear
explicitly in the equations.

To code this, you simply take the interface area between two ad-
jacent zonal bands (A), multiplied by k, and by the temperature gra-
dient between the bands (ΔT

Δz). Heat energy will be lost by the band
with the higher temperature, and gained by the adjacent band with
the lower temperature, which needs to be taken into account in the
energy budget of each band, as summarized below.

The area that heat diffuses across can be simply approximated as
the height of the atmosphere over which heat transport takes place,
multiplied by the distance around the Earth at that latitude (taking
the latitude at the boundary between zonal bands, rather than the
mid-point). We’ll further assume that for height, the atmosphere can
be approximated by equivalent thickness of constant pressure, which
would make it 8.5 km (8.5E6 m) in height (and then suddenly space
beyond that).

Distance between 2 latitudes
Really, you don’t need a Box for

this. It is embarrassing to make one
in fact. But just in case ...

The average distance between
zonal bands can be estimated from
the difference in latitude between
the two mid-points of the zones, and
divide up the circumference of the
Earth proportionally, i.e.

Δz = Δlat
360 ∙ ztotal

where ztotal = 2 ∙ π ∙ R (the circumfer-
ence of the Earth at the Equator).

Circumference at a specific latitude
This is even more embarrassing to

write than the last one. The distance,
z, around a particular latitude, φ
(a Greek character was really not
necessary, but it looks way more
fancy this way), is:

z = 2 ∙ π ∙ sin(φ) ∙ R

(sin(φ) ∙ R being the radius of the cir-
cle at that latitude).

Based on the equation – add a heat diffusion (/conductance) term
to your 1D zonal EBM. Note that you do not a priori know the value
of k. This is not a problem per se, indeed, there may be no simple an-
swer or first principals derivation because the processes that govern
meridional heat transport in the real atmosphere ... and ocean, may
be legion and non-linear. The advantage of a model is that you can
find a value of k that most closely fits the observed data and thus best
represents the missing process. Informally, you can simply play with
the model and by trial-and-error find a value that seems to fit the
observations best.

The key here is to recognise that there are now additional terms
in calculating the energy balance for any particular zone. Whereas
previously we could write:

ΔF(n) = Fsolar_in (n) − Flongwave_out (n)

now we need:

ΔF(n) = Fsolar_in (n) − Flongwave_out (n) + Fdi f f usion_in (n) − Fdi f f usion_out (n)

Note that we have special boundary conditions to consider: the zone
bordering the Equator and the zone bordering the pole. This is be-
cause the polar zone only gains heat by diffusion from lower lati-
tudes and there is no higher latitude zone than it to diffuse heat to.
For the lowest latitude zone, if we are assuming that the Earth is

numerical modelling – to infinity (1d) and beyond(!) 233

symmetrical about the Equator, then it only loses heat to a higher
latitude zone and does not exchange heat energy with the opposite
hemisphere (because the temperature is assumed the same).

The structure of your model, within the (outer) time-stepping
loop, should then look like:

1. Loop through all n latitude bands and calculate the in-coming
and out-going radiation.16 16 Don’t update any temperatures just

yet!2. Loop through (n − 1) latitude bands (i.e. omitting the highest
latitude box, n), and calculate the diffusion of heat from the band
n to the one adjacent at higher latitude (n + 1). Populate 2 (length
n) vectors – one to store the diffusive heat gain (presumably from
a lower latitude), which will have non-zero values for indices 2
through n, and one to store the diffusive heat loss (presumably to
a higher latitude), which will have non-zero values for indices 1
through (n − 1).
3. Loop through all n latitude bands, calculate the net energy in-
put ΔF(n) and update the surface temperature accordingly (based
on the heat capacity of the ocean mixed layer and the time-step, as
before).

As before, if you are not entirely confi-
dent in what you are doing – write out
the equations long-hand for the sim-
plest possible comparable case – that
of 3 zonal bands: one from 0-30°N, one
30-60°N, and one from 60-90°N. You
have two flux calculations in this case
– the transfer of heat energy from the
low to the mid latitude box, and from
the mid to the high latitude zone. See if
you can see the pattern, which will then
help you generalize it to n.

What about the value of k? You are going to have to guess it to
begin with17 ... and adjust your guess if the model fits the data worse 17 If you see nothing plotted, your

guess might be too large and you have
numerical instability. You could try
reducing the time-step. But also start
with the lowest conceivable value and
work higher.

than before.
As an illustration – Figure 8.4 shows the effect of specifying

a value of heat conductivity of k = 0.1 Wm−1K−1, while k =
1.0 Wm−1K−1, as shown in Figure 8.5, is clearly compete overkill, and
much of the pole-to-Equator temperature gradient has been wiped
out by over-aggressive heat transport between the bands. (Note that
here I have simply mirrored the modelling temperature profile for the
Northern hemisphere, to the other (with a hold on). This could have
been done much better by combining the vectors and hence obtaining
a continuous curve from Souther to North.)

-80 -60 -40 -20 0 20 40 60 80
Latitude

-100

-80

-60

-40

-20

0

20

40

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 8.4: 1D EBM with an initial
guess as to the value of k.

-80 -60 -40 -20 0 20 40 60 80
Latitude

-100

-80

-60

-40

-20

0

20

40

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 8.5: 1D EBM with a x10 larger
value of k.

234 str = ’do you like bananas?’

8.2 1-D reaction-transport model

A rather scientifically different, but conceptually somewhat
similar example, consider diffusion of a gas through a porous
medium. We will take the example of methane (CH4) diffusion into
soils, but there are many other situations in the Earth, Ocean, and
Atmospheric sciences where (diffusive) transport in 1-D is critical to
understand (such as the supply of solutes to the interface of a grow-
ing mineral crystal). At its simplest, we have a concentration of CH4

in the atmosphere, which we will assume does not change with time
(i.e., the reservoir is in effect infinite). We will call this concentration
C0. Because we are not going to allow the value of C0 be affected
by whatever happens in our 1-D soil column (we are not concerned
in this exercise in any role that the soil methane sink might play in
controlling the concentration of CH4 in the atmosphere itself), it is a
condition imposed on the model. This is known as a boundary con-
dition (and because it is at the top of the soil column, it is an upper
boundary condition).

In the soil we have a population of methane-consuming bacte-
ria (’methanotrophs’) who are taking up and metabolizing the CH4

(there will also thus also be a return of CO2, the metabolic product of
CH4 oxidation, from the soil to the atmosphere). Because CH4 is be-
ing depleted at depth, there will be a gradient in CH4 concentrations
along which CH4 there will be net diffusive transport, illustrated in
Figure 8.6. The scientific question is thus; what is the flux of CH4 into
soils? This is important (no, really!) because methane is a powerful
greenhouse gas and (aerobic) soils might constitute an important sink
of this gas. 18

18 In reality the system looks more like
Figure 8.7, and actually, even more
like Figure 8.8 ... adding considerable
complexity (and dynamics).

Figure 8.6: Idealized schematic of the
soil-CH4 system.

Figure 8.7: Slightly less idealized
schematic of the soil-CH4 system.

Figure 8.8: Even less idealized and
almost realistic, schematic of the soil-
CH4 system.

If all CH4 in the pore space was entirely consumed at some known
depth, z, then we would have a gradient of C0 − 0 (C0 being the
imposed upper boundary condition, and zero being the concentration
at depth) in methane concentration, and diffusion would be taking
place over a depth z. If D is the diffusivity of CH4 (in soil), with units
of cm2s−1, then we can easily calculate the initial flux, J, of methane
into the soil by Fick’s law (as cm3 CH4 per second (s−1) per unit
cross-sectional area (cm−2)):

J = D ∙ C0−0
z

or, more generally we can write that at any point in the soil that the
following condition must be satisfied:

J = D ∙ ΔC
Δz

where ΔC
Δz is the gradient in CH4 concentration (i.e., the change in

concentration divided by the change in depth).

numerical modelling – to infinity (1d) and beyond(!) 235

If all there was to the soil methane system was consumption to
zero at known depth, we could simply use an analytical solution
to calculate the CH4 flux into the soil. Unfortunately, life is rarely
as kind, and there are a number of complications (see background
material). For instance, the bugs do not all live at the same depth in
the soil column (although that is the assumption made in Ridgwell
et al. [1999]), nor have a constant activity throughout the year. Also,
soil properties vary with depth, which affects the porosity and tor-
tuosity of the soil (basically, how interconnected soil pore spaces are,
and thus in effect how conductive the soil is to gaseous diffusion)
and thus the diffusivity (D) of CH4 in the soil column, illustrated in
Figure 8.7. We will assume an initial value for D of 0.186 cm2 s−1.

Because we would quite like a general model for soil CH4 uptake
that was capable of accounting for these sorts of complications if nec-
essary, we will solve the system numerically rather than restricting
us to a simple analytical solution. This is what we will be doing in
this exercise – constructing the basic model of atmospheric CH4 dif-
fusion into the soil, although there is not time in this exercise to go
on and consider the metabolic consumption of atmospheric CH4 by
methanotrophic bacteria.

EXAMPLE OVERVIEW:

1. create function
2. create arrays and initialize model

parameters
3. set up plotting (useful for later)
4. create time-stepping loop frame-

work
5. add code to calculate fluxes:

(I): flux into surface layer
(II): flux into the (9) interior layers
in a loop

6. add code to update concentrations
based on fluxes:
(I): updating of first 9 layer concen-
trations in a loop
(II): updating of bottom-most layer

If we divide up the soil profile into 10 equally-spaced (equal thick-
ness) layers19, the basics of the model will be an array with 10 rows,

19 It need not be 10 – choosing 10 layers
of 1 cm thickness each, just simplifies
things.

one (row) location in the array representing the CH4 concentration
in the pore space corresponding to each 1 cm thick interval of soil
(see Figure 1). Thus, row #1 corresponds to the concentration in the
0-1 cm depth interval, C1, #2 corresponds to the 0-1 cm depth inter-
val, C2, ... , and #10 corresponds to the 9-10 cm depth interval, C10.
We will also need to create an array to store the average depth, zn at
which each of the CH4 concentrations is measured. These depths will
be; 0.5 (z1), 1.5 (z2), 2.5 (z3), ... , and 9.5 cm (z10).

We are now ready to calculate the diffusion of CH4 down the soil
column. From the earlier equation, you know that you can relate the
methane flux to the gradient in the soil, and the gradient between
any two successive soil layers is equal to:

Cn−Cn+1
zn+1−zn

This is just to say, the difference between the concentration in any
layer n and the concentration in the layer immediately below it
(which will be number n + 1) divided by the depth interval between
the mid-points of the same two layers, which is the depth (from the
surface) of the deeper layer (zn+1) minus the depth of the layer imme-
diately above (which is layer n).

Putting this all together, the downwards flux of CH4 between

236 str = ’do you like bananas?’

layers is given by:

J = D ∙ Cn−Cn+1
zn+1−zn

You can think of this system as analogous to the Great Lake model
system20,21,22 – there we had a series of reservoirs storing stuff 20 Except less wet.

21 And smaller.
22 And in the soil ... OK, so not so much
like the Great Lakes system ...

(heavy metals), and there was a flow of material from one lake to the
next. Here we have gaseous CH4 in soil pore spaces rather than met-
als in solution in a lake, and we have diffusion of CH4 from one soil
level to another rather than a flow of water from one lake to another.
The only real difference is that in the Lake Model more of the work
was done for you and you were given the flow rates between lakes,
whereas here you have to calculate the transport (diffusion) rate of
CH4. The strategy for simulating the behavior of this system through
time will be very similar though – stepping through time, and during
each time step calculating the mass fluxes of CH4 between layers and
adding this to the pre-existing concentrations in each layer. The other
difference with the Lake Model is that all the soil layers in an indexed
array rather than being given different (lake) names, allowing you to
use a loop.

OK – now for the to-do stuff ...

1. Create a new m-file function. Pass in the run length (in units of
seconds) of the model simulation as a parameter, and e.g. call it
maxtime. See the blurb from previously for how to define a func-
tion. If you want to be tidy: add a close all statement near the
start of the function.23 23 Note that because the variables

created in a function are private (and
not seen by the rest of the MATLAB
workspace), there is no need to issue a
clear all. In fact: if you add a clear

all at the start, you’ll clear the (run
length) variable that you have just
passed in ... :(

2. Create a 10×1 vector array call conc and initialized with all
zeros24. This is the variable array for storing the concentration

24 To save time – use the MATLAB
function zeros.

of CH4 in each 1 cm interval of the soil profile. Note that we are
assuming no methane is present in the soil to start with (zero soil
CH4 concentrations is the initial condition of the model).

Also create a 10×1 vector array called J, again initialized with
all zeros, to store the fluxes of CH4 into each of the 10 soil layers
from the one above (analogous to how you had the series of river
fluxes associated with the various lakes in a previous exercise).

Then create a 10×1 vector array z_mid to store all the soil mid-
layer depths (0.5, 1.5, 2.5, ... , 9.5). (This is a parameter array for
helping in the plotting of soil CH4 concentration against depth,
later on.) Note that you need to create an array of 10 values, start-
ing at 0.5, ending at 9.5, and with a step interval of 1.0. Go dust off
the colon operator to create this vector array.

Also create a parameter (conc_atm) to store the concentration of
CH4 in the atmosphere. To keep things as simple as possible, you
will be assuming units of cm3 cm−3, so that the atmospheric CH4

numerical modelling – to infinity (1d) and beyond(!) 237

concentration becomes 1.7×10−6 cm3 CH4 cm−3 (equivalent to 1.7
ppm), i.e.,:

conc_atm = 1.7E-6;

Also, just for completeness, define a constant to store the depth at
which the soil surface meets the atmosphere:

z_atm = 0.0;

Finally, define a parameter to store the value of the diffusivity
constant D (0.186 cm2 s−1):

D = 0.186;

3. Create a basic time stepping loop. Define a time-step length
(dt) to take – this is the amount of time that going around the
loop each time represents. Call the time-step length parameter dt

and assign it a value of 0.1 (s) (do this somewhere before the loop
starts in the m-file but after the function definition line at the very
top of the script). The model simulation length you want is given
by the (passed) parameter maxtime, and each time around the loop
lasts dt in model time, so how many counts around the loop do
you need to take ... ? If you call the loop counter tstep, then it
should be obvious :o) that the start of the loop will look something
like:

for tstep = 1:(maxtime/dt)

Yes? Before you do anything else, play with the function and check
that the time-stepping loop is working and that you understand
what it is doing. Try printing out (disp()25) the current loop value 25 The display line(s) should go inside

the loop, of course.of tstep as well as the time elapsed in the model.26 One way of
26 Equal to the loop count multiplied by
the time-step length:

tstep*dt

displaying what is happening in the loop is to add a debug line
such as:

disp([’time-step number = ’ num2str(tstep) ’, ...

time elapsed = ’ num2str(tstep*dt) ’ seconds’]);

(All I am doing here is concatenating several strings together –
a description of what is being written out followed by a value (a
number variable converted to a string using num2str), then another
description of what is being written out followed by a value, and
finally the units of the second number.) If your function was called
ch4model (for instance) and you type:

» ch4model(1.0)

you should now get something like:

time-step number = 1, time elapsed = 0.1

time-step number = 2, time elapsed = 0.2

time-step number = 3, time elapsed = 0.3

time-step number = 4, time elapsed = 0.4

time-step number = 5, time elapsed = 0.5

238 str = ’do you like bananas?’

time-step number = 6, time elapsed = 0.6

time-step number = 7, time elapsed = 0.7

time-step number = 8, time elapsed = 0.8

time-step number = 9, time elapsed = 0.9

time-step number = 10, time elapsed = 1

The loop has gone around 10 times because you asked for 1.0 s
worth of model simulation (the passed parameter maxtime) and the
time-step (dt) is defined as 0.1 s. Happy? (:o))

4. Run what you have so far and make sure that it works.27 27 Note that because the variables in
a MATLAB function are private (and
are thus not listed in the Workspace
window), if you want to check the
values in this array you could first leave
off the semi-colon from the end of the
line so that MATLAB prints the array
contents to the screen. Or, explicitly add
in a disp() line. Or ... add a breakpoint
somewhere in the code and view the
variable values when the program
pauses.

Remember: build up a piece of computer code piece-by-piece,
testing at each step before moving on. Believe me, there’ll be more
time for beers at the end compared to trying to write it all in one
go and then not having a clue as to why it is not working ...

5. At the end of the function (i.e., after the loop has ended), plot
the concentration profile of CH4 in the soil column – you will
want depth (cm) on the y-axis and concentration on the x-axis.
Depth should run from 0 cm at the top to 10 cm at the bottom.
Scale the x-axis so that concentration runs from 0 to 2.0×10−6 cm3

cm−3. Also plot on the same graph as a point the atmospheric
CH4 concentration at the surface of the soil, whose value is held in
the parameter conc_atm.28,29,30 28 hold on and then using the scatter

function is probably the easiest way.
29 Note that MATLAB does not like
you trying to plot the y-axis with the
numbers getting more negative as you
go up the axis. One way around this is
to plot the negative of the depth on the
y-axis; e.g.:

plot(conc(1:10),-z_mid(1:10));

axis([0 2.0E-6 -10 0]);

so you really have the y-axis scale going
from 0 cm at the top, to minus 10 cm at
the bottom. (If you are clever, there are
ways around this involving explicitly
specifying the labeling of the y-axis ...)
30 Also note that if you want your
concentration scale in more friendly
units, such as ppm, then you will need
to scale the values you are plotting to
make them 106 times bigger; i.e.:

plot(1.0E6*conc(1:10),-z_mid(1:10));

axis([0 2.0 -10 0]);

6. Call the function from the command line and check again that
everything is working OK. There should be no crashes (check for
bugs and typos if not) and you should get a graph which has a
vertical line running from almost the top (-0.5 cm) to almost the
bottom (-9.5 cm) at a concentration of 0 cm3 cm−3, together with
a point at the top (depth = 0.0) marking the atmospheric CH4

concentration of 1.7×10−6 cm3 CH4 cm−3 (or 1.7 ppm if you have
re-scaled the x-axis values). Check that you have this. Note that
the CH4 soil profile line can be hard to see because it runs along
the axis. You can make the line thicker in the plot command by:

plot(conc(1:10),-z_mid(1:10),’LineWidth’,3);

You can also fill in the atmospheric CH4 point by passing the
optional parameter filled to the scatter function..

7. So far this is not exactly very exciting (*yawn*). In effect, you
have a model for a soil system in which the soil is capped by an
impermeable layer at the surface (preventing any entry of atmo-
spheric CH4 into the soil) and nothing happens.

8. So now get model actually calculating something. Within the
time-stepping loop you are going to calculate the flux of CH4

between each layer. The concentration units of CH4 are cm3 CH4

cm−3. The length scale is cm. The diffusivity of CH4, D has units

numerical modelling – to infinity (1d) and beyond(!) 239

of cm2 s−1. So if we apply dimensionality analysis (basically, just
working out the net units) we get:

J = cm−2 × cm3 CH4 cm−3/cm

which comes out to give J in units of cm CH4 s−1! This looks a bit
screwed up. However, what area of soil (the cross-section of the
column) is the diffusion occurring across? The vertical length-scale
of the 1D model has been defined, but what about whether the
soil column is a nano-meter across or the area of the whole Earth?
Assume that the cross sectional area of the 1D model is 1 cm2 (i.e.,
1cm × 1 cm). Therefore, the flux of CH4 is occurring in a 1 cm2

unit cross sectional area model, with units of:

J = cm−2 × cm3 CH4 cm−3/cm × cm2

or cm3 CH4 s−1. This is much more reasonable (and cm3 of CH4

can easily be converted into units of moles or g of CH4 if you
needed to).

9. Before adding in the meat of the model (the calculation the
fluxes of CH4 between the pairs of 1 cm layers in the soil column),
it is easiest to calculate separately the special case of the flux from
the atmosphere into the first layer. The average distance (Δz) over
which diffusion occurs is only 0.5 cm in this case (measuring from
the surface (zero height) to mid-depth of the first 1 cm thick layer).
Referring to the equations previously, but recognizing that the n =
0 layer doesn’t exist because it is the atmosphere31 (so conc(0) and 31 And also because you cannot start

indexing a vector in MATLAB at zero.z_mid(0) have been replaced by conc_atm and z_atm, respectively)
you should see that the flux of CH4 into the first soil layer from
above is:

J(1) = D*(conc_atm - conc(1))/(z_mid(1) - z_atm);

10. Now for the main course of your modelling feast. It should be
obvious(!) that what happens for layers 2 through 10 is basically
identical – i.e., for each of the layers n = 2 through n = 10, the flux
of CH4 into layer n from the layer above (n − 1) can be written:

J(n) = D * (conc(n-1) - conc(n)) / (z_mid(n) - z_mid(n-1));

So, you could write a little loop, going from n = 2:10, and calcu-
late the value of J(n) within the loop.32 32 Don’t forget that you have just calcu-

lated the first n = 1 layer flux (J(1))
already.11. Make sure that you are happy with what you have done so far.

You have calculated the CH4 flux from the atmosphere into the
first soil layer (n = 1). You have done this on its own because it
is a special case – there is no soil layer immediately above, only
the atmosphere. Then you have calculated the fluxes into each
soil layer (n from 2 to 10) from the layer above within an n loop
(because it is easier than writing out the same equation 9 times!).

240 str = ’do you like bananas?’

Although you are not yet updating the concentration of CH4 in
the soil layers, it is worth running the model again to check that
that all the new things that have been added to the model work.
Do this, and check that you can still call the function without
MATLAB errors appearing (although this does not guarantee that
you have not made a mistake ...).

12. So, all that is left to do now is to update the concentration of
CH4 in each soil layer and see what happens ... To keep it sim-
ple, assume that the soil has a porosity of 1 cm3 cm−3 (i.e., all air
space and no actual soil!!!) – see Ridgwell et al. [1999] to get a feel
for how complicated gas diffusion in a real soil becomes and how
you must modify the diffusion coefficient to take into account dif-
ferent factors (such as soil type and moisture content). To update
the CH4 concentration in soil layer n due to the flux of CH4 from
above (layer n − 1) you must add a volume of CH4, given by the
calculated Jn value (in cm3 of CH4 per second) multiplied by the
time-step interval (in s). You must also take into account the loss
of CH4 from each soil layer n as CH4 diffuses into the layer below
(n + 1). So, just like you calculated the new metal pollution con-
centrations in the lakes by taking account what was there to start
with, plus any gain, minus any losses, the concentration change
for layer n = 1 for instance (but don’t write this in), is simply;

conc(1) = conc(1) + dt*J(1) - dt*J(2);

This is saying that the new CH4 concentration in layer n = 1
is equal to the concentration at the previous time-step, plus the
CH4 that diffuses into the later from above (J(1)), minus the CH4

that diffuses out of the layer at the bottom (J(2)). Does this make
sense? You need to exercise your paw if not.

13. You could write out 10 equations to update the 10 soil layer
CH4 concentrations, or ... use another loop! You will have to be
careful, because when you get to layer n = 10, there is no flux
downwards because it is the bottom of the model. The bottom
boundary condition of the model is then that there is no down-
wards flux. (We could have defined the soil column to be deeper
than this, but it is always better to keep any model you are con-
structing as simple as possible to start with.) You will therefore
have to treat the bottom-most (n = 10) layer separately, but you
can still loop through from n = 1 to 9, and use the same equation.
So, create a new loop, just after the n=2:10 one, and set its counter
(you can re-use the name n) going from n=1:9. Within this second
n loop, update the CH4 concentrations for layers n = 1 through 9:

conc(n) = conc(n) + dt*J(n) - dt*J(n+1);

numerical modelling – to infinity (1d) and beyond(!) 241

Now add in the code to update the n = 10 layer CH4 concentra-
tion (i.e., adding just the flux from above (J(10)) to the current
conc(10) concentration value).

Now you are done. Hopefully. The overall structure of loops and
things should now look something like (NOTE: not necessarily ex-
actly like):

function ...

% (1) initialize model variables and set model parameters

...

%

% (2) start of time-stepping loop

for tstep = 1:(maxtime/dt),

% calculate the CH4 flux from the atmosphere into the first

% soil layer

J(1) = ...

% calculate the CH4 fluxes from one soil layer to the next

% (n=2:10)

for n = 2:10

J(n) = ...

end

% update the concentration of CH4 in each of the soil layers

% (n=1:9)

for n = 1:9

conc(n) = ...

end

% and finally update the concentration for the special case

% of n=10

conc(10) = ...

end

% (end of time-stepping loop)

%

% (3) plot results

...

end

Run it for 10s (»ch4model(10.0)) and see. You should see a profile
of decreasing CH4 concentrations as you go down deeper into the
soil, looking something like Figure 8.9.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 10 s

Figure 8.9: Soil profile of CH4 after
10.0s of simulation.

Now try a longer model run (100 s) (»ch4model(100.0)) and see
what happens. You should get something like Figure 8.10.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 8.10: Soil profile of CH4 after
100.0s of simulation.

Go find out when the system (approximately) reaches equilibrium
(i.e., the profile stops changing with time). You will need to judge
when any further changes are so small they could not possibly really
matter.

Keeping with the same Example33 and having constructed the basic 33 OVERVIEW:

1. adapt model and explore choice of
time-step

2. adapt model and explore choice
of layer thickness / number of soil
layers

3. add methanotrophs (CH4 sinks)
4. play!

242 str = ’do you like bananas?’

diffusion framework for the model, we can explore what happens if
consumption of CH4 (by methanotrophs) occurs within the soil (as
well as exploring the numerical stability and hence choice of time-
step duration and grid resolution, of the model).

First, take the ch4model (or whatever named) function and add a
second input parameter to set the time-step length. You should then
have two input parameters (maxtime and dt).34 By calling the func- 34 Note that you will have to comment

out (or delete) the line in the code
where previously you defined the time-
step length as fixed with a value of 0.1
s.

tion from the command line, with a model simulation duration of 100
s, play around with the time-step length. Approximately, what is the
longest time-step you can take before the model becomes numerically
unstable? What are the characteristics of the soil CH4 profile that
lead you to suspect instability occurring in the numerical solution?
The onset of instability might look something like Figure 8.11.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 8.11: Soil profile of CH4 after
100.0s of simulation with an extremely
marginal choice of time-step length.

Now ... it just so happens that some top profs (me!?) have told you
that there are some bugs – methanotrophs (see Ridgwell et al. [1999])
that live deep down in the soil. From this, you assume that they will
be present only in the deepest (n = 10) soil layer in the model. They
just sit there, munching away on CH4 that diffuses down from the
atmosphere into the soil pore-space. A bit like idle grad students
living on a diet of pizzas.35 The bugs consume the CH4 present in

35 Except students mostly don’t live in
the cold damp dirty ground.

the soil pore space at a rate that is proportional to the concentration
of CH4 in the soil (makes sense – the more CH4 food source there is
to metabolize, the more than they will remove per second). Call this
rate constant e.g. munch_rate. It has units of fractional removal per
second. In other words, if the concentration of CH4 in layer n = 10 is
conc(10), then in one second:

munch_rate * conc(10)

cm3 CH4 cm−1 will be lost from the soil pore space. So, if you had
a rate constant (munch_rate) of 0.5 s−1, then each second, half of the
CH4 in layer n = 10 would be removed. Of course, the time-step in
the loop might not be 1.0s – if you had dt=0.1, for instance, then the
loss of CH4 each time around the loop would be:

0.1 * munch_rate * conc(10)

cm3 CH4 cm−1. Are you following so far ... ?
Now, add a third parameter that is passed into the soil CH4 model

function for the rate constant. Modify your equation for the updating
of the CH4 concentration in the deepest (n=10) soil layer to reflect the
presence of the methanotrophs. Call the soil CH4 model function;
pass a time-step of 0.1 s and a methanotroph CH4 consumption rate
constant of 1.0 s-1. Your function call should look something like this
at the command line;

» ch4model(xxx,0.1,1.0)

numerical modelling – to infinity (1d) and beyond(!) 243

where xxx is the duration of the simulation36,37. How many seconds 36 Not your favourite website address.

37 e.g. for 100s, giving a plot looking
(hopefully) like Figure 8.12.

(approximately) does it take for an equilibrium profile to be estab-
lished (i.e., what was the simulation duration that you used to create
your plot?). What, ultimately, is the shape of the soil profile of CH4

concentration, and why?
0 0.5 1 1.5 2

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 8.12: Soil profile of CH4 after
100.0s of simulation, with CH4 uptake
at the base of the profile with a rate
constant of 1.0 per s.

Now ... lets say that you then go out into the field and take sam-
ples from each 1 cm thick interval of a 10 cm soil profile. You incu-
bate the soil samples in sealed flasks with CH4 initially present in the
headspace (a fancy word for the air or gas above a sample in a con-
tainer). Hey – you observe that CH4 is removed in all flasks, equally.
Someone screwed up(!) – these bugs live throughout the soil column,
not just at the bottom. You’d better update your model in light of
these new scientific findings.

Add a term (within the 2nd n loop in which you update the CH4

concentrations) to reflect the consumption of CH4 in the layers n = 1
through 9. (You can keep the term for consumption in the n = 10
layer.) Since the bugs are spread out through 10 layers rather than be-
ing concentrated in one (at the bottom), presumably the consumption
rate is only 1/10 of your previous rate value. So use munch_rate =
0.1 (i.e., a rate constant of 0.1 s−1, rather than the value of 1.0 s−1 that
you used before) for all subsequent calculations. Call the soil CH4

model function with a time-step length of 0.1 s and determine the
steady state soil (equilibrium) CH4 profile (Figure 8.13). What shape
does this remind you of ... and why?38 38 There is in fact an analytical solution

to this profile – can you derive it?

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 1000 s

Figure 8.13: Equilibrium soil profile of
CH4, with CH4 uptake throughout the
soil column with a rate constant of 0.1
per s.

A couple of slightly more challenging modifications to try now:

1. Alter the model so that you can also pass into the function, the
number of soil layers that are represented in the upper 10 cm –
equivalent to altering the thickness of each layer. This change is a
little more involved than simply altering the time-step duration.
For instance, now, rather than n (the number of layers) going from
1 to 10, they are now counted from 1 to nmax

39 (the number of

39 For which you might call the variable,
e.g. n_max).

model layers you pass into the function)

2. Add in a parameter controlling the maximum depth of the soil
column represented (replacing the fixed 10 cm assumption from
previously).

3. Try adding a source of CH4 at the base of the soil column.40

40 This is quite physically plausible and
might reflect (in order of decreasing
likelihood): a water-logged, anoxic
layer at depth, thawing permafrost, or a
natural gas seep.

41 Units should be: cm3 CH4 cm−3 s−1. But now much (i.e. what

41 Note that now you have 2 different
boundary conditions in the model – a
fixed concentration in the atmosphere
at the surface, and a fixed flux at depth.

rate of methane production would be reasonable)? You could
play about, trying different values until finding one that did not
produce anything insane. Not a very satisfying approach. You
could certainly look up in the literature measured soil production
values (a much better approach). You could also get a feel for a
possible order-of-magnitude by contrasting with the previous

244 str = ’do you like bananas?’

consumption flux (from the atmosphere). Actually, you have not
looked at this so far (the total atmospheric CH4 consumption
flux) and maybe should have as it is what matters in terms of the
soil being an effective sink, or not, for atmospheric CH4. To do
this – you need to extract from the model, the CH4 flux from the
atmosphere into the first soil layer (why?). Do this and make it
the returned values from the function. Now set the production
(at depth) rate similar to the net (from atmosphere) consumption
flux from before (with methanotrophic activity throughout the
soil profile). You should obtain a profile (at steady state) that is
approximately symmetrical in depth42 – e.g. Figure 8.13. 42 But not quite symmetrical – why?

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 1000 s

Figure 8.14: Example equilibrium soil
profile of CH4 with production at
depth.

4. Finally ... there should be (there is!) a value for the production
rate at depth, at which the flux into the atmosphere is zero. (There
are certainly some very large production rates at depth for which
the flux from the atmosphere is negative, i.e. there are net emis-
sions of CH4 *to* the atmosphere. Can you find this value (which
makes the net exchange zero) ... *without* trial-and-error?43 43 Your function returns the net flux and

you need to search for the production
rate value that minimizes this net flux.
Meaning you need to construct a search
algorithm, testing a larger production
rate of the net flux is positive, and
a smaller value if the net flux it is
negative.

9

Graphical User Interfaces (GUI)

In this chapter we’ll learn how MATLAB can create a simple Graphical User Interface (GUI), which you can
used to interface to your program with (as an alternative to e.g. the command line). Scientifically ... this
is not particularly useful, although it is fun(ish) and is how all computer/device software/apps tend to
’work’ these days (excepting devices (e.g. wifi routers) that use a web-browser for their interface, but then
that is effectively a GUI within a GUI ...).

246 str = ’do you like bananas?’

9.1 MATLAB GUI basics

MATLAB kindly1 provides a tool (itself a GUI) for creating GUIs – 1 For once, it is not a sperate, zillion-
dollar license ...the ’Graphical User Interface Development Environment’ (GUIDE).

GUIDE does 2 main things for you:

1. Firstly, it facilitates the design of the GUI window(s).
2. Secondly, it creates a code framework for the associated pro-
gram.

Figure 9.1: Starting GUI window of the
MATLAB GUIDE, GUI design tool.

You run GUIDE at the command line by typing its name:

» guide

and a window as shown in Figure 9.1 should appear. We’ll only
concern ourselves with the default option amongst the (4) ’GUIDE

templates’ – ’Blank GUI (default)’2. As for the tick-box ’Save new figure 2 So don’t go randomly clicking on
anything just yet!as:’ – we’ll leave this alone3. The ’Preview’ window is blank at this
3 You can save the resulting figure (and
code) under whatever filename you
wish, later anyway. (If you really want,
you can enter it in now here – it makes
little difference.)

point because you have selected a blank template (d’uh!) (and are not
loading in a previously created GUI).

Before you move on, it is worth pausing at this point and reflect-
ing on what happened and what the implications are for what you
might like to do (GUI-wise). At the command line, you entered the
command guide, which presumably ran a script or function (a piece
of code in any case). A window (the ’GUIDE Quick Start’ window) was
summoned (actually a figure window was created). The (figure) win-
dow did not open completely blank, but instead you might note it
has:

• Close/minimize/maximize buttons at the top right (and the
window can be re-sized by grabbing the corner and dragging the
mouse).
• A title at the top (in the title bar) with a cute (barf) MATLAB
icon.
• 3 buttons at the bottom right – ’OK’, ’Cancel’, and ’Help’. Pre-
sumably they’ll all do something (different) when clicked.
• Everything else is neatly enclosed in a pair of tabs (one labelled
’Create New GUI’ and one ’Open Existing GUI’ and you can switch
between tabs by clicking on the required tab.
• In the ’Create Existing GUI’ tab, there is:

– A list (of GUIDE template names plus that annoying cute little
icon again).
– An area with a border labelled ’Preview’ with a grey box

labelled ’Blank’ in the middle.
– There is a tick box and next to it (grey-ed out by default),

a box with a file path and name in and to the right of that, a
button labelled ’Browse’.

graphical user interfaces (gui) 247

• (In the ’Open Existing GUI’ tab ... nothing much (yet) going on.)

In essence, most of the primary (or at least, basic) features of a
GUI are here to see. Funnily enough, nothing much had changed,
at least in Windows, since ... the 80s4. Maybe that is a good thing 4 That is: 1980s, as much as some

might believe Microsoft has made little
progress since the 1880s ...

as despite the MATLAB GUIDE tool being completely new to you,
you hopefully can guess what would generally likely happen if you
clicked on random bits of the ’GUIDE Quick Start’ window.

(If you have not already clicked OK – do it now.)

Figure 9.2: (Blank) GUI window editor
GUI window.

Rather than creating a blank m-file and/or some basic code first5,

5 Actually, MATLAB has done this too
and you would have seen it open up in
the Code Editor window if you have
provided a filename in the ’GUIDE Quick
Start’ window.

MATLAB throws you straight into a window design tool as per
Figure 9.2. There is a lot going on here, but start by noting there is
the usual drop-down menu bar at the very top (under the title bar
(’untitled.fig’) of the window) and a row of icons underneath that (no
re-appearance of the MATLAB icon thankfully). At the bottom of the
window there is some information, mostly about location (of what?)
– Current Point and Position. To the left of the window is a group of
icons6 plus a (depressed, by default) mouse pointer icon. Most of

6 Still no re-appearance of the MATLAB
icon!

the window is made up of a pane (whose contents apparently is, or
might be, larger than the area shown as indicated by the presence of
scroll bars along the right and bottom edges). The pane itself is ruled
with a grid pattern. At least, that is what I see!

Again – the great advantage of familiarity (of program GUI de-
sign) – you might guess (you’d be correct if you did) that the icons
to the left allow you to select an object and place it in the pane, the
grid serving to help you position the object. And this leads us to an
important point – creating GUI-based programs is as much (or more)
about design as it is about programming. The cleverest program (and
most complex calculations) might simply be a total fail if the GUI
is wholly unappealing or complete un-intuitive (or lacks a GUI en-
tirely). The grid is hence there for a reason and that is to guide you
towards creating an ordered (and aligned), logical, and uncluttered
arrangement of things (we’ll come to what the ’things’ are shortly)
within the GUI window.

You might be tempted ... to click on everything and throw all
sort of objects (what things?) into the pane of your embryonic GUI
window. But the more GUI objects you have ... ultimately, the more
code and the more debugging7 you’ll have to do. So we’ll start as 7 Which has a steep power relationship

with the amount of code.simply as possible and build up.

9.1.1 Hello, World [Static Text (box)]

This is as simple as it is going to get for a ’program’ with a GUI. In
the GUIDE window editor, which should be already open if you haven’t
fatally mucked about with it (or open up a new GUI by typing guide

248 str = ’do you like bananas?’

(lowercase) at the command line again) – identify the Static Text icon
(by hovering the mouse pointed over an icon, its function is revealed).
Click (left mouse button) on it. The mouse pointer, when over the
gridded design pane, should change to a cross-hairs mouse pointer
icon.8 Find a convenient place perhaps at the intersection of two 8 Note that this is to facilitate the po-

sitioning of the icon rather than being
anything about guns and shooting at
the coders behind Windows.

grid lines, click the mouse down and drag out a box – this will be the
size (and location) of the Static Text object. Release the mouse button
to finish. If you don’t like the size or location, you can move/re-
size just like you would with a normal Windows (or MacOS etc.)
window.

So far, the (static) text object has a rather unappealing content
of ’Static Text’ in a pretty small font. You can edit the properties of
this object by double-clicking on it9. Whoa! That’s a long list of ... 9 I didn’t actually read this anywhere –

the operation of the editor or Windows
has the same feel and intuitive usage
as the sort (hopefully) of Windows you
you are going to create in your GUI(s)).

actually, properties of the object (thats two new buzz-words in one
– object and properties). Each property (the column on the left) has
a default value (the column on the right) assigned to it. Evidently,
you can edit the properties using the design tool rather than in the
code code, setting a parameter value.10 For now, we’ll just make two 10 In reality: MATLAB is secretely

writing the relevant code and setting
the parameter value ...

changes:

1. For the String property – click in the box to the right, delete
’Static Text’ and write ’Hello, World’.
2. The text is pretty small ... so for the FontSize property, click in
the box to the right, delete 8.0 and write ... well, try something
larger.

Within reason, why not also play with some of the other proper-
ties if you like (at least, the ones that you can make a reasonably in-
formed guess as to what they do). Maybe you end up with a design
window looking like Figure 9.3. Note that the effect of your changes
is only shown if you e.g. hit Enter or click on a different property. If
you accidently click outside of the text object an in the design pane,
you’ll end up switching the property editor to the window itself,
which you don’t want. (You can simply click back inside the text
object to return the property editor to the text object’s settings.)11

11 Unfortunately, the title of the prop-
erty editor window is completely
unhelpful – matlab.ui.control.UIControl
when the text object properties are be-
ing edited, and matlab.ui.Figure when the
(figure) window properties are being
edited. So maybe watch out for Figure
appearing in the title bar as an indicator
or quite what is being edited.

Figure 9.3: Design of the Hello, World
window!

When you are done (editing properties) – click the Save icon. If
this is a GUI that you have not previously created or previously as-
signed a filename to, you’ll get a Save As dialogue box. At this point,
MATLAB is going to save the window design with a .fig extension.

Something a little scary now happens – MATLAB opens up the
code editor window and there is a whole bunch of code in it (a series of
functions in fact). Note that the code file has a filename the same as
you entered in for the .fig window but now with a .m extension (and
so is presumably directly associated with the figure you just created).
There is nothing we need worry about ... yet. In fact, half the file is

graphical user interfaces (gui) 249

taken up with a main function that has the comment: DO NOT EDIT.
Please take this advice ... :o)

In fact, you get given the framework code for 3 functions:

1. The long one at the top (which you DO NOT edit ...) – FUNCTIONNAME

– defines the function for your app/program.
2. The middle one (FUNCTIONNAME_OpeningFcn) allows you to exe-

cute any code before the window appears. Such code is typically
associated with initialization (setting sup arrays and defining pa-
rameters etc.)

3. The third and final one, simply allows you to set any output (func-
tion return) variables that you wish to pass back to the command
line. (You need not pass anything back.)

Although there looks like a lot of stuff here, the code is automati-
cally generated and generic and there are both a bunch of blank lines
that bloat it all, and lots of comment lines, mostly briefly describing
the functions and their inputs. (Few of these bit of information we
care about.)

Close the design window (and the code editor if it distracts you).
At the command line, type the filename (no extension) to run the
automatically generated code m-file. A window opens up ... the
contents should come as no surprise, because you have just speci-
fied them (via the GUIDE GUI design tool). Your first GUI! But one
you might notice does not actually do anything – it just sits there
unresponsive. Although you can at least close it (because it is auto-
matically generated with the usual basic close/minimize icons plus
the name of the m-file in the titlebar.

9.1.2 Simple GUI responses [Push Button]

A GUI is only of any particular use if it allows some response to
input. This is going to involve a little code of your own ... so we’ll
start with the simplest possible action – a button that performs a
simple action (closes the window).

Re-run the guide program and open up a new window editor (by
clicking OK in the GUIDE Quick Start window). Now find the Push

Button icon, click it, and drag out a push button object in the design
pane. You should see a box (with a pseudo 3D shading at the edges)
with the text Push Button in the centre as per Figure 9.4. As before,
you can edit the properties of the push button object (because the
default properties are totally boring) by double-clicking it. Start by
editing the font (size) and message. Perhaps ’Go away!’. And then
save it.

Figure 9.4: Design window with a
default push button object.

When it saves, MATLAB again opens up the code associated

250 str = ’do you like bananas?’

with the figure window that it has automatically generated. There
is slightly more code in the file this time and shortly, you’ll need to
look at it. But for now: ignore it again and type the name of your
m-file file at the command line. Again, you’ll get a window opening
with the push button you created in it. Click on it. It does seems to
’respond’ (pretends to depress by means of changing the edges with
the pseudo 3-D shading) to the mouse click, but ... nothing else hap-
pens. This is where YOU (and your amazing coding skills) now come
in.

If you have closed the design window, re-run GUIDE (» guide)
and rather than creating a new GUI – switch to the Open Existing

GUI tab and double-click your filename (of the push button GUI) or
select and OK. Double-click on the push button object to open up the
property editor. We’ll make only one (more) change here – down the
list of properties your fine ’Tag’. This is the name (ID or handle) of the
push button object.12 By default, the name is pushbutton1. Edit this to 12 In essence, no different from a file-

name – a unique identifier for an object
(/file).

... goawayButton (or pick an alternative name) and re-save the GUI.
Go to the code editor for the associated m-file (which will have the

same name as the .fig figure, remember). In the file we have:

• The main function which we can ignore (and indeed apparently
should not be edited!). But for completeness, it consists of:

– The function definition header line:
function varargout = NAME(varargin)

where NAME is the name you assigned the file.
– Some comment lines:
% NAME MATLAB code for NAME.fig

% NAME, by itself, creates a new NAME or raises the

existing

% singleton*.

etc etc ...

Note that there is a continuous block of comment (%) lines.
MATLAB treats this as the help text on function NAME.
– Then some more, but separated (by blank lines) comment

lines.
– Then the body of the function, starting with:
% Begin initialization code - DO NOT EDIT

and then ending with:
% End initialization code - DO NOT EDIT

• function NAME_OpeningFcn which is executed when the GUI is
started up. This is the place to put code for initializing models or
whatever (hence the automatically generated part of the function
name – OpeningFcn).

It is not obvious (to me) what either:

graphical user interfaces (gui) 251

% Choose default command line output for NAME

handles.output = hObject;

or

% Update handles structure

guidata(hObject, handles);

actually do ... so ignore these lines for now.
If you need to execute any code when the program/app first runs,
place it after these lines.

• There follows another function call:

% -- Executes just before NAME is made visible.)

function NAME_OpeningFcn(hObject, eventdata, handles,

varargin)

which seems to prepare any data that you wish to return from the
main function and back to the command line.
Textbooks helpfully say to ignore this. Great idea.

• Finally, there is:

function goawayButton_Callback(hObject, eventdata, handles)

This function is executed when your ’Go Away!’ push button is
pressed. Anything you wish to ’happen’, in terms of code exe-
cuted, when you click on this particular button, goes here in this
function.

Note that MATLAB does not formally end any of the functions
with end. Don’t get confused as to where to place code – assume that
when the next function starts, the next function definition starts, that
the previous function has ended. If it helps – add in lines (with end)
to end each function. Or perhaps add some ASCII art/comment line
before each new function to help make it clearer, e.g.

% === END FUNCTION ==

In this simple GUI, we have only one figure and it is active (it has
the mouses’ attention)13, so we could simply use the close command 13 Often in operating systems – the

active window, i.e. the one that is the
one to respond to mouse clicks or key
presses, has its titlebar highlighted in a
bright color (while inactive ones might
be grey.)

(’deletes the current figure’) on its own (just this on one line).
Insert this simple command (close) in the

function goawayButton_Callback

function, after the last comment line.14 Save the m-file and re-run. 14 Note that automatically generated
MATLAB code does not seem to ever
formally end a function as one really
should do ...

Now if you run your program and click on the ’Go Away!’ push
button, the window does indeed go away (aka, closes).

Phew! So, to recap – you have created a program with a window,
and within that window a Push Button object. In the design window,

252 str = ’do you like bananas?’

you gave that button a special property, such that when clicked, a
message (an event) would be passed back to your program. The code
(a function) that responds (is called) when the button is clicked was
automatically generated for you, but with no code inside. You added
the code (to close the program/window).

9.1.3 Updating object properties (do you like bananas?)

Bananas. Do you like them? Perhaps the GUI can provide an answer
(rather than just text statements written to the command line via disp

as before).
Now you are going to want to think about the design of the GUI a

little. Perhaps sketch out a sign on paper15 first. 15 The white flat stuff that you write on.
Maybe you have forgotten what it is?
Clue: it is not an app on iTunes.

What we want is for the the GUI to display a question (’Do you
like bananas?’). There will be two options, ’Yes’ and ’No’ that can
be clicked. Depending on which one is clicked, some appropriately
supportive, or otherwise, message will appear in response. We need:

1. A plain (static) text box as before to display the question.
2. A pair of push buttons (again as before ... but 2 of them rather
than just 1).
3. Another plain (static) text box to display the answer/response.

And ... we are going to need some code that, depending on which
button is pushed, leads to a different message being displayed.

The latter part is not as bad as it sounds. We could have no text
initially in the 2nd (static) text box. We just need to change its text
property (i.e. change the initial no text, to the text of our message).
This is mostly a case of working out and using the unique identifier
of this text box object AND the identifier of the text property (of the
text box object). i.e. you need two bits of information – the ID of the
text box, and the ID of the property of the box that sets the actual text
to be displayed. You’ll see how this pans out shortly.

OK ...
Firstly – re-run GUIDE (» guide). Create a new GUI window with

the 4 elements (2 static text boxes and 2 push buttons). It is up to you
how you arrange these 4 objects in the design pane. You might be
guided how windows in programs that you have used, are designed.
At the minimum, it is standard practice to place a ’No’ push button
next to and aligned horizontally with, the ’Yes’ (and often ’Yes’ to the
right of ’No’).

No idiot would design anything like Figure 9.5 and certainly not
with those color choices ... but you get the idea.

Figure 9.5: (completely) Bananas design
window.

For each of the objects (2 text boxes and 2 push buttons), rename
them (the Tag property) to something more memorable than e.g.
button or box, #1, #2, #3, etc etc..

graphical user interfaces (gui) 253

The code that MATLAB generates for bananas.m (my name choice!
it need not be yours ...) is not a lot more involved than before. Pri-
marily, there is just a second function associated with a mouse click
on the 2nd push button. So the end of the automatically generated
MATLAB code now looks like:

% -- Executes on button press in yesbutton.

function yesbutton_Callback(hObject, eventdata, handles)

...

...

% -- Executes on button press in nobutton.

function nobutton_Callback(hObject, eventdata, handles)

...

...

The logic is going to be very simple. In fact, we don’t need any,
because if the Yes button is clicked, MATLAB will call one function
(my name: function yesbutton_Callback), and if the No button is
clicked, the other function (function nobutton_Callback) is called.
As alluded to above, how do we get the text to change in the 2nd text
box (from the default of no text)?

Unfortunately, MATLAB does get all weird here.16 If you had a 16 Actually, no weirder than netCDF. Or
arguably, Python ...friend called Luna, you might reasonably communicate with them

via the name ’Luna’. MATLAB doesn’t do it this way and instead as-
signs a numeric ID. Think of it as rather than storing information in
a database about Luna and by name, information might be stored by
SSN instead. So to retrieve or write information about Luna, you do
it via their SSN.17 Here, we want to change a property (the displayed 17 Or you could think about university

student databases and access via the
unique student number.

text of the 2nd text box), and you are going to have to get its ID first
in order to do it.

First off, you can get the ID of the object property using the
findobj function and assign the result to some memorably variable18, 18 Here, the h bit stands for ’handle’ but

you might chose id for ID instead?.e.g.

h_answertext = findobj(’Tag’,’answertextbox’);

This is as simple(!) as asking to find the ID of the object which has
a Tag with value ’answertextbox’ (which was the value I set in the
design editor).19 You could put this line of code at the start (after the 19 What we might refer to as an ID,

MATLAB calls a handle. Hence com-
monly an ’h’ might appear at the start
of a variable name to indicate it con-
tains a handle.

function definition, and after the initial comment lines) of the function
yesbutton_Callback and because you have two buttons, both of
which will need to be able to change the text in the 2nd text box –
also in the function nobutton_Callback.

set

Sets ... the property value of an
object. The syntax is:

set(h,name,value)

where h is the handle (the ID ob-
tained via findobj), name, is the
name of a property, and value, the
value of a property.

Now – we have the ID of the 2nd text box and we can now set its
property (from containing no text, to displaying a suitable message).
Lets first implement an answer if the Yes push button is clicked. The
command to set a property is ... set. In our example, the handle we

254 str = ’do you like bananas?’

have already obtained and assigned to the variable h_answertext.
The name of the property we want to change (refer to the column list
in the property editor if you like as a reminder) is ’String’. And the
text ... well, you can have whatever you want. The complete line is
then:

set(h_answertext,’String’,’Yes, it is an excellent fruit.’);

The complete(!) code in function yesbutton_Callback should
then look like:

h_answertext = findobj(’Tag’,’answertextbox’);

set(h_answertext,’String’,’Yes, it is an excellent fruit.’);

Save and run the program. You could see something like the result
shown in Figure 9.6 (if you click on Yes).

Figure 9.6: (completely) Bananas GUI in
action.

Now extend your program so that an alternative answer is pro-
vided if the No button is instead clicked. This is going to pretty much
well be a duplication of the code you have already written for the Yes

button.
Other embellishments you could make might be to make the color

of the button you clicked change. This is simply a matter of finding
its object ID, and setting the property BackgroundColor.20 20 For example:

set(h_answertext,’Backgroundcolor’,’g’);

To put your coding skills more to the test: how about displaying a
3rd message (’Make up your mind!’?) if someone changes their mind
– i.e. if a second button is pressed (after the first one). You’ll need
a variable to remember whether any button has been pressed and
assign this an initial value of false, e.g.

var_pressed = false;

The idea is whenever either button is pressed, var_pressed will be-
come (will be set to) true. So before displaying the message in either
of the button press callback functions, the value of var_pressed needs
to be tested – a false means this is the first time any button has been
pressed. Once that initial message is displayed, the var_pressed be-
comes true, and when the next time a button is pressed and the value
of var_pressed tested, a true leads to a different message. All that is
needed is an if ... in each callback function, and a line initializing
var_pressed to false (in function bananas_OpeningFcn). There is just
one problem ...

Variables in functions are ’secret’ (private) and limited (in scope) to
just that function. So the variable var_pressed which you initialized
at the end of function bananas_OpeningFcn cannot be ’seen’ by the
callback function.

We can enforce that the same variable is seen by multiple functions
by stating that it is global (in scope):

graphical user interfaces (gui) 255

global var_pressed;

This line needs to appear at the start of each function in which you
need to read or write the value of var_pressed, i.e. in both callback
functions as well as the initialization function.

What is going on is that in each function that a variable is de-
fined as being global – the value of that variable is linked, so that any
change made to the value of that variable in any function, is seen by all
the other ones.21 21 Like multi-way Skype call, where

the global definition is each person
connecting to the conference call.

The complete code for the Yes button call box function would then
look like:

% -- Executes on button press in yesbutton.

function yesbutton_Callback(hObject, eventdata, handles)

% hObject handle to yesbutton (see GCBO)

% eventdata reserved - to be defined in a future version of

MATLAB

% handles structure with handles and user data (see GUIDATA)

%h_answertext = findobj(’Tag’,’answertextbox’);

global var_pressed;

h_answertext = findobj(’Tag’,’answertextbox’);

if ∼var_pressed

set(h_answertext,’String’,’Yes, it is an excellent fruit.’);

else

set(h_answertext,’String’,’Make up your mind!’);

end

var_pressed = true;

and with the code:

global var_pressed;

var_pressed = false;

appearing in function bananas_OpeningFcn (to initialize the value of
var_pressed to false).

9.1.4 Simple GUI responses [Sliders]

We can create a variant on the previous program to illustrate numeri-
cal input and output, and introduce the Slider object.

1. First create a new (blank) GUI.

2. Add a Static Text box object to ask: ’On a scale of 0 to 10, how
much do you like bananas?’ (replace the default text by editing the
object).

3. Add a second Static Text box object to report the value. Create it
blank to start with (i.e. delete the default text).

256 str = ’do you like bananas?’

4. Add ... a Slider! Double-click to edit the Slider object.
Firstly, note that there is a Max and Min property – these are the
values assigned when the Slider is at it maximum and minimum
position, respectively. Since you want a score for 0 to 10 – edit the
Max value. There is also a Value property which will be the default
value of the Slider when the program/app starts up. (If you want
change the default value.) Make any other e.g. cosmetic changes
you fancy. Close the editor (’Inspector’) window.

5. Save the GUI.

In place of the button Callback functions, you now have:

% -- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

(although if you were paying attention earlier, you would have name
the Slider something helpful rather than the default of slider1). And
a last function (slider1_CreateFcn) that we shall ignore.

This is not so different form the button example – when the slider
bar is dragged, or the up/down arrows are clicked (and the slider bar
moved that way), this function is called. It is then up to you (in code)
to:

1. Read the value of the Slider.
2. Do something with that value (i.e. display it)

Also as before, we need to get the ID of the Slider object, and then
read is Value property.

h_slider1 = findobj(’Tag’,’slider1’);

bananaindex = get(h,’Value’);

(which goes in the slider1_Callback function).
To set the text in the Static Text box object, as before you need to

obtain the ID of the object:

h_text2 = findobj(’Tag’,’text2’);

(here again ... not the greatest of variable names ...)
Now simply set the String property of the Static Text box, to the

value of the Slider, contained in variable bananaindex.22 22 Remember that you cannot display
a number directly where a string is
required – use num2str.

Now ... if the value of bananaindex goes above 5, make the text
box background blue. And it bananaindex is below (or equal to) 5, set
the color to red.23 23 The Static Text box property is called

Foregroundcolor. To set, e.g. add the
code:

set(h_text2,’Foregroundcolor’,[1

0 0]);

There are various refinements you could make, such as when the
program/app starts up, you could read the default value of the Slider

and update the display (the Static Text box)24. You might also add a

24 Code going in the function,
OpeningFcn.

Push Button to close the app.

graphical user interfaces (gui) 257

9.2 MATLAB apps

10

Numerical modelling meets GUI (prettier games!)

260 str = ’do you like bananas?’

10.1 GUI Pokémon game

Now we’ll build on your excellent GUI skills and create a GUI inter-
face for the ballistics (ball trajectory) model.

The idea of the ’game’ is that you are going to launch a ball, the
behaviour of which will be calculated as per your time-stepping
ballistics model. Rather than simply detect whether or not the ball
falls below zero (height), there will be a graphic (Pokémon) displayed
and a ’hit’ will be recorded if the position of the ball falls within the
boundary of the graphic. The key initial conditions – initial speed
and angle of the launched ball, will be set by controls in the GUI
rather than set in code. Finally, there will be a series of refinements
to improve the look and feel (and game-play) of the game that will
introduce a few further concepts in creating good MATLAB GUIs
and also new MATLAB functions. Ultimately, the GUI (app) might
look something like Figure 10.1, but how the controls are positioned
in the window and their relative size and shape, is pretty well much
up to you. You could also control how the initial parameter values
are set in a different way (e.g. using an Edit Text box rather than a
Slider). Quite what buttons you want and how they are used is also a
matter of personal aesthetics.

Figure 10.1: Screen-shot of he Pokémon
game App.

There is quite a lot of coding to be done and the risk of a huge
mess ensuing. So we’ll go through this all in a number of discrete
steps:

Part 0 (Some graphics tricks.)

Part I Create a basic GUI interface using MATLAB guide.

Part II Load in and display the graphics needed for the game.

Part III Add in the ballistics model.

Part IV Utilizing the sliders.

Part V Create the detection (logic) needed for a successful ’catch’ and associ-
ated outcomes.

Part VI Refinements to improve the look and feel of the game.

Because of the complexity of the project, the complete code (m-
file) as well as associated .fig GUI file, are provided (on the course
webpage). These are provided if needed for guidance (e.g. what code
goes where?), only. Try your best to work through the creation of the
App without this.

Example images are provided (download via the course webpage)
and you can substitute your own if you prefer.

numerical modelling meets gui (prettier games!) 261

If you run into unexpected and apparently nonsensical issues
when you make changes and text the App, try closing the design
window and any open Figure windows and type » clear all.

Part 0 – A few of the graphics procedures you will need to grasp and
implement.

Firstly, at the command line, open a Figure window (» figure).
Download any (legal/moral) image you care from the internet1 You 1 With the raster graphics format being

one of: .jpg, .png, .tif.can load this image into the MATLAB workspace with imread, and
display it in the Figure window with imshow. (Try it.)

imread

’A = imread(filename) reads
the image from the file specified by
filename ...’
and in this definition, assigns the
result of imread to a variable A.

imshow

imshow(A) will display an image
held in the variable A (read in by
imread).
Assign the result of imshow to a
handle if you wish to do anything
with it later, i.e.
h = imshow(A);

This fills up the screen, which is OK for a background image, but
not for much else. Open up a new Figure window. You can define a set
of axes anywhere in the window you like via the axes function:

axes(’pos’,[x,y,dx,dy])

where (x,y) are the co-ordinates in the window, which by default
are from 0 − 1 in both x and y directions. dx and dy are the width
and height, respectively, of the axes (in the same window coordinate
system).

For instance, to create a set of axes starting at the origin, but only
25% of the full width and height of the window:

» axes(’pos’,[0.0,0.0,0.25,0.25]);

If you now display the image:

» imshow(A);

2 you should see a smaller version of the image, positioned at the 2 Or whatever you called the variable
with the image in.origin. If you remembered to assign the handle to a variable:

» h = imshow(A);

you can then delete the image:

» delete(h);

OK – now dig up the script for your ball-throwing animation –
the one where the scatter plotting ball location object was deleted
after a pause (giving the impression of movement/animation)3. Near 3 From Part IV of Section 8.1

the start of the script (before the loop starts), load in the Pokéball
graphic4,5. Then, instead of using the scatter function to plot a 4 Under got data? on the website.

5 (or pick your own graphic)single point (circle), you are going to:

1. Define an axes object, either centered (harder) on the position
of the ball that scatter plotted, or taking as its origin (easier), the
position of the ball. The width and height of the axis ... you can
play about with, but it should be a relatively small proportion of
the total size of the main axes.

262 str = ’do you like bananas?’

Note ... that axes uses relative coordinates (i.e. 0 − 1 in both di-
mensions) and not your actual ball position (in units of m). So
you’ll need to determine the horizontal and vertical position of the
ball, as a fraction, of the total size of your domain.6 6 e.g. you might have considered a

maximum horizontal distance of 10m
and a maximum vertical distance of
7.5m and specified:

axis([0 10 0 7.5]);

In which case, for the position of the
ball in relative/normalized units –
divide the x position by 10 and the y
position by 7.5.

It is important here not to be confused between the different
sets of axes – you defined the primary one, outside of the loop,
and which defines the domain in which the trajectory is simulated,
perhaps something like:

axes(’Position’,[0 0 1 1],’Visible’,’off’);

you then specified what (x,y) limits the axes represented, e.g.:

axis([0 x_max 0 y_max]);

(here, use parameters containing the maximum x and y limits).
In contrast – within the loop, you are defining a small axes re-

gion to contain the image. (And whose location and width/height
are given in relative (0 − 1 scale) units, rather than 0 − xmax and
0 − ymax.)
2. Plot the ball image (imshow). Assign the graphics handle re-
turned by the function to a variable.
3. As per previously, after a delay, you can delete the graphic
object,

Omitting delete(h), the output of your ball/trajectory model
should look like Figure 10.2.

Figure 10.2: Trajectory model, with a
Pokéball image replacing the scatter

point. Here show without deleting the
image once displayed.

Ignoring the fact that image deleting is disabled, the images
(sprites) Figure 10.2 have a black background around them. Yuk. If
you picked an image with a white background, it would look better,
unless you had a dark background.7

7 You could pick an image which is
square. But what balls have you seen
that are cubes? Seriously. Do you get
out at all an play any sports? Or even
watch TV?!??

Some (raster) graphics formats enable a transparency to be defined
– basically a color that ... is transparent. Common formats with such
a capability include .gif and .png. As .png is a valid format for imread
– try and find a .png image on the internet with a transparency.8 You

8 In Google search / images, a trans-
parent background is illustrated as a
grey-white checkerboard.

could also use the Pokéball image provided (which has a transparent
background).

To enact a transparent background in MATLAB, you first have to
obtain additional handles when you read in the image:

[img_ball, h_map_ball, h_alpha_ball] = imread(’Pokeball.png’);

where img_ball is the variable containing the ball image, as before,
and h_alpha_ball is a handle to ... lets not worry about what it is to.
Just that you need it.

When you plot the ball, now add an additional command:

h = imshow(img_ball); set(h, ’AlphaData’, h_alpha_ball);

which sets this thing I am not telling you about.9 9 Wikipedia (please donate!), says: ’In
computer graphics, alpha compositing is
the process of combining an image with
a background to create the appearance of
partial or full transparency.’ Without
alpha channel information, everything
is assumed 100% opaque (including the
background).

numerical modelling meets gui (prettier games!) 263

For instance – the same model as before (with the Pokéball replac-
ing scatter but with the use of delete), but with only 1s simulated,
plus a background image displayed (before the loops starts), and ...
with a transparency implemented (removing the square black back-
ground), looks like Figure 10.3.

Figure 10.3: Trajectory model (exactly
the same trajectory as per the Figure
10.2), frozen mid-flight at t = 1s with
the Pokéball passing over UC-Riverside.

Now ... we are ready ...

Part I – the basic GUI.
To achieve a GUI along the lines of Figure 10.1 you need to create

the following objects in the window design editor (but don’t create
them quite yet – details will follow ...):

1. Something to display all the action and graphics in. This is
pretty well much like MATLAB creates when you use plot,
scatter, or any of the graphical functions that create a Figure

Window. This is called an Axes object.
2. A Push Button for telling MATLAB to start calculating (and
displaying) the balls’ trajectory.
3. A Push Button for resetting the game once it is finished.10 10 This we’ll only worry about making

use of this in Part IV.4. A Push Button to finish the game and close the App.
5. A Slider (bar) to set the initial speed of the ball.
6. A Slider to set the initial angle of the balls’ trajectory.
7. For each slider bar: a Static text box to display the value.
8. Also for each slider bar: a Static text box to display the units.

Make a start by running GUIDE at the command line. Create a
new (blank) GUI. You might save it once the GUI editor window
has open up11. MATLAB then opens the Editor and the GUI code 11 File – Save As. . .

template.
Sketch out on a piece of paper how you might lay out the objects

in your GUI window before you actually start to create anything. If
you have graph paper to hand, you could sketch out your design on
a grid similar to the design window grid and size. Note that should
should be aiming to make the Axes object square (i.e. the same length
in both x and y dimension) as the background image we are going
to use is square.12 Also note that the Sliders can be horizontal rather 12 Later on you might want to try

substituting your own background
image. In this situation, you might
need a different aspect ratio to the Axes
object.

than vertical if you prefer and if it make it easier to pack in all the
objects.

OK – to begin for real.

1. You have to start somewhere (i.e. you have to pick on one ob-
ject as the first one to be created!), and the best place to start is
arguably with the Axes object as it is the largest object in your win-
dow. Click on the Axes icon and drag out the position and size of

264 str = ’do you like bananas?’

the object you want.13 By default, it is assigned a name (its Tag 13 Note that you can drag the GUI editor
window larger, and you can also drag
larger the gridded design area, meaning
that your App window will be larger
that you run the program.

property) of axes1. You are not going to have so desperately many
objects that it is necessarily worth re-naming it, but you can if you
wish (although the text will refer to axes1 where needed). Remem-
ber that you can move and re-size it at any point after creating it.
Its position as x,y of the objects origin as well as dimensions (x-
length and y-height) are indicated by Position at the bottom right
of the design window. For e.g. creating an approximately square
Axes object, you can also simply count the number of grid lines in
each dimension.

Save the .fig file and run it14. You do indeed have a graph-like 14 Note that there are two things that
potentially might both need being
saved – the m-file and the .fig file. If
you make code changes, save the m-file,
and if you make design change sin the
GUI editor, save the .fig file.

object with labelled axes. This is not actually that convenient (to
have the axes labels when you don’t need any in this particular
example). In the design window – double click on the Axes object
to bring up its list of properties. Find and edit XTick – delete all
the tick mark numbers. Do the same for the y-axis. Close the GUI
window from the previous version if it is still open, then save and
re-run. Now you should see a large white square(ish) with two
thin black lines delineating the axes15, and nothing else. 15 We could remove these black lines,

but they’ll get covered up later.
2. Next Push Button #1. Create (position and size, where- and
how-ever you think best). Simplest is to leave the default name
(’pushbutton1’). Change the text associated with the Push Button
(property ’String’). Label as ’Throw’, ’Go’, or whatever seems ap-
propriate. Remember that you can change the default font size,
family, color ... (and e.g. make bold etc.) as well as the color of the
button itself (plus a host of other property options).

3. Create a 2nd Push Button (’pushbutton2’) as per before. Label
consistent with the GUI aim (and e.g. Figure 10.1).

4. Similarly, create 3rd Push Button (’pushbutton3’).

5. Now we need a Slider16 bar. These are bar with a slider (’knob’) 16 Not anything to do with baseball.

that can be slide up and down via the mouse, or moved by click-
ing in the bar above or below the position of the slider. By doing
so (changing the position of the slider along the slider bar), you
change the numerical value of the slider. We are going to use one
in order to set the initial speed of the ball. So go create one (leav-
ing the default name of ’slider1’).

Because we need to link the Slider to our model (in terms of
parameter value), we need to specify a minimum and maximum
value that the Slider can take, as well as an initial value. These
properties can be set at in the code, but we’ll start off by specifying
them using the design GUI tool. If you double click on the Slider

you’ll get its property list opened up. The minimum and maxi-
mum property value name are Min and Max – edit these to span

numerical modelling meets gui (prettier games!) 265

a plausible initial speed range17. Also set a default initial value 17 I used 0 to 20ms−1.

(parameter name ’Value’)18. 18 I assumed 0ms−1.

6. Create a second Slider (’slider2’) for setting the initial angle of
the ball (theta).19 19 Here I assumed a range of 0 to 90°,

with a default of 0°.
7. Because the Sliders themselves do not tell you quite what value
you have slide the slider to, it is a Good Idea to somewhere dis-
play the value. We’ll do this via a Static Text box (’text1’) and you’ll
need to create one to go with each Slider (so you’ll also have a
’text2’ named object). For now – simply leave the default text prop-
erty as it is.

8. Finally, if you follow the design in Figure 10.1, you could add
a further pair of Static Text boxes in order to display the units. This
is far from essential and I’ll leave it up to you whether you bother,
particularly if your window is cluttered already.

That is the basic GUI design done. Save and run (having first
closed any open, running, instances of your GUI program). You
should have a window with all the objects discussed, but with none
of them yet doing anything.

At this point it is worth quickly orientating you around the automatically-
generated code m-file:

• At the very top:

function varargout = Pokemon(varargin)

appears at the very top of the m-file and defines the main func-
tion. In this example, the main function is called pokemon (meaning
the App is run by typing » Pokemon). Remember that you do not
have to edit any of this function.

• Next comes:

% -- Executes just before Pokémon is made visible.

function Pokemon_OpeningFcn(hObject, eventdata, handles,

varargin)

This is the function that is called just before the window is made
visible and we’ll edit it later in order to carry out some initial tasks
(i.e. before the ballistics model itself runs).

• Then:

% -- Outputs from this function are returned to the command

line.

function varargout = Pokemon_OutputFcn(hObject, eventdata,

handles)

which is mysteriously useless and we will not edit.
• The first actually useful automatically generated code is:

% -- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

266 str = ’do you like bananas?’

This will contain the code that is executed when the ’Throw’ (or
’Go’) button (’bushbutton1’) is pressed and will end up containing
the complete ballistics model code.

• The function code for when second button (’bushbutton2’)
is pressed appears in order after the function associated with
’bushbutton1’:

% -- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

We’ll only make use of this towards the very end of this section is
making the final refinements to the App.

• Then, the third button (’bushbutton3’):

% -- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

This will contain more more than a command to close the App (as
you have programmed previously).

• The code that is called whenever the position of the first
slider the appears:

% -- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

• This is then followed by a second function associated with
slider1 whose purpose is ... not obvious. Perhaps slider initializa-
tion? Regardless, we’ll be ignoring the following code:

% -- Executes during object creation, after setting all

properties.

function slider1_CreateFcn(hObject, eventdata, handles)

• The final code is the pair of functions for the 2nd slider (of
which we’ll only edit the first of these two functions (slider2_Callback)):

% -- Executes on slider movement.

function slider2_Callback(hObject, eventdata, handles)

% -- Executes during object creation, after setting all

properties.

function slider2_CreateFcn(hObject, eventdata, handles)

Before we move on, you could add your fist code to the m-file – a
close action if you click on the lower of the three Push Buttons. Refer
to the previous sub-section and example to remind yourself how to
do this. You are aiming to have the App window close when you
click on pushbutton3, whose associated function is called function

pushbutton3_Callback.
Save the m-file and re-run the App by typing its name (e.g. »

Pokemon) and the command line (first closing any already open in-
stances of it). The App window should now close when you click
on the third button. In the GUI design editor, edit the ’value’ of the

numerical modelling meets gui (prettier games!) 267

String property of this Push Button so that it has a logical and vaguely
meaningful label.

Part II – (graphics) initialization. Note that in this section, all the
code will go in function Pokemon_OpeningFcn, after the following
(automatically generated) lines:

% Choose default command line output for Pokémon

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes Pokémon wait for user response (see UIRESUME)

% uiwait(handles.figure1);

First, we’ll read in a background image (’background.jpg’ – avail-
able for download from the website, or pick your own) and then
display it. We’ll use the commands imread for reading in the graphics
format (and converting it into something MATLAB prefers) and then
imshow to display it. The first part is easy enough:

img_background = imread(’background.jpg’);

The question then becomes ’where’ to display it. You might not think
there is even a question in this – in the window! Except ... where in
the window?

We actually want the background image in the (currently) blank
Axes area, not just anywhere in the Figure window (which also have
various button etc. objects positioned in it). We need to find the ID of
the Axes object and tell MATLAB that is ’where’ to display it.20 We 20 Actually, it may work without wor-

rying about this, but we’ll need to be
able to specify where to position other
images later anyway.

can get the handle (ID) of the Axes object via:

h_axes = findobj(’Tag’,’axes1’);

and then tell MATLAB that this is currently the object to put things
in by:

axes(h_axes);

(which sets the current/active axes object to the one with the handle
h_axes)). We then use this handle in the call to imread:

h_background = imshow(img_background,’Parent’,h_axes);

Try it (run the App). (The only problem with this is that MATLAB
may completely fail to scale the image to fit the Axes. We’ll fix this
shortly.)

While we’re at it (editing function Pokemon_OpeningFcn), we can
specify the axis range for plotting the position of the ball in the Axes
object, and add a hold on for completeness. We may as well then

268 str = ’do you like bananas?’

also define the axis ranges (in m) as parameters (that we can use
elsewhere).

The complete code (so far), at the end of the automatically gener-
ated code in function Pokemon_OpeningFcn, becomes:

% define grid dimensions

x_max = 10.0;

y_max = 10.0;

% read in background image

img_background = imread(’background.jpg’);

% set axes suitable for game

axes(h_axes);

axis([0 x_max 0 y_max]);

hold on;

% draw background

h_background = imshow(img_background,’Parent’,h_axes, ...

’Xdata’,[0 x_max],’Ydata’,[0 y_max]);

Now, as part of the call to imshow, the size and position of the image
are explicitly prescribed (and the image scaled to completely fill the
axes object).

When you run all this, you should get Figure 10.4.

Figure 10.4: Template App with back-
ground image.

Next, we want a Pokémon to throw the ball at! The load-in code
(which can go after the code fragment above) for the image is identi-
cal to before:

img_eevee = imread(’Eevee.png’);

(The image itself (’Eevee.png’) can be downloaded from the website
... or download your own ...) There are two complications in us-
ing imread, however. To see what these complications are, after the
img_eevee = line, add the following:

h_eevee = imshow(img_eevee,’Parent’,h_axes);

to also display the image. Well, it is a bit of an odd mess. By default,
imshow tries to fit an image to the space, so that might, at least partly,
help explain things.

We can start by making the Pokémon image smaller and see
whether that helps us to work out what is going on. To do this, we
could e.g. pick half of the size of the Axes object, and plot the Poké-
mon from the origin. A replacement line to do this would look like:

h_eevee = imshow(img_eevee,’Parent’,h_axes,’Xdata’,[0 x_max/2],...

’Ydata’,[0 y_max/2]);

When you run this, you should get Figure 10.5.

Figure 10.5: Template App with back-
ground image plus Pokémon.

You can see firstly that the Pokémon image is half the size of the
space – exactly as we requested via ’Xdata’,[0 x_max/2] which says
to start the image at zero on the x-axis and stretch it horizontally

numerical modelling meets gui (prettier games!) 269

until half way along (x_max/2), and similarly for the y-axis. Except ...
in the Axes object, it seems that the y-axis origin starts at the top and
is positive downwards (which is why the Pokémon appears in the
top left, rather than bottom left, corner).

To cut a long story short, we can generalize the position and size
of the Pokémon that is displayed (and use this at the end when we
refine the App), via the following code fragment21: 21 You should delete the lines starting

img_eevee = and h_eevee = first.
This 10-line code fragment then follows
directly on from the previous 11-line
one.

% define Pokemon size

dx_Pokemon = 0.2*x_max;

dy_Pokemon = 0.2*y_max;

% define initial Pokémon position

x_Pokemon = x_max-dx_Pokemon;

y_Pokemon = y_max-dy_Pokemon;

% read in Pokemon image

img_eevee = imread(’Eevee.png’);

% draw Pokémon

h_eevee = imshow(img_eevee,’Parent’,h_axes,’Xdata’,[x_Pokemon...

x_Pokemon+dx_Pokemon],’Ydata’,[y_Pokemon-dy_Pokemon y_Pokemon]);

Now giving you a small Pokémon – in fact, 20% of the Axes size as
specified in the definition of the Pokémon size parameters, dx_Pokémon
and dy_Pokemon. If you run this, you should get Figure 10.6. (Note
that because y is measured downwards from the top in the GUI Axes

object, for ’Ydata’, we write the y min and amx values the other way
around: [y_Pokemon-dy_Pokemon y_Pokemon].)

Figure 10.6: Template App with back-
ground image plus small Pokémon at
bottom right.

One final thing now is the background to the Pokémon image. The
original format (png) is actually defined with a transparent back-
ground. MATLAB can make use of this with a small tweak to the
code – replacing the img_eevee = line with:

[img_eevee, h_map_eevee, h_alpha_eevee] = imread(’Eevee.png’);

which grabs additional graphics information and specifically about
the transparency. And after the last line (h_eevee =), add:

set(h_eevee, ’AlphaData’, h_alpha_eevee);

which implements the transparent background and hopefully gives
you Figure 10.7.

Figure 10.7: Template App with back-
ground image plus small Pokémon at
bottom right, now with its transparency
applied.

Part III – incorporating the ballistics model.
Here – almost all the code in this section will go into function

pushbutton1_Callback – the function that is executed when the first
Push Button is clicked. But before any coding – ensure that the text la-
bel associated with the first Push Button is appropriate for launching
the ball (’Throw’, ’Go!’, whatever).22 22 Remember – double-click on the

pushbutton1 object in the design editor
and then find and edit the value of the
String property.

Below is a simple rendition of the ballistics model. All that has
been modified from a stand-alone m-file that would plot the trajectory

270 str = ’do you like bananas?’

of a ball, is that the creation of a figure (and associated hold on) is
not necessary (because this has already bene done within the initial-
ization function). either copy-paste your own version (and comment
out the figure creation line), or add the below version.

% model constants

g = 9.81;

% model parameters

theta0 = 80.0;

s0 = 5.0;

h0 = 2.0;

% model parameters - time (s)

dt = 0.05;

t_max = 10.0;

% calculate initial velocity components

u = s0*cos(pi*theta0/180.0);

v = s0*sin(pi*theta0/180.0);

% set initial position of ball

x = 0.0;

y = h0;

% create Figure window and hold on

%Figure;

%hold on;

% run model

for t=dt:dt:t_max,

% update horizontal and vertical positions

dx = dt*u;

x = x + dx;

dy = dt*v;

y = y + dy;

% plot current position of ball

scatter(x,y);

if (y < 0.0)

break;

end

% update vertical velocity (horizontal velocity unchanged)

dv = -dt*g;

v = v + dv;

end

When you rn the complete App, and press the first Push Button,
you should see the balls’ trajectory plotted. Upside-down! WTF!?

Well, this does seem to be the coordinate system in this Axes ob-
ject. We can fix this by subtracting the model calculated height (y)
from the maximum y-axis value (y_max) and adjust the scatter code
line to:

scatter(x,y_max-y);

Except ... we defined y_max in the initialization function, and its value
is not available in this function, unless we define it as global in both,
so lets do that – add the following lines:

global x_max;

global y_max;

to both the following functions

numerical modelling meets gui (prettier games!) 271

• function Pokemon_OpeningFcn

• function pushbutton1_Callback

(before any of your other code in these files, but below anything that
MATLAB generated automatically in the first place).

It works, and in the right direction (for ’up’), but it is hardly
iTunes grade App material. What we can do, is to replace the point
plotted by scatter, with an image.

At the top of function pushbutton1_Callback (after the global

declarations) load in a ball image:

[img_ball, h_map_ball, h_alpha_ball] = imread(’Pokeball.png’);

(using the full format of returned parameters because we’ll make use
of its transparency). We’ll then define the size of the ball:

dx_ball = 0.05*x_max;

dy_ball = 0.05*y_max;

and finally, in place of scatter ..., write:

h_ball = imshow(img_ball,’Parent’,h_axes,’Xdata’,...

[x x+dx_ball],’Ydata’,[y_max-y y_max-y+dy_ball]);

set(h_ball, ’AlphaData’, h_alpha_ball);

The first of these final two lines, displays the image given by the
parameter (ID) img_ball. It ensures it is displayed in the axes area
pointed to by h_axes (and because of this, you also have to de-
fine x_axes as global23, i.e. global h_axes;). Its size is dx_ball by 23 Directly underneath the other two

global definition lines AND in a sim-
ilar position in the initialization func-
tion: function pushbutton1_Callback

.

dy_ball. Its x-coordinate is simply x (hence the image goes from x

to x+dx_ball) and its y-axis coordinate ... well, don’ worry about it,
after much trial-and-error, it works. Now you should have something
like Figure 10.8 when you run it.

Figure 10.8: App with ball trajectory
trail.

To finish this section off, we’ll improve how the trajectory f the ball
is displayed. Firstly, we could add a delay between each addition of
the ball image, rather than them all sort of appear at once. After the
set ... line, add:

pause(0.005);

This is some improvement visually. We could also remove the previ-
ous ball image, so that only one ball image is displayed on the screen
at any one time, hopefully giving the impression of movement. Since
we were good and obtained the handle (h_ball) of the ball image
when we displayed it, this gives us a means to tell MATLAB to get
rid of it again. Now, after the pause line, add:

delete(h_ball);

which simply deletes the last ball image object that was plotted.

272 str = ’do you like bananas?’

Now when you run it you should see a single ball image that
follows the trajectory that you calculated with your time-stepping
ballistics model.

Part IV – utilizing the sliders.
So far it is not much of a game – the values of the parameters

determining the initial speed and angle of the ball are set in the code.
You could always edit the code, save, and re-run to replay the game
with a different throw, but ... really(?)

The Sliders are there to allow you to adjust the two key parameter
values and the ’Throw’ (/’Go’) button can be re-clicked on to then
re-run the game. The Sliders are set up such that when you move
the slider, its value changes. In designing the GUI and creating the
objects you have already set the min and max values of the Sliders to
something reasonable. What remains is to obtain the value of each
Slider and pass that to your ballistics model.

The first step is to read the new Slider value when the slider is
moved. Taking the example of the first Slider (’slider1’) which controls
the initial speed of the ball – we first need to request the handle (ID)
of this Slider. As before, we use the findobj function:

h = findobj(’Tag’,’slider1’);

which simply asks for the handle (passed to variable h) of the object
whose ’Tag’ is ’slider1’. You then24 use the get function to get the 24 On the next line.

’value’ (one of the properties of the object):

s0 = get(h,’Value’);

where here the value is assigned to the variable s0 (initial speed).
These two lines of code go in function slider1_Callback just after
the comment lines (there is actually no other code (automatically
generated) in this function as it currently stands).

While we’re here editing this function, what else might be helpful
to happen when the slider is moved and its value changes? Although
from creating the Slider object you know (unless you have forgotten)
what the min and max Slider values are, you would still be somewhat
guessing what its exact (or even rough) value was. During the GUI
design phase, you created a pair of Static text boxes for each Slider.
One of each pair was intended to display the Slider value. So lets do
this now. The Static text box for the value display was called (its Tag)
text125. 25 At least, it was in my GUI design –

check the name of yours.Once again, before we can change any of the properties, we need
to determine the handle of the object. For Static text box text1, the code
would be:

numerical modelling meets gui (prettier games!) 273

h = findobj(’Tag’,’text1’);

(this should be starting to become familiar to you by now ...).
To set its value, which in this case is a text string, we write:

set(h,’String’,num2str(s0));

where num2str(s0) converts a numeric value into a string (as you
have seen before). These two lines of code will go after the first two
in the same function (as you need to have obtained the value of s0
before you can use it to change then text box display).

At this point you may as well save and re-run. Now, when you
drag and release the slider for initial speed, its new value is displayed
above it in the text box. At least, this should be what happens ...

Write the analogous four lines of code for the other Slider, which
will go in function slider2_Callback. Now the parameter value
being read and displayed in the text box is the initial angle of launch,
theta0 (of whatever you prefer to call the parameter).

Again – save and test what you have so far. This should now be
two Sliders that are linked to two Static text boxes such that when the
slider is moved, the new values are displayed.

There is one final step to take. If you change either or both Slider

values and click on ’Throw’ /’Go’, the trajectory of the ball is the
same as before – you are not actually changing the parameter values
used to initialize the ballistics model yet. Recall that variables within
functions are private – they cannot be ’seen’ outside of the function
their value is set in. Unless you declare them as global variables.

So, in each Slider function, you need to declare the respective pa-
rameter (s0 or theta0) as global. This will need to be the first line
of the code (after the comment lines and before the four lines of code
you inserted). You will also need to add the global declarations at
the start of the pushbutton1 code where your model lives (function
pushbutton1_Callback(hObject, eventdata, handles)):

global s0;

global theta0;

You then need to comment out the lines that set your initial model
parameter values:

%theta0 = 80.0;

%s0 = 5.0;

You can test it now, and if you do, you might find that nothing
appears to happen if you press ’Throw’. Only if you change the slider
positions does anything (i.e. a moving ball) happen. We have created
the situation where the ballistics model takes it values for initial
speed and angle from the parameters s0 and theta0. The only place

274 str = ’do you like bananas?’

in the code in which these values are set are the Slider functions. BUT,
the Slider functions are only called when the slider is moved. So on
starting the App, unless you first move the Sliders, the values of s0
and theta0 are undefined26. 26 Invariably, undefined variables in

code are assigned a value of zero, but
you should never try and use a variable
whose value has not somewhere been
defined.

What to do? Well, recall there is the function that is called when
the App first starts up and in which we loaded up various images
etc. In this function, we could also check the value of each Slider

(even though the slider could not have been moved yet), set the pa-
rameter values, and display the Slider values in the Static text boxes.

At the end of the code in function Pokemon_OpeningFcn, add:

% read in default model parameters and set labels

h = findobj(’Tag’,’slider1’);

s0 = get(h,’Value’);

h = findobj(’Tag’,’text1’);

set(h,’String’,[num2str(s0)]);

h = findobj(’Tag’,’slider2’);

theta0 = get(h,’Value’);

h = findobj(’Tag’,’text2’);

set(h,’String’,[num2str(theta0)]);

which is pretty well much just an amalgamation of the code you
have added to the two Slider callback function. The last final piece
is to remember that the initial Slider values you read and set s0 and
theta0 on the basis of, cannot be seen outside of this function. So at
the top, along with the other global statements, make s0 and theta0

global to.
Note that if you do not like the new defaults for s0 and theta0,

you can always edit the properties of the Sliders in the GUI design
editor window thing.27 27 Equally, you could have coded in

defaults and then set the Slider values
to be these defaults when the App
starts up. The process is basically
exactly the same as for setting the Static
text box string values.

Part V – pokéball/Pokémon collision detection.
How are you going to tell if the throw is successful or not? Re-

member earlier – you detected if the height of the ball fell below
ground level and used this to exits the loop (because no more calcula-
tions were necessary):

if (y < 0.0)

break;

end

You are going to do something similar, but:

1. Firstly, test both x and y positions of the ball (rather than just
y).
2. Finish the game upon a successful hit.

For the first part – you need to determine whether the ball is
within the limits of the Pokémon (which would be a reasonable cri-

numerical modelling meets gui (prettier games!) 275

teria for a ’hit’). There are four parts to the criteria, which all need to
be true:

1. The ball is to the right of the left edge of the Pokémon.
2. The ball is to the left of the right edge of the Pokémon.
3. The ball is above the bottom edge of the Pokémon.
4. The ball is below the top edge of the Pokémon.

In code, if the edges of the Pokémon are:

xmin, xmax, ymin, ymax

we are looking for the situation:

x>xmin && x<xmax && y>ymin && y<ymax

where (x,y) is the location of the ball.28 28 Note that the code you need is not
quite this simple – your ball (x,y) lo-
cation is in units of m, with y positive
upwards, whereas the Pokémon image
location and size is defined in normal-
ized Axes units, and with y downwards.

For the edges of the Pokémon – refer back to the code in function

Pokemon_OpeningFcn where you defined the position of the Pokémon
image. The only thing is t remember the up-side-down y-axis, so you
are actually looking for y to the greater than the top edge, and less
than the bottom edge ...

If this condition is met, the game is over. You might then:

• Remove the Pokémon image and replace with a message.
• Grey out and disable the ’Throw’ button.

Part VI – final game refinements.
Various refinements that come to mind and that you might try and

implement:

• Upon clicking ’New Game’, you might place the Pokémon in a
different place. Perhaps larger or smaller than originally. Both
these settings could be made random.

• In a new game, you might display a different Pokémon. Which
Pokémon gets displayed, could also be random.

• Keep score (how many ’catches’) as well as how many tries total.
This would require two new Static Text box objects in the GUI.

• You could also keep a high score ... saving this value when you
close the App, and loading it when you start it up.
(e.g. simply saving and loading an integer from a .mat file.
Harder, is to add the ability to enter (and remember) the initials of
the person with the high score ...

rand

rand (with no passed parameters),
returns a quasi random real number,
in the range 0.0 − 1.0.

This can be scaled, so e.g.
10.0*rand returns a number in
the range 0.0 − 10.0.
1.0+9.0*rand returns a real num-

ber in the range 1.0 − 10.0.
round(0.5+9.999999*rand) returns

an integer in the range 1 − 10.
(Remember, that having obtained

a random integer starting from 1,
you can use this to index an array
and hence ultimately, access different
images at random.)

Bibliography

Douglas Adams. The Hitchhiker’s Guide to the Galaxy. Pocket Books,
1979. ISBN 0-671-46149-4.

Index

.mat environment, 44
; environment, 27
= environment, 25, 27

addition environment, 27
addpath environment, 42
and environment, 28
assignment operator environment,

28
axis environment, 34, 35, 47

break environment, 85

cell array environment, 96
cell2mat environment, 95, 96
clabel environment, 105, 106
clear all environment, 29
clear environment, 29
close environment, 29
colon operator environment, 30, 32,

38
colorbar environment, 107, 117
colormap environment, 104, 131
Command Window, 22
comments environment, 96
contour environment, 103, 105
contourf environment, 103

D’uh
D’uh

environment, 216
disp environment, 58, 81
division environment, 27
duh environment, 216

else environment, 67
elseif environment, 67
end environment, 32
environments

.mat, 44
;, 27
=, 25, 27
addition, 27
addpath, 42
and, 28
assignment operator, 28
axis, 34, 35, 47
break, 85
cell array, 96
cell2mat, 95, 96
clabel, 105, 106
clear, 29
clear all, 29
close, 29
colon operator, 30, 32, 38
colorbar, 107, 117
colormap, 104, 131
comments, 96
contour, 103, 105
contourf, 103
disp, 58, 81
division, 27
duh, 216
else, 67
elseif, 67
end, 32
equality, 28
exist, 86, 89
exit, 29, 202
exponentiation, 27
fclose, 94
figure, 33
find, 112–114, 117
fliplr, 31, 39
flipud, 31
flipup, 39
fopen, 94–96
for, 74

fprintf, 43
FUNCTION, 17
gca, 128
geoshow, 110
getframe, 83
ginput, 181
greater than, 28
greater than or equal to, 28
help, 17, 23
hold, 50
hold on, 48
icecream, 155
if ... end, 67
image, 53, 103
imagesc, 103, 104
imread, 53, 261
imshow, 261
inequality, 28
input, 67, 68, 89
interp1, 123
isempty, 185
ismember, 186, 187
isnan, 115, 117, 119
isnana, 115
legend, 51
length, 31, 91, 142
less than, 28
less than or equal to, 28
line, 127, 194, 225
load, 42–45
m-files, 34
mean, 231
meshgrid, 107
mod, 141
movie2avi, 83
multiplication, 27
NaN, 114
ncread, 99
not, 28

280 str = ’do you like bananas?’

num2str, 81
numel, 173
or, 28
patch, 130
pause, 219
pcolor, 52, 53, 90
pi, 29
plot, 33, 46, 50
print, 35
quiver, 129
rand, 275
reshape, 120, 121
rmmissing, 118
rocker, 141
rotate, 39
round, 182
save, 44, 163
scatter, 33, 52
set, 128, 129, 253
sin, 35
size, 31, 38, 153
sort, 45
sortrows, 46
strcmp, 69
subplot, 35
subtraction, 27
sum, 39
switch ... case ... end, 72
text, 133, 134
textscan, 94–96
title, 34, 35
transpose, 31, 39, 104
transpose operator, 32
VideoWriter, 83
VideoWriter,, 83
while, 74
xlabel, 34
xlsread, 98
ylabel, 34
zeros, 153, 197

equality environment, 28
exist environment, 86, 89
exit environment, 29, 202
exponentiation environment, 27

fclose environment, 94
figure environment, 33
find environment, 112–114, 117
fliplr environment, 31, 39
flipud environment, 31
flipup environment, 39

fopen environment, 94–96
for environment, 74
fprintf environment, 43
FUNCTION environment, 17

gca environment, 128
geoshow environment, 110
getframe environment, 83
ginput environment, 181
greater than environment, 28
greater than or equal to environ-

ment, 28

help environment, 17, 23
hold environment, 50
hold on environment, 48

icecream environment, 155
if ... end environment, 67
image environment, 53, 103
imagesc environment, 103, 104
imread environment, 53, 261
imshow environment, 261
inequality environment, 28
input environment, 67, 68, 89
interp1 environment, 123
isempty environment, 185
ismember environment, 186, 187
isnan environment, 115, 117, 119
isnana environment, 115

legend environment, 51
length environment, 31, 91, 142
less than environment, 28
less than or equal to environment,

28
license, 2
line environment, 127, 194, 225
load environment, 42–45

m-files environment, 34
mean environment, 231
meshgrid environment, 107
mod environment, 141
movie2avi environment, 83
multiplication environment, 27

NaN environment, 114
ncread environment, 99
not environment, 28
num2str environment, 81

numel environment, 173

or environment, 28

patch environment, 130
pause environment, 219
pcolor environment, 52, 53, 90
pi environment, 29
plot environment, 33, 46, 50
print environment, 35

quiver environment, 129

rand environment, 275
reshape environment, 120, 121
rmmissing environment, 118
rocker environment, 141
rotate environment, 39
round environment, 182

save environment, 44, 163
scatter environment, 33, 52
set environment, 128, 129, 253
sin environment, 35
size environment, 31, 38, 153
sort environment, 45
sortrows environment, 46
strcmp environment, 69
subplot environment, 35
subtraction environment, 27
sum environment, 39
switch ... case ... end environ-

ment, 72

text environment, 133, 134
textscan environment, 94–96
The command line, 22
title environment, 34, 35
transpose environment, 31, 39, 104
transpose operator environment, 32
typefaces

sizes, 54

variable, 24
VideoWriter environment, 83
VideoWriter, environment, 83

while environment, 74

xlabel environment, 34
xlsread environment, 98

index 281

ylabel environment, 34 zeros environment, 153, 197

	How to use this Textbook
	Fonts and highlighting
	Help(!) and keyword definitions
	Sidenotes and other distractions from the main text
	What and when to type
	Code structure

	Elements of ... MATLAB and data visualization
	Using the MATLAB software
	Basic concepts
	Vectors and arrays #1
	Basic graphing (aka. 'data visualization')
	Vectors and arrays #2
	Loading and saving data
	Basic data processing (and yet more plotting)
	Nicer graphing
	Further matrix math (systems of equations)

	Elements of ... programming
	Introduction to scripting (programming!) in MATLAB
	Functions
	Conditionals '101'
	Loops '101'
	Loops and conditionals ... together(!)
	Even more (and loopier) loops

	Further ... MATLAB and data visualization
	Further data input
	Further (spatial / (x,y,z)) plotting
	Further data processing
	Even nicer graphing and graphics

	Further ... Programming
	Nested loops
	Algorithms and problem-solving
	Interpreting equations (0) – Basics
	Interpreting equations (1) – Population models
	Interpreting equations (2) – Pure lovely maths

	Programming applications – games!
	Tic-tac-toe

	Numerical modelling – zero-D / equilibrium
	Zero-D Energy-balance model of the climate system
	'Daisy World'

	Numerical modelling – Dynamic (time-stepping)
	Catch the ball (ballistics and simulating trajectories)
	Dynamics in the zero-D Energy-balance climate model

	Numerical modelling – To infinity (1D) and beyond(!)
	1-D energy-balance climate model
	1-D reaction-transport model

	Graphical User Interfaces (GUI)
	MATLAB GUI basics
	MATLAB apps

	Numerical modelling meets GUI (prettier games!)
	GUI Pokémon game

	Bibliography
	Index

