ANDY RIDGWELL

STR="DO YOU LIKE BANANAS?’
[EXAM VERSION]

UNIVERSITY OF CALIFORNIA, RIVERSIDE / DEPARTMENT OF EARTH SCIENCES
2015/6

Copyright © 2016 Andy Ridgwell
http://www.seao2.info/teaching.html

Except where otherwise noted, content of this document is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 license (CC BY-NC-5A 3.0) (http://creativecommons.org/licenses/by-nc-
sa/3.0/)

First printing, December 2016

http://www.seao2.info/teaching.html

Contents

Elements of ... MATLAB and data visualization
1.1 Using the MATLAB software 14
1.1.1 Starting MATLAB 14

1.1.2 The command line 14
1.1.3 MATLAB GUI 14
1.1.4 Help(!) 15

1.2 Basic concepts 16

1.2.1 Variables 16

1.2.2 Numerical expressions 18

1.2.3 Relational and logical operators 19
1.2.4 Functions (built-in) 20

1.2.5 Miscellaneous commands 20

1.3 Vectors and arrays #1 22

1.3.1 Creating vectors 22

1.3.2 Basic vector manipulation 22

1.3.3 Addressing elements in vectors 23

1.4 Basic graphing (aka. 'data visualization’) 25
1.4.1 Plotting 25

1.4.2 Graph labelling 26

1.4.3 Sub-plots 26

1.4.4 Saving graphics and figures 27

1.5 Vectors and arrays #2 28
1.5.1 Creating matrices and arrays 28
1.5.2 Basic matrix manipulation 29

1.5.3 Some matrix math :(31

13

1.6 Loading and saving data 32

1.6.1 Where am I? 32

1.6.2 Loading and importing data 33
1.6.3 Saving and exporting data 33

1.6.4 Loading and saving the workspace 33
1.7 Basic data processing 34

1.8 Yet more graphing 38

1.8.1 Modifying lines/symbols in plot 38
1.8.2 Plotting multiple data-sets 38

1.8.3 Scatter plots 39

1.8.4 Histograms 41

1.8.5 Simple 2D data and bitmap visualization 42

Elements of ... programming 43
2.1 Introduction to scripting (programming!) in MATLAB 44

2.1.1 Programming good practice 45

2.1.2 Debugging the bugs in buggy code 47

2.2 Functions 50

2.3 Conditionals '101’ 52
2.3.1 if ... 52

2.3.2 switch ... 56

2.4 Loops 101’ 58

2.4.1 for ... 58

2.4.2 Other loop configurations and usages 61
2.4.3 Fun(!) worked examples 62

2.5 Loops and conditionals ... together(!) 66
2.5.1 for ... and conditionals 66

2.5.2 while ... 68

2.6 Even more (and loopier) loops 71

Further ... MATLAB and data visualization 75
3.1 Further data input 76

3.1.1 Formatted text (ASCII) input 76

3.1.2 Importing ... Excel spreadsheets 79

3.1.3 Importing ... netCDF format data 80

3.2 Further (spatial / (x,y,z)) plotting 84

3.2.1 Plotting maps 91

Further ... Programming 93
4.1 find! 94

Graphical User Interfaces (GUIs) 101
5.1 MATLAB GUI basics 102

5.1.1 Hello, World [Static Text (box)] 103
5.1.2 Simple GUI responses [Push Button] 105
5.1.3 Updating object properties (do you like bananas?) 106

5.2 GUI Pokemon game 110
zero-D / equilibrium modelling 123
6.1 A zero-D Energy-balance model of the climate system 124

6.1.1 The basic EBM 125
6.1.2 The EBM as a function 126

6.1.3 Parameter sensitivity experiments using the EBM — #1 126

6.1.4 Parameter sensitivity experiments using the EBM — #2 128

6.1.5 Creating a function for the evolution of solar constant through geological time 131

6.1.6 Using multiple functions and calculating global surface temperature as a function of geological
time 132

6.2 'Daisy World’ 133

6.2.1 'fixed daisy” daisy-world 134
6.2.2 ‘dumb daisy’ daisy-world 135
6.2.3 "clever daisy’ daisy-world 138

Dynamic (time-stepping) modelling 141
7.1 Catch the ball (ballistics and simulating trajectories) 142
7.2 Dynamics in the zero-D Energy-balance climate model 149

Bibliography 153

Index 155

List of Figures

1.1
1.2

1.3
1.4

Default output of plot. 25

A plot illustrating axis auto-scaling (maximum x and y values now
slightly larger than 10 and 100, respectively). 26

A (only very slightly) improved plot. 26

Arrangement of subplots. 27

1.5 Spline fit to measured changes in CO2 concentration in Law Done
ice core, following Etheridge et al. [1996]. 33

1.6 proxy reconstructed past variability in atmospheric COz2. 34

1.7 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 35
1.8 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 38
1.9 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 39
1.10 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 39
1.11 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 39

1.12 A 2D plot of some random gridded model data. 42
1.13 A 2D plot of some random gridded model data ... but with the un-

derlying data matrix re-orientated before plotting. 42
2.1 Output from the (bug-fixed version of) plot_some_dull_stuff m-
file. 49
2.2 Extremely unappealing blocky plot of Earth surface temperature (who
cares with month? — the graphics are too poor to matter ...). 65
2.3 Continental outline (of sorts). 71
2.4 Another continental outline (of sorts). 71
2.5 Another go at the continental outline! 73
3.1 Very basic imaging (image) of an array (2D) of data — here, global bathymetry.
3.2 Slightly improved very basic imaging (imagesc) of bathymetry data. 85
3.3 Example result of basic usage of the contour function. 87
3.4 Example usage of contourf, with the hot colormap (giving dark/brown

35

colors as deep ocean, and light/white as high altitude). 87
Example usage of contour, contouring only the zero height isoline,
and providing a label. 87

85

3.6 Usage of contour but with lon/lat values created by meshgrid func-
tion and passed in (and with the hot colormap (giving dark/brown
colors as deep ocean, and light/white as high altitude). 89
3.7 Example contour plot including meshgrid-generated lon/lat values.
Result of contourf(lon,lat,temp7,30), where the data file was temp7.tsv,

with some embellishments. 91
4.1 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 98
4.2 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 99

5.1 Starting GUI window of the MATLAB GUIDE, GUI design tool. 102

5.2 (Blank) GUI window editor GUI window. 103

5.3 Design of the Hello, World window! 104

5.4 Design window with a default push button object. 105

5.5 (completely) Bananas design window. 106

5.6 (completely) Bananas GUI in action. 108

5.7 Screen-shot of he Pokemon game App. 110

5.8 Template App with background image. 116

5.9 Template App with background image plus Pokemon. 116

5.10 Template App with background image plus small Pokemon at bot-
tom right. 117

5.11 Template App with background image plus small Pokemon at bot-
tom right, now with its transparency applied. 117

5.12 App with ball trajectory trail. 119

6.1 Form of the basic EBM model. 125

6.2 Form of the basic EBM model as a function. 125

6.3 Schematic structure of the model configured to carry out a single pa-
rameter sensitivity study. 128

6.4 Sensitivity of global mean surface temperature vs. solar constant (mean
surface albedo held constant at an albedo value of 0.3). 128

6.5 Chess board grid pattern. 130

6.6 Schematic structure of the model configured to carry out a double
(in terms of solar constant AND now albedo) parameter sensitivity
study. 130

6.7 Global mean surface temperature (°C) as a function of solar constant
and surface albedo grid point number. 130

6.8 Global mean surface temperature (°C) as a function of the value of
solar constant and surface albedo. 130

6.9 Schematic structure of code for calculating the solar constant (out-
put) as a function of time (input). 131

6.10 Schematic of the evolution of surface temperature over geological
time program, and relationship between main program script, and
solar constant and EBM functions. 132

6.11 Simple EBM projection of the evolution of Earth surface tempera-
ture with time. Time at the present-day is highlighted by a vertical
line (drawn using the MATLAB line function). 132

6.12 Schematic of the evolution of surface temperature over geological
time program, and relationship between main program script, the
solar constant and EBM functions, and now the “daisy” albedo func-
tion. 134

6.13 Evolution of global surface temperature and the two populations of
daisies with time ... but with no change allowed in the daisy pop-
ulations (d’uh!). The fractional coverage of white daisies is shown
by large empty circles, and for black, by small filled black circles. Data
points for mean surface temperature are color-coded by temperature
(color scale not shown). 135

6.14 Schematic of the evolution of surface temperature over geological
time program, and relationship between main program script, the
solar constant, EBM, and ’daisy” albedo functions. Note the creation
of an inner loop, with EBM, and "daisy’ albedo functions called from
within this, while the solar constant remains called form the start of
the outer loop as before. 136

6.15 Evolution of global surface temperature and the two populations of
daisies with time ... but now assuming that the growth of each de-

pends on the global mean surface temperature. 138

6.16 Evolution of global surface temperature and the two populations of
daisies with time. 139

7.1 Schematic of the thrown-ball system. 142

7.2 Schematic of the code for simulating the horizontal movement of a
ball. 142

7.3 Schematic of the code for simulating the horizontal movement of a
ball. 144

7.4 Trajectory of a ball!! 148

7.5 Schematic of the script for the basic dynamic EBM 149

7.6 100 yr spin-up of the basic EBM. 149

7.7 Schematic of the script for the basic dynamic EBM — now with added
loop count(!) 150

7.8 100 yr spin-up of the basic EBM, but with a poor choice of time-step
150

7.9 Schematic of the dynamic EBM as a function and with the CO2 con-
centration passed in. 151

7.10 Schematic of the dynamic EBM driven by a history of CO2 (read in
from a file). 152

7.11 Transient EBM response to observed changes in atmospheric CO2.
For reference, the pre-industrial equilibrium global temperature is
shown as a horizontal black line. 152

10

7.12 Transient EBM response to (fake) changes in atmospheric CO2. 152

List of Tables

1
Elements of ... MATLAB and data visualization

Herro NewsrEs! This first lab’s porpoise is to start to get you familiar with what MATLARB is all about
and understand how to import and manipulate (array) data in this software environment and do some
basic plotted (aka ‘data visualization’). If your are clever, you might find menu items or buttons to click
that will do the same thing as typing in boring commands at the command line. In fact, you would have
to be pretty dumb not to notice all that brightly colored eye-candy in the GUI (Graphical User Interface —
i.e.,, menus, buttons, and stuff) at the top of the screen. However, you will get to grips with programming
much quicker if you stick with the instructions and do almost everything that is asked of you using the
command line (rather than doing stuff via the GUI), at least to start with. You’ll just have to trust me for
now ... We'll start with the very basics and things that you could easily do in Excel instead, and build up.

GRAPHICS is one of the important strengths of MATLAB. Although other software packages and scripting
languages exist that perhaps have the edge on MATLAB in terms of visually appealing plots and graphs,
MATLAB is worlds apart from e.g. Excel.

14 str="do you like bananas?’ [exam version]

1.1 Using the MATLAB software

1.1.1 Starting MATLAB

To start with: find the MATLAB icon on the desktop; run the pro-

gram. You should see a number of sub-windows arranged within the

main MATLAB window, hopefully including at the very least, the
Command Window". Depending on whether you have used MATLAB
before and it has remembered your settings, windows may also in-
clude: Command History, Workspace, Current Folder. If instead you see;
"Tetris’, ‘Grand Theft Auto: San Andreas’, and "World Championship
Pool’, then you have the wrong software running and are going to
find learning MATLAB rather hard. However, there is big $$$ to be
made in on-line gaming tournaments these days. Would you really
rather be a geologist and spend the rest of your days hitting rocks
with a hammer? If so, read on ...

1.1.2 The command line

When MATLAB initially starts up, the Command Window should
display the following text:

Academic License

»

or in order versions of the software:

To get started, select MATLAB Help or Demos from the Help
menu.

»

but in either case, with a vertical blinking line (cursor) following the
double ‘greater than’ symbols?.

If you are unfamiliar with using command-line driven software
... Don’t Panic! Nothing bad can happen, regardless of what you do.
Well, almost. It is possible to accidently clear MATLAB’s memory of
the results of calculations and data processing and close plots and
graphs before you have saved them, but MATLAB remembers all the
commands you type, so in theory it is perfectly possible to quickly
reproduce anything lost. (Later on we will be placing the sequence
of commands into a file (that is saved) and so ultimately, MATLAB
should turn out to be mostly fool-proof.)

1.1.3 MATLAB GUI

There are lots of fancy looking icons and pretty colors and you could
spent all day staring at them and not getting any work done. Or

* Conveniently labelled Command Window
— you cannot possibly fail to identify it

* Note that in nerd-speak the » is

called the command "prompt” and is
prompting you to type some input
(Commands, swear words, etc.). See —
the computer is just sat there waiting
for you to command it to go do some-
thing (stupid?). If one does not appear
at the bottom of whatever is in the Com-
mand Window is means that MATLAB

is busy doing something extremely
important. Or perhaps, MATLAB may
have completely died. Either way, it will
not accept any new /further commands
until it is done calculating/dying.

elements of ... matlab and data visualization 15

learn good programming practice. Which is why we mostly will

ignore the eye-candy and little (if any) guidance will be given as to

the functionality of the GUL Look at this as a lesson for the user (to

read the Help, textbook, on-line documentation, or simple go Google

for an answer3). 3i.e. Internet fishing

1.1.4 Help(!)

Press F1 or click on the question mark icon on the tool-bar, to bring

up the indexed and searchable MATLAB documentation.4 41t is also possible to obtain context-
specific help, e.g. on a specific (built-in)
function, which we’ll see in due course.

16 str="do you like bananas?’ [exam version]

1.2 Basic concepts

1.2.1 Variables

A variable is, in a sense, a pointer to a location in computer memory
where a piece of information is stored>. A variable is associated a
name to make things rather more easy and convenient. The name
can be anything you like in MATLAB, as long as it does not contain
numbers or special characters. So actually, you are only allowed se-
quences of letters (otherwise knows as ‘words’). But you can create
a variable name based on 2 (or more) words, separated by an under-
score (_). Valid variable names would include:

A

B

cat

derpyhooves
this_is_boring_stuff
BIG

big®

Variables are entirely useless unless they have some information
assigned to them. In fact, you can type in any of the variable names
above (at the command line) and MATLAB will deny it knows what
you are talking about?.

So far so useless — you need to assign something to it. Which
brings us to quite ‘'what” and "how’. First of, you need to know that
variables can have the following types:

¢ Integer — An integer number is a counting number, ie. 1, 2,
3, ... and including zero and negative integers. MATLAB has
different representations for integer numbers, depending on how
large a number you need to represent (and how much memory it
will need to allocated to storing it). This is something of a throw-
back to the days when computers only had 1/10000000"" of the
memory of your iPhone and were slower than a lemon.

* Real (floating point)® — A real number can have a non-integer
component, e.g. 1.5 or 6.022140857 X 10%3. Real numbers also

come in different precisions in MATLAB (also to do with memory
allocation and speed), determining not just the number of decimal

places that can be represented, but also the maximum size.

* String (character) — One or more characters, but now allowing
spaces (unlike in the case of naming variables).

* Logical — true or false.

* etc — No, not a real type, but to note that MATLAB defines
and recognises a whole bunch of other types, including Complex

5In the bad old days, this pointer was
the actual address in memory and
might have looked something like
f04dal05.

© Note that MATLAB distinguishes
between lower and UPPER case letters
in a variable (i.e. BIG and big would
represent two different and distinct
variables).

7 Technically, MATLAB reports:
Undefined function or variable
which tells you it is neither a func-
tion name (more on this later), nor is
defined as having any information
associated with it.

8 The distinction (sort of) is that floating
point is a specific representation of a
real number.

elements of ... matlab and data visualization 17

(MATLAB can handle complex numbers) and Object (we will also
not worry about objects, which can incorporate a combination of
types. At least, not yet ...).

The first thing to learn is to ideally, do not attempt to mix up
(combine) variables of different types. MATLAB is very forgiving
when it comes to combining an integer and a real number in the same
calculation, but in other programming languages, this should be
avoided. However, even in MATLAB, strings and reals (or integers) are
very different things. When necessary, different variable types can be
converted between (see Variable Type Conversion Box).

The second and perhaps rather more important thing, is how to
assign a value to a variable (and in fact, create the variable in the first
place). Programming languages such as FORTRAN require you to
define the variable beforehand and assign it a type. MATLAB allows
you to define and assign a value to a variable all at the same time,
and it will kindly work out the correct type based on the value you
assign to it. You assign a value using the assignment operator =9. For
example:

A =10

will assign the value 10 to the variable A. If you type this at the com-
mand line, MATLAB will kindly repeat what you have just told it
and report the value of A back to you:

A =
10

Note that you do not need to add a space before and/or after the as-
signment operator (=). This is something of a personal programming
and aesthetics preference, i.e. whether to pad things out with spaces
or not. (Chose what you feel happiest with and later on, whatever
leads to the fewest programming mistakes ...)

MATLAB will also report in the Workspace window, the name
and value, type (called Class), etc of all your current variables (just
one currently?). Actually, it is not all quite so simple. If you take
a look at the Class of the variable A in the display window — it is
listed as double (a real number) rather than an integer. So by default,
if MATLAB does not know what you really want, it defines A as a
double precision real number™®.

The next complication comes when assigning a string (a sequence
of characters) to a variable. For example, try:

B = apple

and MATLAB is far from happy. As it turns out, a sequence of char-
acters can also refer to a function' in MATLAB, and this is what

Variable Type Conversion

MATLAB provides a variety of
functions (see later) for converting
between different types of variables.
The most commonly-used /useful
ones are as follows:

1. converting from a number to a
string (s)

e s = num2str(N), where N is
any number type variable

e s = int2str(I), where I is
an integer

2. converting from a string (s) to a
number

e x = str2num(s), where N is
(generally) a double precision
(real) number

Case #1 (num2str) is generally the
most useful, e.g. in adding specific
captions to plots (with caption text
based on the value of a numerical
variable) — examples are given later.

9 This is NOT ’equals’ in MATLAB. We
will see the equality operator shortly. =
assigns the value or variable on its right
the variable on the left.

*If you genuinely wanted an integer,
there are ways to do this, such as using
a type conversion function form real to
integer (see above).

" You will see functions shortly. For now
— note that they are "special’ (reserved)
words that perform some action and
hence cannot also be used for a variable
name.

18 str="do you like bananas?’ [exam version]

MATLAB looks for (i.e. a match to apple in the list or variable (and
function) names). To delineate apple as a string, you need to encase it
in (single™) quotation marks:

B = 'apple’

Just as MATLAB creates new variables on the fly, you can re-
assigned values to an existing variable, even if this means changing
the type, e.g.

A = 'banana’

has now replaced the real number 10 with the character string ba-
nana in variable A. This is reflected in the updated variable list details
given in the Workspace window (and a Class now listed as char).

Finally, it is possible to suppress output to the Command Window
when making assignments — simply an a semi-colon (;) to the end of
the assignment statement, i.e.

C = ’'banana’;

now does not results in anything being echoed to the command line
(but the Workspace is still updated to reflect this variable assignment).
If you wish to see the contents of the variable, you can either just
type its name at the command line, or view its value as listed in the
Workspace window.

1.2.2 Numerical expressions

You can do normal maths in MATLAB. Or at least, something that
looks at least a little intuitive. (In fact, I often use MATLAB as a cal-
culator.) The primary/common numerical expressions are:

N _ raises one number of variable to the

® exponentiation —
power of a second, e.g. a¥, a to the power b, which is written in
MATLAB as a’b.

e multiplication — X — e.g. axb, written in MATLAB as axb.
e division — / — (written as you would expect).’3

® addition — + — (guess).

* subtraction — - — again, obvious/intuitive.

The order in which the numerical operators are written down is
important and MATLAB will execute them in a specific order (op-
erators higher up the list, executed first), i.e. first ~, then *,/, and
last +, -. There is also ‘negation’, when you change the sign of a vari-
able, and which is executed immediately after exponentiation. The
assignment operator (=)' comes last. If you are unclear about the
order numerical operators are carried out, then place parentheses
() around the component of the calculation you wish to be carried

2 Double "" quotation marks will not
work.

3 Entertainingly, it turns out that if you
write the reverse, backslash character
(\) in the equation, you divide the

over way (i.e. denominator divided by
numerator).

4 This is NOT “equals to’, as you'll see
shortly.

elements of

out first to enforce a particular order (this can also help in making
an equation easier to read and ultimately, easier to debug code). For
example, consider:

= 3;
= 6;

= 2;
Cx(A/B+1)
= CxA/(B+1)
= CxA/B+1
= AxC/B+1

O Mmoo N W >
1]

Try these out (and make up your own combinations) and confirm
that the answers are what you would expecty them to be.

1.2.3 Relational and logical operators

We will see more of relational and logical operators later when we start
to get into some proper coding. For now, you only need to know that
a relational operator is one of:

* greater than — MATLAB symbol >

* less than — MATLAB symbol <

® greater than or equal to — MATLAB symbol >=
® less than or equal to — MATLAB symbol <=

* equality — MATLAB symbol ==

* inequality — MATLAB symbol ~=

and test the relationship between 2 variables. Note in particular,
that the equality symbol (that tests the equivalence between two
variables) is represented by TWO = characters (==), and remember
that a single = character is the assignment operator.

In everyday language, the answer to any one of these relational
tests would be a "yes” or a 'no’. But in MATLAB (and other computer
languages), the answer is given as the binary (logical) equivalent
where "yes’ is represented by 1 and 'no’ by 0. You can also use true
(1) and false (0), e.g. A = true returns:

A=

1

Finally, the logical operators (again, more on this later) are:

* or —symbol ||
¢ and — symbol &&
¢ not — symbol ~

For now — be familiar with how numerical expressions are written
in MATLAB (you'll need to be using these from the outset), and keep
in mind the existence of relational and logical operators.

... matlab and data visualization

19

20 str="do you like bananas?’ [exam version]

1.2.4 Functions (built-in)

MATLAB provides numerous built-in functions®. These functions
have specific names assigned to them, so care needs to be take not to
give a variable the same name as a function to avoid getting confused
further down the road. Giving an exhaustive list (and brief descrip-
tion) is outside the scope of this document*®. Common functions
will be progressively introduced as this text progress. Note that in
addition to the on-line Help documentation, information on how to
use a function and example uses is provided by typing help and
then the function name (separated by a space) at the command line.

MATLAB also provides several built-in mathematical constants
(saving having to define a variable with the appropriate number).
This are simply variables that have been already defined and as-
signed values, but which you cannot change (hence the term "con-
stant’). For instance, the value of 7, is assigned to a built-in variable
with the name pi. You can access (display) its value by typing its
name at the command line:

» pi
ans =
3.1416

In this example, the use of the function is rather trivial — you need
to tell the pi absolutely nothing, and it spits back the same thing
(the value of 77) each and every time. In most other functions, you
will find that you have to pass some information, and the return
value will depend on the input. (This will all become apparent in due
course ...)

1.2.5 Miscellaneous commands

Related to what you have seen so far and will see soon, useful miscel-
laneous commands include:

® clear — Removes all variables from the workspace.

e clear all — (Removes all information from the workspace.)
® close — Closes the current figure window.

e clear all — (Closes all figure windows.)

¢ exit — Exits MATLAB and hence enables additional drinking
time in the bar.

Note that a useful trick — if you want to re-use a previously used
command but don’t want to type it in all over again, or want to issue
a command very similar to a previously-used one — is to hit the UP
arrow key until the command you want appears. This can also be
edited (navigate with LEFT and RIGHT arrow keys, and use Delete

> We will be constructing our own

later, at which point it should become
apparent that there is nothing particular
special about them.

6 A full list of functions can be found
in the MATLAB Help Documentation
under functions.

elements of ... matlab and data visualization 21

and Backspace to get rid of characters) if needs be. Hit Enter to make
it all happen.

22 str="do you like bananas?’ [exam version]

1.3 Vectors and arrays #1

So far, your variables have all be what are known as scalars —i.e.
single numbers (or strings). One of the most powerful things about
MATLAB is its ability to represent vectors (1D columns or rows of
numbers or strings) and arrays — 2D and higher dimensional regular
grids of numbers or strings. (matrix'7 is the name commonly given to
a 2-D array.)

1.3.1 Creating vectors

Vectors are 1-D arrangements of numbers (or strings). You can enter
them into MATLAB as a list of space-separated value, encased in
(square) brackets, [1, e.g.

B=1[0.51.01.52.0 2.5]

or with the value comma-separated:
B=1[0.5 1.0, 1.5, 2.0, 2.5]

Either way, you end up with a vector on its side as a single row of
numbers which in math-speak would look like:

B= (0.5 10 15 20 2.5)

You can also create the equivalent, upright orientated vector (as
a single column of numbers) by separating the elements by a semi-
colon:

C =1[0.5; 1.0; 1.5; 2.0; 2.5]
which gives the maths-speak representation:

0.5
1.0
C=1]15
2.0
25

1.3.2 Basic vector manipulation

There are several basic and very useful ways of manipulating vectors
(and as we'll see later — matrices). To start with, you might want to
determine the orientation and length of a vector. There are several
different ways to go about this, which in order of grown-up-ness are:

1. Display the contents of the vector in the command window by

typing its name at the command line. Obviously, this will quickly

become useless for very large vectors'®.

7 Not to be confused with the film
starting Keanu Reeves.

The colon operator can be used to
much more rapidy create vectors (as
long as the elements form a simple
sequence in value) as compared to
typing in the list of values explicitly.
There are two variants to the syntax:

A=j:k
and
A= j:i:k

In the first example, j and k and
the minimum and maximum values
in the sequence of numbers in the
vector. MALAB completes the se-
quence by assuming that the values
monotonically increase and that the
elements are separated by one (1.0)
in value. e.g.

» A =0:3
A =
0123

Note that MATLAB is not inclined

to let you directly create a vector

of elements that decrease in value
(you'll need to flip this puppy about
to re-order it if that is what you want
— see later).

In the second example, i is the
increment MATLAB will use to
complete the sequence from j to k.
In the example in the text, you could
have created the array B by typing:

» B =0.5:0.5:2.5
B =

0.5000 1.0000 1.5000
2.0000 2.5000

(More commonly, you might
place the colon operator and its
min/(/increment)/max values
inside a pair of brackets, i.e. A =
[0:3]. so that it is unambiguous
that you are creating an array

® Try creating a vector from 1 to 100,000
and then displaying it ...

elements of ... matlab and data visualization 23

2. Refer to the Workspace window, although this also ends up a
total Fail for long vectors.
3. Use the length or size function (see Box).

If you find that you want a different orientation (row vs. column)
of the a vector, the vector can be flipped around (converting row-to-
column and column-to-row) using the transpose operator ('), e.g.:

D =B’

will turn the vector B into one (assigned to the variable D) with he
same orientation as C.

You can also re-order the values in a vector (hence addressing
the restriction in using the colon operator to create a vector that the
values must be monotonically increasing rather than decreasing).
Depending on the orientation of the vector, you can use either the
flipud (for column vectors), or fliplr (for row vectors), functions to
re-order the elements.

1.3.3 Addressing elements in vectors

Values can be extracted from a vector by specifying the index (tech-
nically, this should be an integer, but MATLAB is pretty forgiving
and you can get away with using a real number when specifying
an index) of the element required (counting along, left-to-right, or
top-to-bottom, depending on the vector orientation), e.g.

» B(5)

ans =
2.5000

or:

» C(3)
ans =
1.5000

(In this text, I will refer to accessing a particular element (or ele-
ments) of a vector (or array) via its index as addressing. Unless I
forget, then I might say something else. You'll have to keep on your
toes — don’t expect consistency here!)

There is a MATLAB function end (see Box) that enables you to
easily address (accessing via its index) the very last value in a vector
(in MATLAB, the index of the first position is always 1).

For addressing more than one element of a vector at a time, you
can use the colon operator (see Box).

As well as reading out an existing value of a vector, you can also
replace an existing value by assigning the new value to the appro-
priate index position. e.g. to replace the first element with a value of
0.0:

length
You can determine the length of a
vector A with ...

length(A)

returning its integer length, and
which could in turn be assigned to a
variable, e.g. B = length(A). (Tech-
nically, length returns the largest
dimension of an array.)

size (use #1)

Returns both dimensions, even
though for a vector, one of them
always has a value of 1. This does
allow you to determine its orienta-
tion though, as for the example of A
= [1:10]:

» size(A)
ans =
110

(1 row and 10 columns). For A = A’:
» size(A)

ans =
101

(10 rows and 1 column).

flipud, fliplr
These two functions allow you to
re-order a vector. Their use is simple:

» B = flipud(A)

will invert the order of elements of a
column vector, and:

» B = fliplr(A)

will invert the order of elements of a
raw vector. Simples! Lesson over.

The transpose operator, in MAT-
LAB-speak, "returns the nonconjugate
transpose of A". Who knows what
that means. In slightly more ev-
eryday (i.e. down here on Earth)
language, it: "interchanges the row
and column index for each element".
Or sort of, just interchanges the rows
and columns. The operation can be
written:

» B =A."
or
» B = transpose(A)

In practice, you can get away with

being lazy (and in fact this is how it

was in the old days, and just write):
» B = A’

(but get into the habit of using the

formally correct, Mathworks official

and UN-approved, syntax of .’).

24 str="do you like bananas?’ [exam version]

B(1) = 0.0

(Here, you are saying that you would like to assign the value of 0.5
to the element in the vector given by the index 1. The previous con-
tent of the array at index position 1 is simply over-written.)

You can access more than a single
element of a vector at a time, by
means of the colon operator, : to
define a min, max range of indices.
For example:

» B(2:4)
ans =
1.0000
1.5000
2.0000

To select all elements:

» B(:)
ans =

0.5000
1.0000
1.5000
2.0000
2.5000

end

Represents the largest index in
a vector when addressing it, or in
MATLAB-speak: "end can ... serve
as the last index in an indexing
expression".

elements of ... matlab and data visualization

1.4 Basic graphing (aka. 'data visualization’)

So far ... I suspect this is heavy-going and there is a lot to try and
remember, such as command names, although knowing just that cer-
tain commands exist, is enough to start with and MATLAB Help can
be used later tot find out the exact name (and usage syntax). All this,
and we have not even gotten on to matrices (2-D arrays) yet ... So,
we’ll take a diversion to look at some basic plotting techniques that
will make sense now that you can create vectors of numbers to plot
(and later, important some ‘real” data). Unless you have forgotten
how to create vectors already ... :(

1.4.1 Plotting

The command figure creates a figure window, which is where MAT-
LAB displays its graphical output ... but on its own, without any-
thing in it ... useless. So, lets put something in it, with the simplest
possible graphical way of displaying data called plot. But first — cre-
ate yourself a dummy dataset to plot. You are going to need to create
yourself a pair of vectors — these can have any values (all numbers
though) in them that you like, but perhaps aim for 1 vector with val-
ues counting up from 1 to 10 — this will form your x-axis, and the 2nd
column ... whatever you like. 9

As always, refer to the MATLAB help text on plot before using it
(also refer to Box). The key information that will get you started is at
the very top:

PLOT(X,Y) plots vector Y versus vector X.

So, you need to pass it your x-axis data vector (by its variable name),
followed by your y-axis data vector (by its variable name) - comma
separated. Do this, and depending on just what or how random your
y-axis data was, you should end up with something like Figure 1.1 in
a window captioned "Figure 1".2°

This ... is easily the least professional plot ever. And one that
breaks all the most basic rules of scientific presentation, such as an
absence of any labelling axes. There is also no title, although here in
the course text I have added a figure caption in the document so I
can sort of get away with it. But this is the default state of the basic
plot function and you'll just have to deal with it (i.e. add a series of
commands to add missing elements of the plot).

Note that by default, MATLAB also scales both axes to reason-
ably closely match the range of values. In the example here, the
default min and max axes limits in fact turn out to be the min and
max values in the x and y-axis data because the data is composed of

25

* Looking ahead — you could create a
y-axis vector formed of the squares of
the numbers in the x-axis vector:

» Y = X2

(The . bit says to square the value of
each and every element in the vector.)

plot

The MATLAB function plot ...
plots. More specifically, it plots pairs
of (x,y) data and by default, does not
plot the points explicitly but joins
the(x,y) locations up by straight line
segments. MATLAB calls these a
’2D line plot’, although there are
plotting options that allow you only
to display the individual (x,y) points
(making it like the scatter function,
which we'll see later).

Its most basic usage is:

plot(X,Y)

where X and Y are vectors — of the
same length (important), but not
necessarily of the same orientation
(i.e. if one was a row vector and

one a column vector, MATLAB
would work it out, although it is per-
haps best to avoid such a situation
arising).

There are many options that go
with this function, some of which
we'll see and use later. You can also
input matrixes as X and Y apparently.
But I have absolutely no clue as to
what might happen. I suspect that
the plot will end up looking like a
bad acid trip.

> If you cannot see the figure window
... check that the window is not hidden
behind the main MATLAB program
window!

Figure 1.1: Default output of plot.

26 str="do you like bananas?’ [exam version]

relatively simply/whole numbers. If however the maximum y value
was vary slightly larger, you'd see that MATLAB would adjust the
maximum y-axis limit to the next convenient value so as to preserve
a relatively simple series of labelled tick marks in the axis scale. In
fact, why not try that — replace your maximum data value, with a
value that is very slightly larger (an example is given in Figure 1.2).
21 Then re-plot and note how it has changed (if at all — it will depend
somewhat on what data you invented in the first place).

1.4.2 Graph labelling

You have two options for editing the figure and e.g. adding axis
labels. Firstly, you can use the GUI and the series of menu items

and icons at the top of the Figure window to manipulate the figure.

I suspect you'll prefer this ... but it is not very flexible, or rather, it
requires your input each and every time you want to make changes
or additions to a figure. The second possibility is to issue a series of
commands at the command line. (The advantage with the latter we’'ll
see later when we introduce m-files.) For now, I'll illustrate a few
basic commands:

1. The first, obvious thing to do is to add axis labels. The com-
mands are simple — xlabel and ylabel. They each take a string as
an input, which is the text you would like to appear on the axis. If
you change your mind, simply re-issue the command with the text
you would like instead.

2. The command for title, perhaps unsurprisingly, is title. Again,
pass the test you would like to appear as a string (in inverted
commas "), or pass a the name of variable that contains a string
(no '’ then needed).

3. You might want to specify the axis limits. The command is
axis and it takes a vector of 4 values as its input — in order: min-
imum x, maximum x, minimum y, and maximum y value. e.g.
axis([0 10 -100 100]) would specify an x-axis running from o to
10, and a y-axis from -100 to 100.

Information as to how to use all of these commands can be found
via MATLAB help. But a typical sequence, that gives rise to the im-
proved plot shown in Figure 1.3, is given in the margin.

1.4.3 Sub-plots

You can also have more than one plot in a single Figure window. As
an example, create some sine waves using the sin function (see help)
over the range o0 < x < 27, e.g.:

> If you have created a dummy dataset
in which the value in the last row is
the largest, replacing it is simple —
remember the use of end in addressing
an element in an array. If your dataset
does not monotonically increase and
the largest value falls somewhere in the
middle ... you could cheat” and open
the array in the variable editor and
discover which row it occurs on.

120

100

Figure 1.2: A plot illustrating axis
auto-scaling (maximum x and y values
now slightly larger than 10 and 100,
respectively).

A plot of some values vs. their squares

Whatever values squared

1 2 3 a 5 6 7 8 9 10
Whatever values

Figure 1.3: A (only very slightly)
improved plot.

Example of adding axis labels and a
plot title ...

» xlabel ...
("Whatever values’);
» ylabel ...
('Whatever values
squared’);
» title ...
('A plot of some ...
values vs. their ...
squares’);

elements of ... matlab and data visualization 27

» X = 0:0.1:2*pi;
» y = sin(x);
» y2 = sin(2x*x);

(Note how in the first line, the colon operator is used to create an

x vector from o to 27, in steps of 0.1. The second and third lines

calculate the sine of all the x values, and sine of 2 times the x values,

respectively, and assign the results to a pair of new vectors, y and y2.)
To place several different plots on the same figure uses the subplot

command ?2. The subplot command is used as: subplot(m,n,p)
where m is the number of rows of plots you want to have in your
figure, n is the number of columns of plots in your figure, and p is
the index of the plot you wish to create (see: Figure 1.4).

The basic code then goes something like:

» figure(l);

» subplot(2,2,1);
» plot(x,y);

» subplot(2,2,2);
» plot(x,y2);

» subplot(2,2,3);
» plot(x,-y);

» subplot(2,2,4);
» plot(x,-y2);

In this case, the 3rd and 4th subplots simply display the inverse of
the curves in the subplots above.

1.4.4 Saving graphics and figures

You might just want to save the figure. (Why create it in the first
place in fact if you are just going to throw it away ... ?) Again, you
can do this via the GUI or at the command line 23. From the GUI,
you have the option to save the figure in a way that can be loaded
later and re-edited - this is the . fig format option. Or you can save
(export) in a variety of common graphics formats (although once
saved in this format, the graphics can only be edited later using a
graphics package).

You can also close figure windows (see Box). No seriously. They
are not forever. ;)

> » help subplot

MNumber of columns, n=2

2

Mumber of rows, m

Figure 1.4: Arrangement of subplots.

» To export a graphic at the command

line, use the print function. To cut a

long story short (see: help print), to

print to a postscript file:
print(’-dpsc2’, FILENAME)

where FILENAME is the filename as a

string or a variable containing a string.

To close the current (active) Figure
window, the command is:

» close
To close all currently open Figure
windows:

» close all

28 str="do you like bananas?’ [exam version]

1.5 Vectors and arrays #2

A matrix is another special case of an array — this time 2-D (rather
than 1-D in the case of a vector). MATLAB totally hearts them.

1.5.1 Creating matrices and arrays

You can enter matrices (2-D arrays) into MATLAB in several different
ways:

1. Enter an explicit list of elements. To enter the elements of a
matrix, there are only a few basic conventions:

* Separate the elements of a row with blanks or commas.
¢ Use a semicolon, ; , to indicate the end of each row.
¢ Surround the entire list of elements with brackets, [1.

2. Load matrices from external data files.
3. Generate matrices using built-in functions.

As AN EXAMPLE, type in the following at the command prompt:

A=1[157116; 1316 10; 21 17 5 3; 5 15 20 9]

MATLAB then displays the matrix you just entered?: % Remember that you can add an ; to
the end would prevent the assignment
A= being displayed.
157116
1316 10
2117 5 3
515 20 9

Once you have entered the matrix, it is automatically remembered in
the MATLAB workspace. You can refer to it simply as A.

Now go find the array you have just created in the Workspace win-
dow. Double-click on its name icon and see what goodies appear on
the screen. This is a fancy array editor which looks a bit like one of
those dreadful spreadsheet things. You can see that this might be
handy to edit, view, and keep track of at least moderate quantities
of data. This is a useful facility to have. However, we are going to
concentrate on the command-line operation of MATLAB in the Lab
because that will give you far more power and flexibility in applying
numerical techniques to problem solving, and will form the basis
of scripting (computer programming by another name) that we will
see in a few lectures time. Close down this nice toy to leave just the
original windows.

Elements in the matrix can be addressed using the syntax:

A(i,j)

elements of ... matlab and data visualization 29

where i is the row number, and j is the column number. It is very

very easy to keep forgetting in which order the rows and columns are

indexed., but I'll tell you here and now before I forget:
rows, columns

(You can always create a test matrix and access a specific element to
check if in doubt!) In the example above:

» A(1,3)
ans =
11

(i.e. the value of the element in the 1st row, 3rd column, is 11).

In general, the same functions and operators that applied to vec-
tors and you saw earlier, also apply to matrixes (or specific dimen-
sions of matrices). (See Boxes.)

Finally — a fundamental way of accessing data that you need to
learn and be familiar with, is to employ the color operator to select
specific columns (or rows) of data. You'll find that this skill ends up
inherent to many of your attempts to process and graph data. For
instance, if your (x,y) data to plot ended up in MATLAB workspace
in matrix form (it very commonly does) rather than as 2 sperate vec-
tors (as you had when you first plotted anything), you will need to
select separately the x (e.g. 1st column) data, and the y (2nd column)
data, and pass these to the plot function. For the example of matrix
A above, all the first column data can be selected by typing A(:,1)?3,
which says all the rows (:) in the first column. Similarly, all the 2nd
column data alone can be selected by A(:,2). (You'll practice this
endlessly later on and hopefully get it!)

1.5.2 Basic matrix manipulation

You can treat vectors and matrices (or parts of vectors and matrices),
mathematically, as you would treat single values (i.e. scalars) but
unlike a scalar, the transformation is applied to all specified elements
of the array. This applies for all the basic numerical operators®. For
example, for vector B in the earlier example,

» 2%B
ans =
02345

and

» B-1.5
ans =
-1.5000 -0.5000 0 0.5000 1.0000

Similarly as for vectors, you can
access more than a single element
of a matrix by means of the colon
operator, :. For example:
A(:,1) — selects the 1st column
A(3,:) - selects the 3rd row
A(2:3,2:3) - selects the 2x2 ma-
trix of values lying in the centre of A,
while A(1:2, :) selects the top half
(first 2 rows) of the matrix.

» Remembering the HUGE hint above
in 100 pt font as to the order of rows
and columns ...

You can also determine the shape of
your array using the size function.
For a 2D array (matrix), when you
pass it the name of your array, it
returns the number of rows followed
by the number of columns (in that
order).

26 Technically ... or at least to be consis-
tent with other operations, you might
write multiplication as . * rather than
just plain old *. The preceding dot tells
MATLAB not to treat this as matrix
multiplication but to carry out the
operation on each element in turn. In
this case, it is the same thing (and both
notations work the same), but later, is
not. (This will make more sense when
you get to see it in action, later.)

30 str="do you like bananas?’ [exam version]

QuEsTtIioN: Multiply all the elements of A by the number 17. As-
sign the answer to a 3rd array (C). What is the value of the element
C(2,3)? How would you ask for the 4th row, 2nd column element of
the array C, and what is its value?

QuEsTioN: What is the sum of the 4th column of C ? (Sure — you
also do it by using a calculator, but you will not always have such a
small data-set as here. Perhaps you'll get a much larger data-set in
the assessed exercise ;) So, practice doing it properly.)

QuEsTioN: What is the sum of the 2nd row of C? sum gives returns
the sums of each column, and so on its own;

» C

C =

255 119 187 102
221 17 102 170
357 289 85 51
85 255 340 153
» sum(C)

ans =

918 680 714 476

gives you a row vector consisting of the sums of the individual
columns of the matrix C above.

This is where the transpose function (') comes in handy (see
earlier). In this case, it flips a (2D) matrix around its leading diagonal
(columns become rows, and rows, columns)?7 .

» C’

ans =

255 221 357 85

119 17 289 255

187 102 85 340
102 170 51 153

(transposing the matrix turns the rows into columns)

» sum(C")
ans =
663 510 782 833

Now you get a row vector consisting of the sums of the individual
columns of the matrix C, but since you have transposed the matrix C
first, these four values are actually equal to the row sums.

Finally, you could transpose the answer:

» sum(C')’
ans = 663
510
782

833

The function sum ... sums things. The
MATLAB Help documentation (help
sum) says:

‘If A is a vector, sum(A)
returns the sum of the
elements.’

'If A is a matrix, sum(A)
treats the columns of A as
vectors, returning a row vector
of the sums of each column.’

%7 This is almost true. Technically the
function you want is . ', as ’ will
change the sign of any imaginary
components. For real numbers, they are
the same.

In addition to transpose, other
useful array manipulation functions
include:

flipup — flips the matrix in the
up/down direction

fliplr — flips the matrix in the
left/right direction

rotate — rotates the matrix

(As always, refer to the help on
specific functions.)

elements of ... matlab and data visualization 31

3 Note how you can combine multiple
functions in the same statement to
sums of the original matrix C. 28 create sum(C’)’. However, to start
with, it is much safer to do each step

) separately and hence be sure what you
1.5.3 Some matrix math :(are doing,

now with a row vector gives you a format that looks like the row

We will not concern ourselves with multiplying vectors and matrices
together ... just yet ...

32 str="do you like bananas?’ [exam version]

1.6 Loading and saving data

There are a number of different ways to load/import data into the
MATLAB Workspace. Rather than try and tediously list and describe
the commands and syntax and blah blah, we’ll be going through a
couple of (hopefully) slightly-less tedious data-based examples as
we progress through the course text. In this way, if nothing else, you
might accidently learn some "science’ even if nothing much about
MATLAB ...

1.6.1 Where am I?

Before anything — you need to know where you are. If your file to
load is not in the directory MATLAB us using, it will not find it. And
if you save something and have no idea where it is being saved ...
that can hardly go well.

By default, MATLAB looks to a file directory located within its
installation directory ($MATLAB/data). So, where the load command
requires a filename to be passed, you will need to enter either the
full location of the file; i.e., starting with the drive letter (e.g. as per
displayed in the Windows Filemanger address bar, or the relative
path to where the file is located (e.g. if there is a subdirectory called
data, you will pass data/sediment_core_d180.txt?9). Alternatively,
you can change the MATLAB directory that you are working in. (This
works similar to UNIX/LINUX for those of you who are familiar
with navigating your way around these operating systems.) You can
make the download directory the default directory for working from

by typing:
» cd DIRECTORY_PATH

where DIRECTORY_PATH is the path to the directory in which the data
file has been saved3°, remembering that DIRECTORY_PATH is a string
(i.e. enclosed in ”). Or ... you can add a "search path’ (addpath) so
that MATLAB knows where to look. (Note that both these alternative
possibilities can be implemented from the GUI.)

There is also, of course, the GUI — from the File menu the option
Import Data... will run the data import Wizard — note that you
might have to select ALL Files (*.x) from the file type option box in
order to find the file. I'll leave you to work the rest out for yourselves
... Maybe try importing the data into MATLAB this way once you
have done it successfully using the load function at the command
line.

» Remember that this is a string type.

3 You can view the files that are present
in the directory that you are working in
by typing (more LINUX-speak): 1s.

load
Loads variable from a file into the
workspace. The syntax is:

» load(filename)

where filename is the name of the
file (remember: as a string, it needs
to be enclosed in quotation marks).
The file might be plain text (ASCII)
or a MATLAB workspace file (see
below), in which case it should have
the file extension .mat. To force
MATLAB to treat the file input as
ASCII or a MATLAB workspace file,
pass a second parameter (separated
from the filename by a comma) —
'-ascii’ for ascii, and ’-mat’ for a
MATLAB workspace file.

Note that in loading an ASCII
data file, any line starting with a %
is ignored. Also note that the data
must be in a column format with no
missing data.

For an ASCII file, the name of the
variable created to hold the data
being imported is automatically gen-
erated. So in the example of the data
file being called ’'twilight.txt’,
the variable generated will be called
twilight. You cna instead chose
to assign the imported data to a
variable name of your choice, by e.g.:

» sparkle =
load('twilight.txt’);

elements of ... matlab and data visualization 33

1.6.2 Loading and importing data

The simplest way (other than via the MATLAB GUI and the beautiful
green Import Data icon) is to use the load function (see Box)3".

As a brief exercise and practice using load — first download the
data file etheridge_etal_1996.txt from the course webpage of
www.seao2.org. You might start by viewing the contents of the file by
opening it in any text viewer. This is always a good place to start as it
enables you to see what you are getting yourself in to (i.e. format of
the file, any potential formatting issues, approximate size and com-
plexity of the dataset, etc). Then import the data into the MATLAB
workspace using the load command. Try simply typing the name of
the variable that was automatically created (or the one you chose, if
you assigned the imported data to a specific variable name — see Box)
to provide a crude view of the data. Then double click on the name
of the variable in the MATLAB Workspace window. This should
open up a spreadsheet-like window in which the data can be viewed,
sorted, and even edited. Finally, plot the data and remember to label
it appropriately32. You should end up with something like Figure 1.5.

1.6.3 Saving and exporting data

Arrays of numbers can be saved in a plain text (ASCII format) by
means of the save function in a simple reverse of the use of load (see
Box).

1.6.4 Loading and saving the workspace

The entire workspace (including all variables and their values, or
just the values in a single variable if you wish) can be saved to a file
and then later re-opened. The file format is specific to the MATLAB
program and the file-name extension by default is .mat. You might
find this very helpful to use in long lab exercise or large modelling
projects, particularly if you do not come back to work at the exact
same computer each time or wish to use continue the same piece of
work on a laptop elsewhere.

3t There is also a much more flexible
way of loading text-based data using
the function textscan, but that also
requires files to be explicitly opened
and closed using fprintf. We'll see a
little of this later.)

32 FYI: the x-axis data is year, and the
y-axis data is the mixing ratio of COz2 in
air in units of ppm.

save

Saves variables from the workspace
to a file. There are two main forms
(syntaxes) of the command:

» save(filename)

which saves the entire workspace to
a .mat file (with the filename given
by the string filename (in quotation
marks), and:

» L.

save(filename,A, ' -ascii’)

saves the data in the variable A
(which must be given as a string, i.e.
also enclosed in quotation marks) in
plain text (ASCII) format.

3

.

P

280
1820 1840 1860 1880 1900 1920 1940 1960 1980
Year

€O, mixing ratio

290 /

-

Figure 1.5: Spline fit to measured
changes in COz2 concentration in Law
Done ice core, following Etheridge et al.
[1996].

34 str="do you like bananas?’ [exam version]

1.7 Basic data processing

As an example to kick-off some data-processing tricks, load in the
Phanerozoic CO; dataset: paleo_C02_data.txt. You can just im-
port it into MATLAB using the load function. However, there is a
complication here — unlike the ice core CO2 dataset, you now have 4
columns in the array33. The first column is age (Ma), the second the
mean CO; value, and the 3d and 4th are the low and high, respec-
tively, uncertainty limits. Remembering (I hope!) how to reference
specific columns of data in a matrix34 — plot the mean paleo CO,
value as a function of age (in Ma). If you closed the previous Figure
window (see earlier), it is not essential to explicitly open one (using
the Figure command) — when you use the plot command, if there
is no open Figure window, MATLAB will kindly open one for you.
How thoughtful. The result should be something like 1.6. O dear ...
So ... that was not so successful. What is happening in the default
behaviour of plot, is that the location defined by each subsequent
row of data is being joined to the previous one with a line. This was
fine for the ice-core CO2 example dataset because time progressed
monotonically in the first column, e.g. the data was ordered as a

function of time. If you view the paleo CO, data, this is not the case.

(In fact, in the original, full version of the data, ordering is by proxy
type first, and then study citation, and only then age ...).
Your options are then:

1. You could import the data into Excel, then re-order (sort) it,
then export it, then re-load it ...

2. You could sort it in MATLAB using the GUI variable view
window. But lets not cheat for now.

3. You could sort it in MATLAB at the command line. How? Well,

a reasonable gamble, which actually turns out to be a total win, is
to try:

» help sort

Actually ... not quite. Reading the help text carefully (and you can

always try it out and see what exactly it does if you are not sure),
sort will sort all columns independently of each other, whereas

we want the first column sorted and the remaining columns linked
to this order. Under see also, MATLAB lists sortrows as a possi-

bilty. The help text on this looks a little more promising. It is still
slightly opaque, so the best thing to do is to try it (and view the
results)! This looks rather better. The resulting of plot-ting this is
1.7. (This is a good illustration of a guess of a function that was

3 Remember that you can diagnose
its size with ... size (or refer to the
Workspace window)

34 HINT: the colon operator (see
earlier).

Proxy atmospheric CO2

Atmospheric co, (ppm)

o 50 100 150 200 250 300 350 400 450
Time (Ma)

Figure 1.6: proxy reconstructed past
variability in atmospheric CO2.

elements of ... matlab and data visualization 35

not quite what was needed, but following up on the help sug-
gestions leads to a more appropriate function.) At least now the
curve is reminiscent of past changes in global temperature and
the geological Wilson cycle, with high values in the Cretaceous
and Jurassic and then lower again in the Carboniferous (roughly
matching the progression of ice and hot house (and then back to
recent ice ages) climates).

As a second example and to get you familiar with some additional
very basic data processing, we are going to transform a sediment
core 6'80 time-series into an estimated history of glacial-interglacial
changes in sea-level. The scientific backstory is ...

Throughout the late Neogene3>, sea level has risen and fallen as
continental ice sheets have waned and waxed. The main cause of
sea-level change has been variation in the total volume of continental
ice and resulting change in the fraction of the Earth surface H,O
contained in the ocean. Today more than 97% of the Earth surface
H,O is in the ocean and less than 2% is stored as ice in continental
glaciers, with groundwater making up the bulk of the remainder. Of
the total continental ice (ice above sea level), 80% is contained in the
east Antarctic ice sheet, 10% in the west Antarctic ice sheet, and the
final 10% in the Greenland ice sheet. (If all present-day continental
ice were to melt, sea level would rise by 70 m.) During the last glacial
maximum (LGM), sea level was about 125 m lower than present,
equivalent to 3% more surface H,O stored as continental ice. Because
of its relationship to continental ice volume, an accurate late Neogene
sea-level curve has been a long-term goal of scientists interested in
ice-age cycles and their causes.

Glacial ice has a lower 80/1°0 isotopic ratio than mean seawa-
ter3. When ice volume is high, seawater has relatively high 180 /160
ratio. When ice volume is low, seawater has relatively low 80/1°0
ratio. If the average 180/10 ratio of glacial ice is constant with time,
then changes in the average 80/1°0 ratio of seawater will linearly
approximate changes in the total volume of ice and by inference, sea-
level. We (at least, I am) are interested in all this because knowing
how ice volume and sea-level changed over the glacial-interglacial cy-
cles has all sorts of important implications for understanding how cli-
mate change (e.g. via ice sheet albedo) and global carbon cycling and
atmospheric CO2 (e.g. via changes in the area of exposed continental
shelves and carbon stored in soils and above-ground vegetation).

To start with we need to reconstruct past changes in the oxygen
isotopic composition of the ocean. Handily, the 0/1°0 ratio of
foraminiferal calcite isolated from marine sediments is primarily a
function of the 180/10 ratio of the water together with the tempera-

Proxy atmospheric 002

6000

5000

4000

3000

2000

1000

Atmospheric co, (ppm)

0

-1000

o 50 100 150 200 250 300 350 400 450
Time (Ma)

Figure 1.7: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

35 23.03 millions years ago (end of the
Oligocene) to present is the Neogene
Period in Earth history.

3 Basically — as moisture derived from
the tropical ocean (and land) surface
moves to high latitudes, condensation
occurs and some of the moisture is lost
as rain. In condensating water vapor,
180 is preferentially incorporated into
the liquid phase, meaning that the
remaining water vapour has lower
180 /160, Eventually, the residual water
vapour might fall as snow on an ice
sheet. Hence why ice sheets at the LGM
will have a lower 0/1°0 than mean
seawater.

36 str="do you like bananas?’ [exam version]

ture of the water37. By measuring the 80/1°0 value of calcite down-
core we are sampling 80/1°0O with a progressively older age. In this
way we can reconstruct how ocean ¥0/1°0O has changed over time.
These measurements are reported in units of parts per thousand (%)
and written as 6'80.

How to turn (scale) changes in 5180 into sea-level change? Ev-
idence from dated coral reef terraces suggest that sea-level was
around 117 m lower at the peak of the last glacial (ca. 19 ka). We
could then assume that the change in 680 from modern (preindus-
trial) to LGM equates to 117 m sea-level change, and hence create a
continuous past sea-level curve from all the §'80 data by applying a
simple scaling factor3. So:

* You first need the foraminiferal calcite 5'80 data. (Unless you
want to go drill a long cylinder of mud from 3000 m down in the
Atlantic Ocean, pick out all the microscopic foraminifera of a sin-
gle species from samples of mud that you have carefully washed,
blah blah blah ...) So, from the course web page; download the file
sediment_core_d180.txt and save it locally.

¢ Load this file into MATLAB.

¢ If you have successfully loaded in the data-file, you should see
a named icon for the array appear in the Workspace window. Try
viewing the file in the two different ways:

1. At the Command line (»), type in the array name.

Because of the length of the data-file we imported, the contents
of the array should have whizzed past you on the screen in a
highly inconvenient fashion. You can use the scroll bar on the
right of the Command Window window to move up and view
the data that you can’t see (the younger age 580 numbers).
Note that as MATLAB imports data into an array from a file,

it names the array it creates following that of the filename, but
without the extension (the ’.txt" bit).

2. Double-click on the array’s icon in the Workspace window.
Marvel at the fancy spreadsheet-like things that appear. Note
that you can edit the data, add and delete rows and columns,
and all sorts of stuff in this window, just like you can in Excel.
Amuse yourself by scrolling down to the end of the data-set in
the Array Editor and adding a new piece of data on line 784;
age (column 1); 783 (ka); sea-level (column 2); 0.0 (m).

At the command line, list the contents of the array again to view
the change you have at the end of the data-set. Use the up arrow
to bring up the command you want rather than typing it in again.

37 We we will not concern ourselves
with temperature corrections here (in
any case, it turns out that the tempera-
ture effect has the same sign as and is
closely related to the ice volume effect)
but instead assume that foraminiferal
calcite 5180 only reflect changes in
(global) ice volume and sea-level.

3 Conceptually, this is no different
from saying that the difference between
the freezing and boiling point of pure
water (at 1 atm pressure) on the Celsius
scale — 100°C, maps onto the equivalent
interval on the Fahrenheit scale — 180°F
(212-32 °F), and hence providing a
means of converting a record of past
changes in Fahrenheit, inot degrees
Celsius (and vice versa).

elements of ... matlab and data visualization 37

Now delete this new row. Note that it is easy to get confused with
which row number you need to address — although the data starts
from year o, MATLAB always counts the index (the sequential
integer counting of the row or column number) of a location from
1 (one). (So age 10 ka is on line 11, and age 200 on line 201, etc.)

* So far everything has been in 5180 units and time as kyr. As a
warm-up — try converting the units of time to years by multiplying
the first column of the data array by 1000.0 and assigning it back
into itself (this is not as weird and nonsensical as it sounds).

To estimate past changes in sea-level we need to scale the 510
values to reflect the equivalent changes in sea-level rather than
changes in isotopic composition. We know that sea-level is o m
(relative to modern) at o years ago and -117 m at 19,000 years ago.
Try the following (you are going to have to *think*, but maybe also
use the HINT in the margin):

Scale the 5180 so that it represents changes in sealevel, relative
to modern (o m)3°.

¢ Plot it (changes in sea-level compared to modern, vs. time).
And nicely.

Reminder: for a nxm array data, the
first row is:

data(1,:).
The last row is:

data(end,:).
To find out the number of rows is:

» length(data).
The total size, in rows X columns, can
be found by:

» size(data)
(and also by referring to the Value
column in the Workspace window)

39 HINT - first determine the difference
in 6180 between time zero and 19 ka.
This gives you the range of §'80 that
maps onto a sea-level change of 117 m.
You also might transform the !0 data
such that it has a value of zero at o ka
(but retains the original amplitude of
variability.

38 str="do you like bananas?’ [exam version]

1.8 Yet more graphing

This section covers how to create slightly fancier plots in MATLAB
and combines this with some more data loading practice.

1.8.1 Modifying lines/symbols in plot

The first deviant activity you can engage in with plot, it to graph
the data without the line joining the points. Scrolling a little the way
down » help plot, it turns out that there are a number of options for
color, line style, and marker symbol that you list together as a single
parameter, straight after the parameters for x and y vectors. By de-
fault, MATLAB plots a solid line in blue with no marker points. Ob-
viously, we could forego the sorting and plot a sane graphic (hope-
fully) by plotting just points and having no line between them. Hell,
you could even be radical and use a different color ... Or, you could
specify a symbol and no line. The choice of colors is your oyster, as
they (almost don’t) say. e.g. Figure 1.8.

1.8.2 Plotting multiple data-sets

So far, so good. But so boring, although simple marker-only and
joined-by-line plots have their place. For a start, the original data-set
included an estimate of the uncertainty in the CO; reconstructions
in the form of the min and max plausible value for each ’central’
(best guess?) estimate. Excel can make plots incorporating errors,
including non-symmetric errors, relatively easily. What about in
MATLAB? Actually, I have absolutely no idea. (This would make
such a good exercise for the reader, as they (do) say.)

Personally, I might have been tempted to draw vertical bars along-
side the data (most likely). Or plotted in different symbols, the min
and max values as points. Or plotted min and max lines as a bound-
ing envelope. All of these require sone further little trick in MATLAB,
which involves the command hold. This is nice and simple and can
be on, or off.

» hold on — will enable you to add additional elements to a
graphic,

» hold off —returns to the default in which a new graphic re-
places the current on in a Figure window.

As AN EXAMPLE — set » hold on, and then plot the minimum and
maximum CO; values (columns #3 and #34) in different symbols and
different colors, on top of your existing plot. If you want to then label
what different lines or sets of points are, you can add a legend with
the legend command. For instance you have managed to successfully

The main (i.e. not an exhaustive list)
data display options for the plot
function are:

(1) point style
. — point, o — circle, x — x-mark,
+ —plus, * — star, s — square, d —
diamond, v - triangle (down).

(2) line style
- —solid, : — dotted, - — dashed, and
when specifying a point style, not
specifying a line style results in no
line.

(3) color
b —blue, g — green, r —red, y —
yellow, k — black, w — white.

Proxy atmospheric CO,

6000

5000

4000

3000 o

2000

Atmospheric co, (ppm)

1000

-1000
0 50 100 150 200 250 300 350 400 450

Time (Ma)

Figure 1.8: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

elements of ... matlab and data visualization 39

plot the mean CO, values as discrete black circles, and the minimum
and maximum uncertainty limits as blue and red lines, respectively, oy atmocphrc GO

2

you could call:

» legend('Mean C0_2',’'Lower uncertainty limit’, ’Upper uncertainty
limit’);

Atmospheric CO, (ppm)

and it should end up looking like Figure 1.9.

1.8. 3 Scatter plOtS T e w0 1 mom w w ww

, . . . Figure 1.9: Proxy reconstructed past
We'll stay with the Phanerozoic proxy (CO,) data, but put a different variability in atmospheric COz (sorted
(graphical) spin on it. data).

Consider ... scatter. In fact, don’t just considered it, help on it.
The simplest possible usage is, apparently:

SCATTER(X,Y) draws the markers in the default size and color.

(where X and Y are vectors). This almost could not be more straight-
forward. Make yourself an X and Y vector out of the loaded-in dataset
(or if you are feeling brave, you can pass in directly the appropriate
parts of the dataset array), close the existing Figure window4°, and 4 See earlier.
scatter-plot the (mean) CO, data. Proxy atmospheric CO,
Perhaps a little disappointingly, the default (Figure 1.10) (plus e
added labels) looks a little like one of the plots before. However,
scatter can plot color-filled symbols, but more powerfully, can scale
the fill color to a 3rd data value (vector), in a sort of pseudo 3D x-y-z
plot. For instance, it will be duplicating information that is already -
presented (y-axis), but you could color-code the points, by the y- 0

-1000
0

6000

5000

4000

3000

2000

Atmospheric CO,, (ppm)

50 100 150 200 250 300 350 400 450

value, i.e. the atmospheric CO; value. e.g.)

Figure 1.10: Proxy reconstructed past

SCATTER(data(:,1),data(:,2),20,data(:,2)) e .
variability in atmospheric COz2 (scatter

. lot).
draws the markers with an (area) size of 20 (points), in different plot)
colors. Coloring just the outlines of the circles is perhaps not ideal . .
roxy atmospheric 5
(difficult to see all of the color differences), so the circles can be filled
in instead (and you could make them a little larger too): .
SCATTER(data(:,1),data(:,2),40,data(:,2), filled’) g
% 2000 - ® . é‘" oo ° .
I g o . wh .
resulting in Figure 1.11. % :ﬁ" *: o &:§§ o
3 e %
ONE FINAL EXAMPLE in this section to introduce some new plotting T e w0 e m0 sn wo a0 s
Time (Ma)
functions, but also to quickly go back over some basic array manip- Figure 1.11: Proxy reconstructed past
ulation and processing. The data we will be analysing is s series of variability in atmospheric COz2 (scatter

seismic readings from the USGS. The quake data are extracted be- plot).

tween -5 and 20 lat, and between go and 105 lon, starting Dec 26,
2004 and ending June 30, 2005. The data file can be found on the

40 str="do you like bananas?’ [exam version]

course webpage (data_USGS. txt). The columns are: (1) day, (2) lat-
itude, (3) longitude, (4) depth, and (5) magnitude. Carry out the
following:

1. The first earthquake in the list is the Sumatra earthquake of
December 26, 2004. The magnitude of this earthquake has been
revised upward since the data was downloaded. Actually, most
energy released in large earthquakes is in very low frequency
shaking that most seismometers do not record. The real magni-
tude had to come from a special analysis of "normal modes", or
standing waves on the Earth’s surface with periods of up to 54

minutes! When the media said that the Sumatra earthquake made

the Earth ring like a gong, these are the waves they were talking
about. So since we know that the magnitude was really 9.3, first
off, replace the value of the magnitude of the first earthquake in
the array.

2. Identify the smallest magnitude of recorded earthquake. You
should find that the minimum earthquake size on this list is 3.5.
For an earthquake in California, the minimum magnitude would
be more like 1. This is because this particular seismograph net-
work did not have many instruments around Sumatra. Another
problem is that the earthquakes are offshore. If the nearest seis-

mograph is far from a small earthquake, that earthquakes may not

be detected. This means that the data are artificially truncated.
Since everything below 3.5 is missing, some of the M=3.5 to 4
earthquakes may have been missed, too.

3. Identify the minimum and maximum earthquake depths. The
really deep ones (>40 km) are probably in the subducted slab that
goes beneath Sumatra. The zero depth means that it could not

be resolved - most hypocentres are 4 km or deeper. (hypocentre

= like epicentre, but at depth: the point on the fault where the
earthquake rupture starts)

4. How many earth quakes in total were recorded?4’

There is only just so much looking at and processing raw data
you can do before your eyes start ... to droop and
...... 727777777772727777777777272727777. OK — so now to visualize

what is going on. Plot using the scatter function the locations of all
the quakes from day o to day 91 (inclusive), and in a second plot the
locations from day 92 onwards. The first area covers the area that
ruptured in the M 9.3 quake (1200 km long and 100 km wide) and
the second, to the South, is smaller. This is important because the
aftershock distribution made people very wary of the (low) early

41 Recall how to find the size of an array.
The number of earthquakes is then
simply the number of rows (assuming
that you have not flipped the array
around ...).

The number of quakes bigger than
each magnitude should go up by
about a factor of 10 for unit decrease
in magnitude (Gutenberg-Richter
relationship, a power law). This fails
for the hugest quakes (>7 in this
case) and where the catalogue is
incomplete (not many between 3 and
4 due to detection threshold in this
part of the world).

elements of ... matlab and data visualization

magnitude estimates - the area of dense aftershocks often delineates
the part of the fault that ruptured, and scaling laws relate rupture
length to magnitude.

Create a figure with multiple panels, showing:

¢ In the top LH corner plot the day 0-91 quakes, and color-code
(or size-code) the markers for their magnitude.

¢ In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their magnitude.

¢ In the bottom LH corner plot day 0-91 quakes, and color-code
(or size-code) the markers for their depth.

¢ In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their depth.

1.8.4 Histograms

We could also visually analyse the data as a histogram. Type help
hist in the Command Window for a description of the hist function.
The histogram must be supplied with a vector defining the 'bins’ in
which to sum the data. Here is your chance to use the colon operator
again. O happy day.

1. To plot the frequency distribution of quakes as a function of
their magnitude we need to create a series of bins to define the
different magnitude ranges. How about bins with boundaries at
magnitude; 1.0, 2.0, 3.0, ... 10.0. One complication is that the values
in the vector M define the middle of the bins in the hist function
and not the boundaries. The mid-points of this will be; 1.5, 2.5,
3.5, ... 9.5, and this is the vector you need to create and assign to a
vector M (i.e., a vector array starting at 1.5, ending at 9.5, and with
increments of 1.0).

2. Having created M, plot the histogram of quake frequency vs.
quake magnitude by issuing;:

» hist(data_USGS(:,5),M);
Question: what is the most frequent magnitude range of ‘quake?

3. Now plot the histogram of quake frequency against time (i.e.,
day number) up to day number 186. You will have to assign a
new vector of values to M, one that starts at 0.5 and ends at 185.5.
Omori’s Law says that the number of aftershocks per day should
decrease following a power law — does this look to be the case
(approximately)? (One problem is that the small earthquakes are
missing which makes it appear not to work so well!)

42 str="do you like bananas?’ [exam version]

4. Try this again (i.e., frequency of quakes vs. time), but investi-
gate the effect of changing the bin size — try making the bins about
1 month (30 days) in duration. Note that now M must start at 15.0
(the mid-point of the first monthly bin). Sometimes changing the
bin size can help if the data is noisy, but sometimes you lose im-
portant information. Which was better do you think — can you still
see a power-law decay in quake frequency following each major
event with the data in monthly bins? If you want, experiment with
other bin sizes to see how the data comes out. There is not always
a 'right” answer in plotting data and sometimes you just have to
experiment a little to see what looks good.

Don't forget that all the plots you make should be appropriately
labelled ... Save them as a fig file if you think you might want to edit
them again, and/or export as an image.

1.8.5 Simple 2D data and bitmap visualization

There are 2 different simple MATLAB commands for visualizing a
2D dataset (i.e. a matrix) as a bitmap image (and via a 3rd command,
viewing various bitmap photo and image format files too). As some-
thing (2D data) to play with — load in the matrix model_grid. txt.

First off — as before, view the data in the array viewer, just to get a
feel for what you are dealing with here (although you are unlikely to
be much wiser after doing so). So go ahead and employ the pcolor
function in its simplest possible usage (see Box). You can see (Figure
1.12) that it is ... something. Maybe a little like the continents, but
up-side-down at the very least. What to do?

Well, it is a good job that you remember how to re-orientate arrays,
right?4* If you guess right first time (three different basic transforma-
tions of a matrix were described), you get Figure 1.13.

Next try something very similar. but using the image function.
Now the model grid is the correct way around! I have absolutely no
idea why and why it is reading the matrix dimensions differently
from pcolor. I am sure you could Google and find out. But you
would have to actually care first.

What is the point of this? So you have the ability to simply visu-
alise a gridded dataset. Later, we’ll be doing it properly and it gets
rather more involved when you have to create matrixes to describe
the grid dimensions (e.g. lon and lat) for yourself.

As your very last exercise - find an image on the internet that
amuses you, download it, load it into MATLAB (using imread), visu-
alize it using image, and then ... well, that depends on how amusing
it is. Maybe try plotting something on top of it (using hold on) or
simply go home.

5 10 15 20 25 30 35

Figure 1.12: A 2D plot of some random
gridded model data.

Figure 1.13: A 2D plot of some random
gridded model data ... but with the
underlying data matrix re-orientated
before plotting.

#You don’t? See earlier in the Chapter

pcolor

MATLAB claims that pcolor(C)
plots; "a rectangular array of cells
with colors determined by C. Ac-
tually, I believe MATLAB on this.
So if you have a matrix, MATLAB
will plot a regular arrays of cells,
with each cell representing one of
the elements in the matrix, and will
color that cell according to the value.
(pcolor will by default, autoscale
how the color scale maps onto the
data in the matrix such that both
extreme ends of the color scale are
used.)

image

You can import an image, such as
in .jpg, .tiff, or .png format, using
imread — simply pass it the name
of an image file (as a string, this
variable name needs to be encased
in inverted commas) and assign the
results to a variable name of your
choice. Then plot (using image) that
variable.

2
Elements of ... programming

NERD. This is what you are now going to become. And lose all your social skills. And sit at home all day in
front of your computer. Which has become your only friend.

You will achieve this higher state of Being by starting to learn to write and use scripts and functions (aka
m-files) in MATLAB. Actually, at this point you are now writing computer programs (of a sort) rather
than endlessly typing stuff at the command line in the forlorn hope that something useful might occur.

You will also be doing a great deal of code debugging ...

44 str="do you like bananas?’ [exam version]

2.1 Introduction to scripting (programming!) in MATLAB

Commands in MATLAB can become very lengthy, and you typically
end up with multiple lines of code to get anything even remotely
useful done. And as you have noticed, it can take a lot of time to en-
ter in all these lines. When when you log off and go home ... it is all
gone. ' ... If only there was some way of storing all these commands
in such a way that they could be worked on and run again with the
press of a button (as a wild guess, how about F5?), without having to
enter them all in, all over again from scratch ...

Your wish is granted. In MATLAB, it is possible to store all of
your commands in a single text file, and then request that they are
all executed (sequentially) at one go. MATLAB gives this text file
a fancy name (because it is a very fancy piece of software, after all)

— a script?, otherwise known as an m-file. To create a new m-file;
from the File menu, select Script (a common type of m-file)3. You
will see a text editor (more fancy-ness) appear in front of your very
eyes, containing your requested (but currently empty) m-file. Save
the m-file to your directory of choice. Alternatively, simply create a
new (blank) text file and saving it with the extension .m, rather than
e.g. .txt, creates you a (script) m-file. From an m-file, you can issue
all the MATLAB commands you previously would have entered
individually, line-by-tedious-line, at the command line. Furthermore,
having created and saved a MATLAB script, it can be executed again
and as many times as you like.

You can execute an m-file by typing its name into the Command
window (omitting the .m file extension). Ensure that MATLAB is
operating in the same directory as the directory that you have saved
your m-file. You can also run the script (m-file) by hitting the big
bright green Run icon button at the top of the m-file editor4. The
short-cut for running it is to whack your paw down on the Function
Key Fs.

OK - you are now ready for your very first program ... inevitably
... this has to be to print "Hello World’ to the screen. No, really.
(Google it.) Create a new m-file, calling it e.g. hello_world.m. You
need to use the function disp (see Box or type » help disp) as al-
ways, for function syntax and usage), which will print to the screen,
either any text you specify (in inverted commas), or the value of a
variable (which could also contain character information). For now,
simply pass the text directly. Your program needs just a single line in
the m-file:

disp('hello, world’)

Save the file (to your working directory). Run it at the command line
by typing its name (omitting the .m extension). Your first program

* MATLAB remembers all the com-
mands used in previous session (al-
though this may not be the case of
shared, lab computers) and lists them
in the Command History window. You
can recover and re-execute a previous
command in this list by double-clicking
it. You can also re-run more than one
line at a time by selecting multiple lines
and pressing Fg (or Evaluate Selection
from the (R-mouse button in Windows)
context menu).

m-file

... is nothing more than a simple
text file, in which a series of one or
more MATLAB commands are writ-
ten and which via the .m extension,
MATLAB interprets as a program
file (script or function) that can be
edited and executed (or rather, the
list of commands inside, can be
executed in sequential order).

Assume a similar convention to
that for variables in the naming of
m-files.

> The conception of a function, will be
introduced later.

3 In order version of MATLAB:
File/New menu, and select: Blank
M-file.

4In older versions of MATLAB - select:
Debug/Run from the ‘debug’ menu of
the Editor window.

is a success! (Surely you could not screw up a single line program ...
?5) You could extend this to a mighty 2-line program by defining the
string as a variable and displaying the contents of the variable, i.e.,

message = 'hello, world’;
disp(message)

For further practice — pick one of any of the previous exercises
in which multiple lines of code were required, place them into a
new m-file (either by re-typing them in or copying them out of the
Command History window), save the file (to the same directory
that you are working from), and run it my typing its name at the
command line (omitting the .m extension).

2.1.1 Programming good practice

A few tips about good practice in (MATLAB) programming before
we go on (and on and on and on):

* Choose helpful variable names so that it is clear what each vari-
able represents. Avoid *excessively* short names, except for simple
index and counting variables. At the other extreme — excessively
long names, which the might be wonderfully descriptive, can lead
to even simple calculation stretching over multiple lines of code
(which can make it more difficult to see what is going on in the
code overall).

¢ Use comments within your m-file to add explanation and
commentary on your program. Anything after a % on the same line
is a considered a comment®, and is ignored by MATLAB.

® Structure the code nicely. You can break the code up into sec-
tions, e.g. by adding a blank line. You might also start each section
with a label summarizing that it is going to do (via the addition of
a comment).

¢ To start with — program in as a simple step-by-step way as
possible. Breaking a complex calculation into several lines of sim-
pler calculations is much easier to debug and work out what you
were doing later, particularly if comments are also added. For all
practical purposes — at this level, everything will run just as fast
whether as a complex calculation on one line, or simple bite-sized
calculation spread over 4 lines with comment sin between.

* Always save your changes before running your program (or
you may unknowingly be running the previous version).

¢ If using the script to do some plotting, sometimes (but not
always) it is convenient to add at the top of the m-file,

close all;

This command close all currently open figures, plots, images, etc.

elements of ... programming 45

disp

... displays something (the contents
of a variable) to the screen. Actually,
it effect is basically identical to leav-
ing off the semi-colon (;) from the
end of a line. In the example of:

disp(X)

where the contents of X is a string,
you get the text displayed.

Note that the difference between
using disp and simply typing the
variable name:

disp(X)

is ... well, find out for yourself!

Creating help text in an m-file
MATLAB allows you to crete a
"help’ section in the m-file — text that
is outputted too the screen if you
type help on that particular script
(or function). The text is defined by
a block of comment lines at the very
top of the script file (or after the
function definition in the case of a
function). The last sequential com-
ment line is taken to be the end of
the help section. Note that the help
section can be a minimum of eon
single line. A typical basic format is:

1. Name of (in capitals), and very
brief summary, of the script
(/function).

2. List and description of the dif-
ferent forms of use (if there are
one or more optional parameters)
including definition of the input
parameters.

3. Examples.

4. A See also section listing similar
or related scripts or functions.

®Your % comment can start on a new
line, or follow on from the end of a line
of code, whichever is more helpful.

46 str="do you like bananas?’ [exam version]

An illustration (and a far from perfect illustration) of a short script
exhibiting at least a few examples of good practice, is:

function [dum_temp] = ch4_ebm_basic(dum_S0)

OD case of EBM - analytical solution

function takes one parameter - the solar constant (units of
m-2) [NB. modern value: 1370.0]

define constants

const_0C = 273.15; % (units: K)

const_sigma = 5.67E-8; % Stefan-Boltzmann constant (units: W
m-2 K-1)

% define model parameters

par_emiss = 0.62; % (non-dimensional)

par_albedo = 0.3; % mean albedo

o® o°

=

o°

% solve for surface temperature

o°

equilibrium equation:

o°

% then re-arranged to:

loc_temp = ...

((1.0-par_albedo)*(dum_S0/4.0)/par_emiss/const_sigma)"0.25;
% convert temperature units (Kelvin to Celsius) and set value
of return variable

dum_temp = loc_temp - const_0C;

end

which also illustrates one possibility for variable naming conven-
tion ("constants’ (variables which never change in value) start with a
const_ and parameters (variables whose values might be changed)
with par_, temporary ("local’) variables with loc_ and variables
passed into and out of the function: dum_). Note use of the semi-
colon at the end of every line to prevent (here unwanted) printing of
results to the screen. In the file, you can create as much "ASCII art’
as you like if it helps to make the code clearer, e.g. adding separator
comment lines ...

... or highlighting certain section headers, e.g.

% *** PLOTTING SECTION sk

If it (a line) starts with a percentage symbol, then MATLAB ignores it
and you can type whatever you like after it (on the same line).

Your Hello World program might look like the following once it
has had a little tune-up (although in this example this is pretty much
over-kill):

% program to print 'Hello World’ to the screen
% xkk START *kok

(1.0-par_albedo)x*(par_S0/4.0) = par,emiss*const,sigma*loc,tempA4.0

% first - define the text to display and assign it to the
variable message

message = 'hello, world’;
% second - display the contents of variable message
disp(message)

% *xx END sxx

Finally, and related to the next subsection — code in stages, testing
the (partial) code at each step. Do not try and write all the code in
one go and only try it out at the end?.

2.1.2 Debugging the bugs in buggy code

What programming is mostly about is not writing new code so much
as debugging® what you have already written. Key then is to reduce
the incidence of bugs occurring in the first place, and when they do
occur, firstly to have code that lends itself to debugging and secondly,
knowing how to go about the debugging. The first two facets are

at least partly addressed through good programming practice (see
earlier)9.

Here’s an example to try out to start to see what might be involved
in debugging, loosely based on a previous plotting example — go
create a new m-file called: plot_some_dull_stuff.m™. Then add the
following lines to the file:

% my dull plotting program
% first, initialize variables and close existing figure
windows

close all;
X = -2xpi:0.1:2*pi;
yl = sin(x);

y2 = cos[x];

% open a figure window and plot a sine graph
figure;

plot(x,yl,'r");

% add a cosine graph

hold on;

plot(x,y2,k);

and then run it (refer to above for how).

Pretty dull stuff eh? Wait — maybe you didn’t get a figure appear-
ing on the screen with a pair of sines and cosines on. Has MATLAB
given you an error? If you typed in the above ’correctly’, you should
see:

Error: File: 6 Column: 9

Unbalanced or unexpected parenthesis or bracket.

plot_some_dull_stuff.m Line:

Actually ... if this were your program, you should have paid attention
to earlier and not have written it all at once before testing it! But

elements of ... programming 47

7 Because it will not work 99 times out
of 100 ...

8 The art of fault-finding in computer
code.

9 And by the discipline of software
engineering, which is way out of scope
of this course.

* Remember — you are advised to name
your m-files as something vaguely
descriptive of what the script actually
does (and you do ont have to go with
this choice, although it might turn out
to be perfectly descriptive ;) (i.e. you do
not have to call it this!)

48 str="do you like bananas?’ [exam version]

at least MATLAB is giving you some sort of feedback. The actual
error reported might not always mean that much to you but the line
number at which the problem occurred is gold-dust. The line of code

is does not like is line 6**, which is: 1 Note that although MATLAB ignores
comment lines (in the context of exe-
y2 = cos[x]; cuting code), it does count them when

telling you which line of the program

. . . _ .. code an error occurs at.
Maybe the mistake is already obvious? If it is — go fix it and re-run

the program. If not, maybe test out the line more simply, passing in a
value directly to the function cos and not bother assigning the result
to a different variable, e.g.

» €0s[0.0]

to which you get told:

» €0s[0.0]
cos[0.0]
7

Error: Unbalanced or unexpected parenthesis or bracket.

Now you have reduced the use of the cos command to its simplest,
whilst retaining the usage in your program that seemed to cause an
issue. Hopefully, now the error is apparent. If still not, check out help
on the cos function, or search cos in the MATLAB help (from the
question mark icon in the toolbar).

Is it important to recognise that (1) bugs will not always be flagged by
MATLAB with a line number, and you can have valid code but nonsensical
results, and (2) the mistake is often made earlier in the code than when
MATLAB flags up a problem line.

Other strategies for helping debug include:

1. Checking the what the values of the variables were at the point
at which the program derped - the current (and the point of pro-
gram crash) variable values are listed in the Workspace window.
2. Changing the relevant variable value(s) (here x) and re-typing

the problem line to see if it makes a difference™. 2 This is sort of similar to the example
3. Commenting out (%) lines of code temporarily, or adding in gl.ve“ﬂd simply testing a specific value
irectly.

additional (temporary) lines of code, and re-running. Where cod-
ing in bite-sized chunks is an advantage in this respect, is that if

a program stops working after you have added a new section o
code, you can go comment out the new code (never normally just
delete it all), check that the original section of code still works, and
then line-by-line, un-comment the new code until the problem line
is found.

4. You can also put your program on hold just before the problem
line and explore the state of the variables at that point (see Box),

although in this particular example of a bug, MATLAB does not
allow this, presumably because if feels that the mistake is simple
and can be easily fixed.

Once you have fixed this, re-run the program. Ha ha — it still does
not work. (It is far from unusual to have multiple mistakes in the
same piece of code, hence why writing the code in chunks and test-
ing each time is helpful.) Now we have a problem on line 12:

Undefined function or variable 'k’.

Error in tmp2 (line 12)
plot(x,y2,k);?

Now MATLAB does not like function or variable 'k’ because it
cannot find that it has ever been defined. Is k meant to be a function
or variable? Look up help plot to remind yourself of the correct
syntax if the problem is not immediately obvious.

Once you have fixed the second bug; saved, and re-run the script,
you should see Figure 2.1.

elements of ... programming 49

Debugging — breakpoints

Breakpoints are indicators in the
code that tell MATLAB to pause that
that point. This allows for in-depth
testing of variable values and lines
of code without having to exit the
program.

To add a breakpoint in the code —
click in the (grey) margin of the code
editor on the problem line or before,
and MATLAB adds a red circle to
indicate a ‘breakpoint” has been set.
The presence of a breakpoint tells
MATLAB to pause that that line.

To unset a breakpoint, click on the
red circle or you can clear one or
more from the drop-down Break-
points menu in the toolbar.

Figure 2.1: Output from the (bug-fixed
version of) plot_some_dull_stuff
m-file.

50 str="do you like bananas?’ [exam version]

2.2 Functions

Functions in MATLAB, are really just fancy scripts. Again — just plain
old lines of code in a text file that is given a .m extension (making

it an m-file). The big difference from a script in MATLAB is that

a function can take variables as input and/or return an output (in
contrast, a script takes no input and returns no outputs, other than
plots or data files that might be saved).

A function is defined (and differentiated from a script) by a special
line at the very start'3 of the m-file (see Box).

This is all not as weird as you might think. For example, you have
already used the function sin — this takes a single input (angle in ra-
dians), and returns a single output (the sine of the angle). If you were
to write your own function for sin, the file would start something
like:

function [Y] = sin(X)

You can’t, of course, go re-defining pre-defined MATLAB function
names'. So how about if in your work, you found you frequently
needed to use the square of the sine of a number. You could keep
writing:

Y = (sin(X))"2

or, if you were a little more devious, you could create your own func-
tion for returning the square of the sine of a number. Your m-file,
which here we’ll call sin2, the contents of which would look like:

function [Y] = sin2(X)
Y = (sin(X))"2;
end

but of course with LOTS of comments to remind you what the func-
tion does etc. The new function is used pretty much as you would
expect and have used previously, e.g.

» s1in2(0.5)

will return the square of the sine of a value of 0.5 and dump the
answer to the screen, and

» Y = sin2(0.5);

does the same but assigns the answer to the variable Y (and the semi-
colon suppresses output to the screen).

Go create your own function now. Start by creating one that takes
a single input and returns a value equal to the sine of the square of
the value (rather than the square of the sine as above). When you are
happy with this, create one with 2 inputs (see Box), that returns a

3 Literally: line 1. Not even a comment
line is allowed to appear before the

function definition line.

Functions

The all-important fancy first line
of a function, as defined in MATLAB
help, looks like:

function [yl,...,yN] =
myfun(x1,...,xM)

Thanks MATLAB (this seems overly
complex to say the least)!

OK - lets break this down. Lets
assume that you call the m-file
calc_stuff. The minimal definition of
a function then looks like:

function [] = calc_stuff()

(The syntax is critical and the defi-
nition line must look like this.) Here
we are saying — pass in not parame-
ters and return no values either. So
exactly like a normal script would
work and you would execute the
function calc_stuff by typing at the
command line:

» calc_stuff()

(Maybe you can get away without
the () bit.)

If you wan to pass in a single
parameter (here: X), then you define
the function:

function [] =

calc_stuff(X)
(To pass in more than 1 variable,
simply comma separated the vari-
able names.)

To pass out a parameter (here: Y)
(and no input):

function [Y] =
calc_stuff()
Lastly, at the end of the function,
you include the line:

end

Actually you can, but it is best not to.

value equal to the sine of the first input, divided by the cosine of the
sin(xy)

cos(x;))-

You have used other functions, perhaps without knowing it, and

second input'> (i.e. y =

some of them return values, but because you have not attempted to
assume the returned values to anything, you have not noticed. For
example, plot and scatter are in fact a functions, and return the ID
of the plot graphic. We simply have not been asking for the returned
value so far. As per MATLAB help:

H = SCATTER(...) vreturns handles to the scatter objects
created.

with the handle, H, being an identifier of the graphic which could
prove to be useful if e.g. you would like to modify one of the proper-
ties of an existing graphic.

Finally, it is important to note that by default, any variables cre-
ated within a function are TOP SECRET, and by that, I mean that
they are not accessible to the main MATLAB workspace and do not
appear listed in the Workspace window. To see that this is a non-
Trump-able true fact, create the following function (basically, the first
example but split into 2 steps):

function [Y] = sin2new(X)

tmp = sin(X);
Y = tmp/2;
end

Here, a variable tmp is created to hold the value of the partial calcu-
lation. It does not appear in the Workspace window when you use
the function. The advantage of this is that you could create a sec-
ond function that also created a temporary variable internally called
tmp with both instances of tmp treated entirely sperate and isolated
by MATLAB (i.e. setting the value of one instance of tmp does not
affect the value of the other). This also however does lead to some
additional complications in debugging functions (see Box). Try set-
ting a breakpoint at the start of the line where the square of tmp is
calculated — note that tmp now appear in the Workspace window.
Continue the function and when it terminates, note that tmp is now
gone from the list.

elements of ... programming 51

> Mathematically, the answer is not
valid for all possible values of the 2
inputs (why?), and later we’ll learn
how to pro-actively deal with such a
situation.

Debugging — functions

Functions are a prime example
of the importance of being able to
pause code part the way through
(e.g. by setting a breakpoint) be-
cause when a function terminates,
or crashes, you get to see none of
the values of any variables created
within the function, unless they
have been returned as output (and
assuming here that the code did not
crash and managed to get to the
end). Setting a breakpoint allows
you to interrogate the values of any
internal variables.

52 str="do you like bananas?’ [exam version]

2.3 Conditionals '101’

2.3.1 1if ...

One of the other main programming constructs is the conditional

statement, in which the outcome (one or more statement(s)) is conditional

on the "truth” or otherwise of a given (i.e. it being true or false). This
is embodied in MATLAB (and similarly in most languages) by the if

end construct (see Conditional Statements Box).

In creating an if end construct, the statement tested for

truth can be any one of:

1. A variable having a value of true (1) or false (0). e.g.

if happy

where happy is a variable.
2. A MATLAB function returning a true or false, e.g.

if isnan(A)

where variable A, may or may not be a NaN.
3. A relational operator (see earlier), i.e. one of e.g.:

<=, >=, ==, ~=, &&, ||

and applied to a pair of variables, one variable and one value, or

two values, e.g.:

if A>B

where A and B are numbers.

AN INITIAL AND RATHER COMPUTER PROGRAMMING TEXTBOOK-LIKE

EXAMPLE is as follows: designing a program (a MATLAB script saved
as an m-file) that asks whether or not you like bananas, and if you

answer ‘yes’, tells you ‘Correct — they are a great fruit!”.

But before we worry about anything else (e.g. how to apply a con-
ditional statement), you’ll need to know about inputting information
into a MATLAB program from the keyboard'®. Amazingly, you can
guess (I actually just did) the command for requesting input — it is

input (for ‘input’ — a rare occasion when everything is logical and
simple!) (see Box).

With this (how to get MATLAB to ask for input and then receive
and do something with keyboard input) — firstly create a blank m-file
and save with a ’suitable’ filename. Maybe add a header comment to

remind you what this script is going to do.

Conditional Statements

The principal conditional statement
in MATLAB is: if ... end

The basic if structure is:

if EXPRESSION (IS TRUE)
STATEMENT (S)
end

in which the code CODE is executed
if EXPRESSION is evaluated as true.
No code is executed otherwise (and
STATEMENT is false).

A variant addition — else — which
allows for an alternative block of
code (OTHER STATEMENT(S)) to be
executed if EXPRESSION is instead
evaluated as false, is:

if EXPRESSION (IS TRUE)
STATEMENT (S)
else
OTHER STATEMENT(S)
end

Finally, there is 3rd variant including
elseif:

if EXPRESSION (IS TRUE)
STATEMENT (S)
elseif EXPRESSION (IS
TRUE)
OTHER STATEMENT(S)
else
OTHER STATEMENT(S)
end

Now, assuming that the first EX-
PRESSION is not true, a second
EXPRESSION is evaluated, and
only if that second EXPRESSION is
also not true, will the final possible
STATEMENT be evaluated. (Here,
this final variant is shown with an
else ... included at the end, but
this is not a formal requirement to
include.)

¢ All programming languages have
such a facility and man basic pro-
grams, at least in the Old Days prior
to widespread GUIs, make use of
keyboard input

Secondly, (and on the next line) — define the text (question) that
you are going to ask and assign this string to the variable my_question.
Then place the input command (on the next, now 3rd line) for string
input, and assign the input string to the variable my_answer. You
should have a program consisting of 3 lines — an initial comment line,
a line defining the question and assigning this string to a handy vari-
able (my_question), and a line taking the results of the input function,
and assigning it to a second variable (my_answer).

Run the program thus far. You should see the question displayed,
and when you type in an answer and hit RETURN, the program will
end. Because your m-file is configured as a script and not a function
(see earlier), you can see the variable answer in the variable list and
can check its value — it should contain a string with the answer you
gave to the question. Make sure it all works like this so far.'7

OK - aside from the use of input, there is nothing new here. Yet.
The purpose of the program is to give a reply that depends on the
answer given. This is where we are going to utilize a conditional state-
ment — depending on whether the answer is “yes’ or not, we are going
to display a different message. This is a fundamental programming
element — different code will execute depending on the value of a
variable — here the "different code’ is a different message and the
value of the variable is "yes’” or 'no’ (or other answer).

You are going to add an "if ...’ statement to the code (starting
on line 4) to test whether the answer, held in the variable answer,
is equal to 'yes’. In the language of MATLAB syntax (see Box), the
EXPRESSION is whether the string contained in my_answer is "yes’.
How do we ask MATLAB to compare the value of my_answer with
"yes’? Once upon a time, long long ago, MATLAB was simple and
helpful and you could write:

if (my_answer == 'yes’)
[MESSAGE]
end

where [MESSAGE] you will later replace by a message that you will
display using the disp command that you saw before. (In this stupid
example it might be: ‘Correct — they are a great fruit!’).

However ... life is no longer this simple. MATLAB is going to
make us use the function strcmp (see Box). In using strcmp we might
break things down into 2 steps — the first comparing the 2 strings
(my_answer and 'yes’) and returning to us a value of true or false
that we will store in a new variable. In the second step, we’ll ask the
conditional to act on the value of the variable. The code will now
look like this:

comparison_result = strcmp(my_answer, ’'yes’);

elements of ... programming 53

input

There are two variants — one for
inputting numerical information and
one for inputting a string (test) (as
1 could be either the value one or a
1-character string ...).

For inputting a numerical value:

X = input(prompt)
will display the text in the string
variable prompt and set the value
of x when a number is entered and
RETURN pressed.
For inputting a string:
str = input(prompt,’s’)

will display the text in the string
variable prompt and set the value

of str when a string is entered and
RETURN pressed. Note that the
second parameter passed to the
function input (’s’), tells MATLAB
that the input is a string rather than
a number.

7 HINT: When you type the answer,

it appears on the screen immediately
adjacent (and untidily) to the end of the
question. You can make this look nice(r)
by adding a space at the end of the
question string you assigned to prompt,
e.g. prompt = 'Do you like bananas?

S

strcmp For once, the MATLAB help
explanation is relatively simple and
straightforward:

tf = strcmp(sl,s2)
compares sl and s2 and
returns 1 (true) if

the two are identical.
Otherwise, strcmp returns
0 (false).

Which is pretty well much how we
expected asking: s1 == s2 to pan
out.

(In MATLAB help - tf, the vari-
able name used in the example, is
short for 'true-false’.)

54 str="do you like bananas?’ [exam version]

if comparison_result
[MESSAGE]
end

Or, we could have made this more compact:

if strcmp(my_answer, 'yes')
[MESSAGE]
end

Your code should now have the 3 lines from before (comment,
define question, get input) followed by 4 lines of the conditional
structure, comprising: the strcmp function, the if ..., use of disp to
display a message, and last, end.

Re-run (after saving) the program and confirm that it works (ask-
ing whether you like bananas and if you answer "yes’, tells you "Cor-
rect — they are a great fruit!"). If not — time to de-bug! Note that if you
tested the code in two stages, any bug at this point is only in the con-
ditional structure. Start by double-checking the syntax required for
the if ... structure. You could also try commenting out the message
line and re-running.

Next, you might display an alternative message is the answer is
not "yes’. Refer to help / the margin Box on if ... and note that you
can extent the structure with an elseif which would be followed by
a line displaying the alternative message (e.g. "Then you need to get a
life, apple-lover.’)'8.

You could extend this example further and tackle the situation of
their being 3 possible answers — "yes’, 'no’, and ... ‘I don’t know” (or
any other answer). Now the basic structure becomes

if strcmp(my_answer, 'yes')
[MESSAGE 1]

’

elseif strcmp(my_answer, 'no’)
[MESSAGE 2]
else
[MESSAGE 3]
end
Here — we are now adding an elseif ... line (followed by its

specific message) (and see Box/help). Maybe try this and test it fully
— inputting a yes’, a 'no’, and some other answer, and confirming
that you get the correct message displayed.

You could also turn this around, and test for any answer except
no’ (the ~ is making the test, not 'no’), i.e.

if ~strcmp(my_answer, 'no’)

[MESSAGE 1]
else

[MESSAGE 3]
end

8 And then the line with end after
that — follow the prescribed structure
exactly.

elements of ... programming 55

Now you are asking whether the answer is something other than

no” (which might be “yes’, but not necessarily so) — in the logical
construct — whether the (string) contents of answer are not equivalent
to no’.

CONTINUING TO BEAT THIS SAME TIRED EXAMPLE TO DEATH ... what if

some wise-crack answered "YES’ rather than "yes’?'9 One could write: 9 This goes to the heart of all software
testing — what if the user does some-
if strcmp(my_answer, ’yes’) thing you were not expecting? Hence
[MESSAGE 1] why all software undergoes extensive

testing by user or people who did

elseif strcmp(my_answer, 'YES') g)
not test it. Sometimes there are pre-

[MESSAGE 1] releases (‘alpha’ or ‘beta’ versions or
end simple "pre-release’) of software to all
. . . or specific parts of the user community,
This will work, but you might note that you have had ot exactly du- precisely to provide feedback, find
plicate the MESSAGE line. If instead of displaying a simple mes- bugs, and see whether they can break it

sage, a complex calculation was carried out — all the lines of the
code following the if ... would have to be exactly duplicated af-
ter the elseif While it might seem trivial to simply copy-paste

the required lines, this is*°® dangerous - if the first set of lines are 2 Note quite in the same way that
driving down a mountain highway with

. . your eyes shut or hungry sharks are
the code), the same changes MUST then be exactly duplicated in dangerous.

ever changed (due to a bug-fix or simple further development of

each and every instance, or the code will not longer work correctly.
This is *very* easy to forget to do, particularly for extensive code or
code that you have not looked at for ... years. Code duplication also
makes the overall code unnecessarily long (and hence harder to look
through).

Instead, we can nest statements containing relational operators.
What does this mean? Well, in the example of the answer being "yes’
or 'YES’, logically, what we want is:

(1) the contents of answer is equivalent to "yes’
OR
(2) the contents of answer is equivalent to "YES’

In code, this is written:

strcmp(answer, 'yes') || strcmp(answer, 'YES')

Make sure you are happy with what this means (it is pretty well
much exactly as it looks == logic).
So — go modify your code to allow for a "YES’ or a "yes’. Hell, try

allowing for a Y’ or a 'y’ as well.?* (You could extend it to 'no’ also # Sort of for this reason and that there
are many different ways of writing
"yes’, software often requires you to
answer 'yes’ in a restricted number of
ways — this restriction is made clear
as part of the message that asks the
question. Common is to restrict the
answer to 'Y’ or 'y’.

but I think you get the point ...)

A NON-TEXT AND NON FRUIT RELATED EXAMPLE. ALMOST.

56 str="do you like bananas?’ [exam version]

How many bananas could you eat in a day? I bet it is less than ten.
We'll let the computer ask and if the answer is 10 or more, you (the

computer) shouts: ‘lier!’.?? 22 This example is even more stupid
than the last one. But no more stupid

than in any computer programming
a comment line, define your question ("How many bananas do you textbook and it will at least demon-

think you could you eat in a single day?’) and then get MATLAB to strate a subtly different usage of if
ask it and pass back whatever is entered in at the command line. The

The basic code is very similar to before. Create a new m-file, add

only difference at this point — refer to the usage of input (see Box) —
is that we want a number input rather than a string. You can call the
variable into which you assign the result of input, the same as before,
or to make it distinct, e.g. n_bananas, i.e.

n_bananas = input(my_question)

In the if statement, we now want to test whether the value of
n_bananas is greater or equaol to 10 (or equivalently, greater than

9), i.e.

if (my_answer >= 10)
[MESSAGE 1]

else
[MESSAGE 2]

end

or

if (my_answer > 9)
[MESSAGE 1]
else
[MESSAGE 2]
end

Write this code and get it going. Feel free to switch fruit / fruit
consumption threshold, question/answers, or whatever.

2.3.2 switch ...

A less commonly used alternative to if ... is switch ... case

. and is helpful in the case of multiple possible correct answers
and/or multiple different answers.

For instance, and back to the ... fruit ... you might want the same
answer for multiple different kinds of fruit. Trying coding up the
program that would give you "A great fruit!” for any of 'banana’,
"kiwi’, “apple’, ‘pineapple’, and ‘cucumber’ (yes they are technically
fruit — Google it). You will find either you have many lines of code
and many duplicated lines of the same message, or a very long line
after if ... with loads of strcmp and ORs (| |). Using switch ...
case ... the code instead might look like:

elements of ... programming 57

switch my_answer Conditional Statements (2)
case {’'banana’, 'kiwi’, ’apple’, ’'pineapple’, and ’'cucumber’} The other main conditional state-
disp(’A great fruit!’) ment is: switch ... case ...
otherwise =

disp(’yuck!”) The basic switch structure is:
' switch VARTABLE

end
case VALUE(s)
. . .. STATEMENT (s)
where my_answer is the name of a fruit entered in, in response to end
iHPUt/ €.g. which deviates rather from how
MATLAB describes it, but this
my_answer = input(’What is your favourite fruit?,’s’); makes more sense to me (and hope-
fully to you). Here, VARIABLE is a
Note that for a list of multiple possible value, MATLAB requires variable and it is compared with
the list after case to be encased in {}. For a single answer, it would one or more VALUE(s). If the value
. of VARIABLE matches that of the
just be: VALUE(s), then STATEMENT (s) are
executed.

’ ’ .
case 'banana A common variant adds a default

set of STATEMENT (s) to be executed
for a string, and for a number: if the value of VARIABLE does not
match any of the VALUE(s), e.g.

switch VARIABLE
case VALUE(s)
STATEMENT (s)
otherwise
STATEMENT (s)

case 10

end

You can also have multiple case
possibilities:
switch VARIABLE
case VALUE(s)
STATEMENT (s)
case VALUE(s)
STATEMENT (s)
otherwise
STATEMENT (s)
end

58 str="do you like bananas?’ [exam version]

2.4 Loops ‘101’

The next main program construct that you are going to see is the
loop. There are a number of different forms of this in MATLAB (see
Loops Box) (and also in other programming languages), but the basic
premise is the same — a designated block of code (one of more lines
of code?3), is repeated, until some condition is met. That condition
might be something as simple as a count having been reached, e.g.
the block of code is always executed # times, or the condition might
be slightly more complex and involve a conditional statement (see
later). Will explore a very basic loop though an example, almost as
contrived as for conditionals :0)

2.4.1 for ...

In this subsection we’ll start with a very straight-forward and some-
what abstracted usage of for ..., which hopefully will get you
in the mood for loops. Then we’ll go through some slightly more

problem-focused examples.

Loors GROUND ZERO. Basically — loops cycle through a series of
numbers between specific limits, or if you like, ‘count’. As the loop
counts (cycles), it allows you to execute some code, so for each count
(or cycle), the (same) block of code is executed. We'll worry about
what you might ‘do’?4 (i.e. the code fragment) in a loop, later.
Consider, or rather: create a new m-file*> with the following loop:

for n=1:10
end

Save it. Run it. What did it do?

I bet you have absolutely no idea! It actually cycled around ten
times, counting from n=1 through n=10, but you would not know it as
there was no code without the loop to do anything.°

There are 2 alternative crude debugging strategies you could
take?7:

1. Simply add a line within the loop with the name of the (count-
ing) variable, e.g.
for n=1:10

n
end

and it will spit out the value of n each time around the loop.
2. Print the value of n ’properly’zg, e.g.

Loops in MATLAB
for
The basic for ...
is:

end structure

for n = VAL1:VAL2
CODE
end

where VAL1 and VAL2 are the limits
that n will count between (start-
ing at VAL1 and ending at VAL2),
meaning that STATEMENT(S) will be
executed (VAL2-VAL1)+1 times in
total. STATEMENT(S) can be one or
more lines of code, that will all be
executed on each and every cycle of
the loop.

The loop need not count in in-
crements of one (1), the default,
e.g.:

for n = VAL1:INC:VAL2
CODE
end

counts with an increment of INC.
It is also possible to count down (a
negative value of INC).

while

The basic structure is similar to
that for for ... end:

while STATEMENT (IS TRUE)
CODE
end

while differs from if in that there
are no alternative branches of code
that can be executed. The while ...
end loop cycles and CODE continued
to be executed (for ever) until the
STATEMENT is evaluated to be false.

» It is possible to for the block of code
to be only a fragment of a single line
and hence the entire loop plus code
block, to be written on a single line.

> Note intentionally a joke. Actu-
ally, this is only funny if you know
FORTRAN, and even then it is only
marginally funny.

5 Comment it!

6 You get one clue - if you look in the
variables Workspace window, you'll
see there is a variable n, with a value
of 10 — the last value it was assigned
before the loop ended.

%7 Plus, you could add a breakpoint and
view the value of n in the Workspace
window each cycle around the loop.

3 Although you can get away with just
writing:

disp(n)

elements of ... programming 59

for n=1:10
disp(str2num(n))
end

or you can tart this up even nicer by creating a string that provides
more explicit information back to you, e.g.
for n=1:10
my_string = ['The value of n is:
disp(my_string)
end

’

str2num(n)]

or if you are happy with more going on in a single line:

for n=1:10
disp([’'The value of n is:
end

str2num(n)])

(but they work the same — check it).

Loors IN ACTION. So, consider the following (contrived) ‘problem’
— you want to be able to enter a series of numbers and return their
sum (although equally one could perform and return all sorts of

statistics).?9 The basic code is simple. Using the other (numerical 29 Obviously, one way to do this would
P g Y, y
be to enter the numbers into a file first,

; . . use the load function, and calculate the
practice, your code is full of helpful comments, right?): sum.

input) form of input, for 2 numbers, it might look like (although in

’

my_question = 'Please enter a number: ;
A = input(my_question);
my_question = 'Please enter a number: ';
B = input(my_question);
disp(['The sum of the numbers is: ' num2str(A+B)])

The first 4 lines you should be A-OK with. Note that in line 5, 2
strings have been concatenated by enclosing 'The sum of the numbers
is: ' and num2str(A+B) in a pair of brackets []. The string repre-
senting the number sum is itself created by adding A and B, and then
converting the resulting number into a string using num2str (see ear-
lier). As always — if you are happier breaking down the last line into

its component parts, e.g.

answer = A+B;
answer_string = num2str(answer);
disp(answer_string);

then please do!
So far so good. But what if you wanted 4 numbers summed ...

my_question = 'Please enter a number: ;
A = input(my_question);
my_question = 'Please enter a number: ';

60 str="do you like bananas?’ [exam version]

B = input(my_question);

my_question = 'Please enter a number: ';
C = input(my_question);

my_question = 'Please enter a number: ';

D = input(my_question);

disp(['The sum of the numbers is: ' num2str(A+B+C+D)]);

You can see whether this is going - firstly that you are duplicating
more and more lines of code as the number of numbers increases.
Secondly, and we’ll come to that in a moment — what if the program
does not know a priori how many numbers you want to sum?

You can see the code that is being repeated (here for input x):

’

my_question = 'Please enter a number: ;
X = input(my_question);

If you bothered to read the margin box earlier, you'd known that
this is exactly what a loop can be used for. We therefore want some-
thing of the form:

for n = VAL1:VAL2
my_question = 'Please enter a number: ';
X = input(my_question);

end

The easy part is the configuration of the loop — in the previous
example with 4 inputs, we would write:

for n = 1:4

and the loop with go around 4 times as the counter n counts from 1
(VAL1) to 4 (VAL2) in increments of 1 (the default behavior of the colon
operator). Each time around the loop the block of (2 lines of) code is
executed and a number is inputted. But what is still missing? Try it
exactly like this and see if you can see what is going on, or rather,
not going on. If you think it is not working as expected — try some
debugging. See if you can come up with a solution once you see
what the problem is. (Warning: the spoiler is in the margin.)

After having tried your own solutions, try out both of the given
alternatives (assuming that one of them was not also your solution).
Note that you are note given the complete code needed and some
further debugging might be needed (but they do both work!).

Two things to be aware of in doing this:

1. If you set the maximum number of items quite high and then
get bored and need to exit the program — press the key combi-
nation Ctrl-C and MATLAB will exit your program (but leave
MATLAB running).

2. If you run the program a second time and use the vector ap-
proach, something very odd starts to happen to the reported sum.

It should be apparent if you tried it
out, that the value of x at the very end
of the program, is equal to the last
value you entered. In other words,
each time you go around the loop you
are over-writing the previous entered
value and end up with nothing to sum
at the end. There are two (or more)
possibilities to solve this:

1. You could keep a running sum.
This would also avoid having to
explicitly calculate a sum at the end,
but you would not have saved the
numbers as you went an no other
stats would be possible.

You would do this by adding the
inputted value to the existing value,
ie.

X = X + input(prompt);

where x is the running total. What
this says is: take the current value
of x, add the value if the user input,
and place the total back into the
variable x.

The only problem here ... is that
MATLAB does not know what the
very first value of x is —i.e. the value
before the loop start and that you
then try and add input(prompt) to.
The solution is to initialise the value
of x before the loop starts, e.g.

X = 0;

2. Alternatively, you could add the
newly inputted number to the end
of an existing vector. In this way,
you end up recording all the values
that were inputted. e.g.

y = Ly input(prompt)];

which says take the vector y, and
add a further value (input(prompt))
to the end of it. At the end of

the program (after the loop has
terminated), you have to sum the
contents of the vector y.

You can solve this (first try it out — running the program several
times in a row to see what happens) either by initializing the vec-
tor y, just like you did for x in the 1st solution, i.e.

y = [1;
(before the loop starts, of course), or you can clear the workspace
using » clear all (clears *all* variables), or clear just the problem
variable (y) that will end up growing and growing and growing ...
(» clear y).

2.4.2 Other loop configurations and usages

In the previous examples, the loop limits were fixed in the program
itself — you’d have to edit the script code and save the file in order

to be able to input and sum a different number of values. You could
create a more flexible program by making the m-file a function rather
than a script.3° The idea here is to create a function that takes a sin-
gle input. This input will be the maximum loop count. If the input
variable was called max_count, then the loop structure would now
look like:

for n = l:max_count
my_question = 'Please enter a number: ';
X = input(my_question);

end

Referring to the previous lessons on functions (as well as help if need
be), create a function that when you call it, e.g. like:

» function_sum(5)

will request 5 inputs and display the sum.

Alternatively, your program (as a script), before the loop starts,
could ask for the number of values to be entered, passing this to
the variable max_count, with the loop then looking exactly like the
above. In both cases you are substituting a fixed number (e.g. 4) for
a variable that might contain any number. Equally, not only does the
count not need to start at one, and the lower loop count limit could
also be a variable (min_count?).

Finally, in addition to flexible loop count limits, the value of the
increment in the count each time around the loop need not be one.
For example:

for n = 10:10:100
end

is exactly equivalent in terms of the number of iterations carried out
to

elements of ... programming

3 There are other ways of adding
flexibility to the loop count that we'll
see shortly.

61

62 str="do you like bananas?’ [exam version]

for n = 1:1:10

end

and which is the same as the default behavior of the colon operator:
for n = 1:10
end

The value of the loop counter n simply differs by a factor of 10 at
every iteration between the top and bottom two versions.

2.4.3 Fun(!) worked examples

(Only one example to date. And not necessarily even fun.)

Loors, cAMERA, ACTION! (A more colorful example of loops in ac-
tion.) What we are going to do is (load and) plot a sequence of
monthly data-sets and put them together to create a movie (animated
graphic) to illustrate the seasonality of temperature in global climate.
You will hopefully thereby better appreciate the value of constructs
such as loops in computer programming in saving you a whole bunch
of effort and needless duplication of code. (Equally, you might not
have wanted a movie as the end result, but simply a number of plots,
all identical except in the specific array of data they were plotted
from.)

First download all the monthly global surface temperature data-
files on the course webpage (there are 12 files to download)3*. Then
you are going to want to plot them all ... which would get desper-
ately tedious if you had to do this at the command line 12 times.
Think how much more of your life you would be wasting if the data
were weekly. Or monthly data for 1972 through 2003, some 372 sep-
arate data-files ... You would never have time to go get a coffee ever
again(?)

Create a new m-file. Call it ... anything you like3?. However, as
well as appropriately naming your script file, add a comment on the
first line of the file as a reminder to yourself of what it is going to
do. Also, for now, it is helpful to include the command: close all
(which closes all currently open figure windows) although this is far
from essential.

To make an animation, we need to make a series of frames, with
each one being a different monthly temperature plot (in sequence;
Jan through Dec). The files are rather conveniently named: templ.tsv,
temp2.tsvy, ... templ2.tsv33. We should start by loading this little lot
in. For the first file we could write:

3* In scripting, it is also possible to
automate downloading files from the
internet.

3 bob_the_builder.m counts as ‘any-
thing you like’, but that looks pretty
lame and it certainly won’t help you
remember what the script does if you
came back to it sometime in the future.

% Don’t worry about the . tsv file
extension — the file format is plain old
text (ASCII) and could have instead
been . txt.

temp = load('templ.tsv’);

or equally:
temp(:,:) = load(’templ.tsv’);

and hence with a slight-of-hand, we could also write:
temp(:,:,1) = load(’'templ.tsv’);

Can you see that these statements are identical? Run the script with
one, then with the other, just to be sure. The last form is really useful,
because we can now go on and write:

temp(:,:,2) = load(’'temp2.tsv’);

What you have done here is to load the January 2D (lon-lat) temper-
ature distribution into the 1st 2D layer of the temp array, and then
we have gone and created a second 2D layer on top of the first with
the February data in it. Look at the Workspace window (or type
size(temp)) — you now have a 3D (94 x192x2) array. Fancy! This is
your first 3D array - there is nothing really conceptually different
from the 2D arrays that you have already been using, we simply have
a 3rd index for the third dimension (if it helps, you can think of a 3D
array as being indexed by: row, column, layer).

You could go on and load in the March, April, etc data in a similar
fashion, but you should be able to see a pattern forming here — each
filename differs only in the number at the end of its name and this
number corresponds not only to the number of the month, but will
also correspond to the layer index of the 3D array that you will cre-
ate. This is something that a loop could be used for while you go off
for a coffee.

We first need to construct the loop framework. We'll call the
month number counter variable, month. Create a loop (with noth-
ing in it yet) with month going from 1 to 12.34 Refer to the course text
(this document!), and /or the MATLAB documentation, and/or the
entirety of the internet, if necessary. The syntax (and examples) is
described in full under » help for. Save the script (m- file) and run
it35. What happens? Can you tell?

One way of following what is going on as MATLAB executes the
commands within a script is to explicitly request that it tells you how
it is getting on. You can use the function disp to help you follow
what the program is doing (this is Old School debugging3®). Within
the loop, add the following line:

disp(month)
then save and re-run the script. Now you can see how the loop pro-
gresses. This sort of thing can be useful in helping to debug a pro-

gram — it allows you to follow a program’s progress, and if the pro-
gram (or MATLAB script) crashes, then at least you will know at

elements of ... programming 63

3 Don’t forget to suitably comment
what it is that the loop does with a
line (or even 2, but don’t write a whole
essay) beginning with a %.

35 Typing: the m-file filename without
the extension.

3 You can also add a breakpoint within
the loop and thus can cycle through the
loops one-by-one, thereby being able to
check the status of the variables within
the loop and how they change from
iteration to iteration.

64 str="do you like bananas?’ [exam version]

what loop count this happened at, even if you are not given any more
useful information by MATLAB. Only when you are happy that you
have constructed a loop that goes around and around 12 times with
the variable month counting up from 1 to 12; comment out (%) the
printing (disp) line37 (unless you have grown rather attached to it)
and move on.

We can construct filenames to load in by:

1. Forming a complete filename by concatenating sperate strings.
For example:

» filename = [’'temp’ "1’ '.tsv’]

will create the filename for the first dataset out of 3 components
parts — a common elements of all the filenames (' temp’), the num-
ber of the month ('1’), and the file extension (’.tsv’).

2. Converting a number value of a (count) variable to a string (the
num2str function).

This is where the role of the loop counter (stored in the variable
month) comes in. Each time around the loop, the value of variable
month is the number of the month. All you have to do is to convert
this value to a string and thereby automatically generate the correct
month’s filename each time (as per above).

Now add the following within the loop in your script;

filename = [’'temp’ num2str(month) ’'.tsv’];
and after it some debugging3®:
disp(filename)

just to confirm that appropriate filenames are being generated. Save
and run the script. Satisfy yourself that you know what it is doing.
Can you see that you are now automatically generating all the 12
filenames in sequence? And this only takes 3 lines of code total (not
including the debugging line), compared with 12 lines if you had to
write down all the 12 file names long-hand.

comment out the disp(filename) line, and add a new line to load
in each dataset from the new filename that is constructed each time
the loop goes around.39 Assign the new 2D data array to the temp ar-
ray at the next layer number. Take a look at the Workspace window —
note that you have an array (temp) that has size 94 x192x 12. If temp
is 94x192x 1 then go back a page or so and go through the bit about
loading data into a 3D array. You want to avoid over-writing the in-
formation that is already there, so the line; temp = load(filename);
will not work (and you will only get a 94 x92 array after going 12
times around the loop). Why? (Again, look back a page-ish.)4°

7 Note that by commenting out a line
rather than completely deleting it, if
you want to print out the loop count

in the future, all you have to do is to
un-comment the line, rather than type
in the command all over again. This can
be really useful if your debug command
is long, or particularly if you have a
whole series of lines that are required
to report the information you want to
know.

3 Or you can make use of a breakpoint.

39 Remember that the load line goes
inside the loop. (Why? Try writing it
outside the loop (at the end) and see
what happens if you like.)

4 If you are still stuck, then stick up a
paw.

At the end of (but still within) the loop (i.e., before the loop has
completely finished), create a new figure window on one line, then
plot (using pcolor) the monthly temperature data on the next line,
and add the essential labelling stuff (lines after that). All within the
loop still. This line should look something like:

pcolor(temp(:,:,month));

and should produce extremely exciting graphics as in Figure 2.24*.
(Don’t just type this line in blindly (maybe it doesn’t 'work” anyway).
Make sure that you understand what you are doing (otherwise why
do GEO111 at all?).)

Save and run the script. Do you have 12 different temperature
plots on the computer screen?4* Note that this is where the close all
command at the start of your script comes in useful. Because if you
re-run the script, you wont then end up with 24 figure windows.
And then 36 the time after that, and ... (There is actually no need to
create a new figure window each time — comment out the command
that creates a new figure window (figure). Save and re-run and note
the difference.)

Finally ... look up MATLAB help on getframe. Then go back to
your global temperature loading/plotting script and add the follow-
ing line*3:

M(month)=getframe;

Save and run. When MATLAB is all done, at the commend line
type in:

» movie(M,5,2)

and hopefully ... an animation of the progression of monthly surface
air temperatures globally, should appear+.

If you want to play some more, just type help movie — there are
controls for not only the number of times you loop through the com-
plete animation, but also for the numbers of frames per second. But
we will revisit this later — the 2D plotting you have done so far is
very basic and there is no scale or sane x/y axes. Later we can also
add the continental outlines that will help orient you and improve
the quality of the graphical output.

Before you move — go look at your script — is it well commented?
Would you be able to tell exactly what it does it by the end of GEO111?
What about next year? Are the loop contents indented? It is important
that it is commented and laid out adequately.

elements of ... programming 65

41 The 2D graphics will get *much*
better later — one thing at a time!

00 02 0.4 06 08 1
Figure 2.2: Extremely unappealing
blocky plot of Earth surface temper-
ature (who cares with month? — the
graphics are too poor to matter ...).

#1If not, stick you paw up in the air for
help ...

movie2avi

The function movie2avi converts
an animation encoded in MATLAB’s
movie format to an avi file, which is
a common film format that can then
be played in Windows (or other op-
erating systems) without having to
use MATLAB to display it. It is also
a format that could e.g. be embed-
ded in a Powerpoint presentation. A
typical basic usage is:

» movie2avi(M, 'file.avi’);

where file.avi is the output file-
name and M the input MATLAB
movie name.

4 Where to put the line? See the
Example given in the help on this
function. It is exactly what you are
doing here.

Note that the active Figure window
may have disappeared behind some
other windows so go rescue it to see
what is happening.

66 str="do you like bananas?’ [exam version]

2.5 Loops and conditionals ... together(!)

No surprise that you might combine both loops and conditionals in
the same programming structure. In fact, this becomes very powerful
and is an extremely common device in programming.

2.5.1 for ... and conditionals

As an alternative to (or as well as) a fixed loop, or variable and (func-
tion) parameter passed controlled loop, we could specify a near infi-
nite loop, but provide a get out of jail free. For example, within the
loop, we could add a line that asks an additional question: Another
input (y/n)?” We would test the answer and if no ('n’), exit the loop
(and report the sum as before). This would look like:

’

my_questionl = ’'Please enter a number: ;

my_question2 = 'Another input (y/n)? ;
for n = 1:1000000
my_number = input(my_questionl);
my_string = input(my_question2,’s’);
if strcmp(my_string,'n’)
break
end
end

where 1000000 is simply chosen as a ‘very large number” and one
rather larger than the maximum number of numbers you could ever
imagine entering#>.

The key new command here is break. The way the code works
(hopefully!) is that at the start of a new iteration of the loop, the
‘another input’ question is asked — if no further input is required,
the loop exits via the break command. Otherwise (the else), the
user is prompted for another input. Note that now we have loops
and conditionals nested together, it helps even more to indent the
code#®. Also note that here — the two different questions (demands)
outputted to the screen — "Another input (y/n)?’ and 'Please enter a
number’ — are pre-defined before the loop starts. These same lines
could be placed within the loop, but re-defining the variable e.g.
my_questionl as "Another input (y/n)?’, each and every time, is
redundant (i.e. it could instead simply be defined once at the start of
the program). Also also note that in this code, the number entered
in is assigned to the variable my_number rather than n as was used
before — simply to help distinguish the number input from the string
input (assigned to my_string).

It is up to you to 'do’ (i.e. add or modify the code) something with

the number entered in an stored in the variable my_number, as each

break

Simply — break terminates the ex-
ecution of a for or while loop’. And
from help a further clarification:
‘Statements in the loop after the
break statement do not execute.’

Slightly more complicated (but not
much) in the case of nested loops —
in this case, break exits only the loop
in which it occurs.

Indenting code

Just do it (or let MATLAB do it). Even
for a single loop or conditional, it is
way easier to see what code is within
the loop and what outside it, when the
code inside starts several spaces in from
the margin.

For nested loops and conditionals, it
is even more important to keep (visual)
track on what is going on.

Note that the indention (or lack of)
does not affect the execution of the code
(unlike in e.g. Python).

4 There us a better way of doing this,
with the while construct, that we’ll see
shortly.

4 MATLAB will do this for you if you
click on the Indent icon. It will also
indent the code as far as it reasonably
can, as you type.

time around the loop, the previous value is over-written by the new
input.

Currently, the program only exits upon entering 'n’ to the ques-
tion. Instead, we could have it exiting for any answer other than "y”:

my_questionl = 'Please enter a number: ’;
my_question2 = ’'Another input (y/n)? ’;
for n = 1:1000000

my_number = input(my_questionl);

my_string = input(my_question2,’s’);

if ~strcmp(my_string, 'y’)

break

end

end

which compares my_answer and ’y’, if this is not true (that they are
the same), break is executed.

A MORE PRACTICAL EXAMPLE would be in saving a data file, to test
for a filename already existing and if so, automatically modifying the
new file name so as not to over-write the file.4”7 The relevant function
is exist and in the case of a test for a file, returns either 0 (the file
does not exist in the MATLAB search path, although that does not
rule out it existing somewhere else entirely), or 2 (the file exists).

Clearly(?), in the example of saving the movie file (using the
movie2avi command), you might well want to test whether the file-
name that you have chosen already exists (i.e. the value returned by
exist is 2). If so (i.e. the file exists), you need to modify the filename
by means of a new concatenation, perhaps appending something
like "_NEW’ to the end of the string48. If not, and the filename has not
already been used, you can proceed as before — the equivalent of
‘doing nothing’. Go ahead — try it (i.e. modify your code to avoid
over-writing an existing filename).

You could start by defining a default filename in the code*® that
you will use if there is no clash with any existing file, e.g.

my_filename = 'GE0111 movie.avi’
Now test whether this filename already exists:

filename_check = exist(my_filename,’'file’)

Finally, using an if statement, test whether the value of filename_check
is equal to 2. If so, you are going to need to modify the filename
string (my_filename). If not, you can let the conditional just end and
proceed to saving. Modifying the filename is just as per for the exam-
ple of loading global temperature distributions, e.g.

elements of ... programming 67

4 Note that while in the m-file Editor,
MATLAB asks you if you want to over-
write an existing file, when saving a
file directly from a program, no such
dialogue box or warning is given.

Recall that in using the movie2avi
command, you pass a filename — simply
modify the filename passed, in a similar
way to in which you modified the
filename for loading the temperature
data.

exist

Tests for whether a specified
variable, function, file, or directory
exists, and in generally, which is
these it is.

The general syntax and usage is:

exist('A")
to return what A is.

An extended syntax with a second
passed parameter:

exist(’'A’, 'file’")
returns value of 2 is returned is A if a
file, and for:

exist(’'A’,’'dir")
returns a value of 7 is returned is A if
a directory.

4 Either near the very start of the
program (neater), or just before you
need to use the string (to save a file).

68 str="do you like bananas?’ [exam version]

my_filename = ['NEW_' my_filename];

where here, we take the string contained in my_filename, we append
a 'NEW_’ to the start>®, and assign the new (longer) string back into
the variable my_filename.

The file naming becomes a little awkward, so rather than the entire
filename + extension, you might just store just the filename in the
(my_filename) variable. i.e.

my_filename = 'GE0111_movie’

but the remembering when you test fo rthe existence of a particular
file, you must add the extension, i.e.

’

filename_check = exist([my_filename ’'.avi’],’'file’)

(here we create a new string [my_filename ’.avi’] by concatenating

my_filename with the extension ".avi’). If the filename exists, the new
filename we generate can then be:

my_filename = [my_filename ’'_NEW’'];

(adding the "_NEW’ after, rather than before the existing filename
string).

2.5.2 while ...

We can re-frame the earlier example programs using the while con-
struct rather than the for loop. But now ... you need to specify under
what conditions the loop continues as the basic syntax (see earlier or
help) is:

while STATEMENT (IS TRUE)

CODE
end

Here — STATEMENT (IS TRUE) is the conditional. For instance and
rather trivially, create the following as a program and run it>":
while true

disp('sucker’)
end

What has happened is that true is always ... true. Hence the con-
dition is always met and the while loop loops forever. Conversely,
while false would never loop, not even once. more interesting and
useful is when the statement might change in value as the loop pro-
gresses.

Consider (and type up in a script):

n=0;

while (n < 10)

disp('sucker’)
end

5° Note that because the filename
already has its ".avi’ extension attached,
you’ll have to modify the start of the
string.

> You ... are going to need a Ctrl-C on
this one ...

elements of ... programming

This also will loop for ever as n is initialized to 0 and hence the state-
ment (n < 10) is always true. But if we increment the value of n each
time around the loop:

n=20;

while (n < 10)
disp(’'not a sucker’)
n=n+1;

end

then the loop will execute exactly 10 times (just as per for n = 1:10).
You could also do this in reverse:

n = 10;

while (n > 0)
disp('not a sucker’)
n=n-1;

end

Now, n counts down from 10 and when it reaches a value of 0, it is
no longer greater than zero and the statement (n > 0) is false (and
the loop terminates).

It is not always completely obvious whether even simple while
loops like this execute g or 10 (or 11) times particularly when often
you might come across while (n >= 0) that allows the loop to con-
tinue when when n has reached z value of zero (but not below). So -
spend a little while playing about with different while configurations
and loop criteria.

Finally, note that the conditional statement in the while loop need
not test for an integer being larger or smaller than some threshold.
One could equally loop on the basis of a string equality /inequality.
For example, taking the previous example using break could be re-
coded with a while loop:

’

my_questionl = 'Please enter a number: ;

my_question2 = 'Another input (y/n)? ';
my_string = 'y’;
while strcmp(my_string,’y’)
my_number = input(my_questionl);
my_string = input(my_question2,’s’);
end

and ends up a slightly shorter and more compact piece of code, omit-

ting the need for a break or a nested structure. However, in this

example, we do need to initialize the value of my_string (to 'y’ — as-

suming that we want at least one number). Try it and then adjust it

so that the loop proceeds as long as the answer is not 'n’ (rather than

as long as it is "y’)>*. Note that as before — it is up to you to ‘do’ (i.e. 5 See earlier Example.
add or modify the code) something with the number entered in an

69

70 str="do you like bananas?’ [exam version]

stored in the variable my_number, as each time around the loop, the
previous value is over-written by the new input.

EXTENDING THE FILENAME CHECKING EXAMPLE53 to fully integrate
a loop and conditional. The problem with the previous code is that
you checked for the existence only a default filename (and appended
'_NEW'’ if a file already existed).

One (partial) solution would have been, rather than append a pre-
defined string ((_NEW’) to the filename, would be to request that the
user provide either a string to append, or a completely new filename.
You have already see the input command in action, so you should be
in a good position to code this modification up.5+

A better solution (because even when asking for an alternative
filename — what if that file exists too?) would be to keep checking for
a filename clash and keep asking for a new filename, until a unique
one is found. Who knows how many attempts this might take (to
find an unused filename), so while ... would be a better choice of
loop than for Becasue exist returns a 2 if the file already exists,

a logical condition for while would be while exist is returning 2:

my_question = 'Please enter an alternative filename (without
the extension): ’;
while (filename_check == 2)

my_filename = input(my_question,’s’);

filename_check = exist([my_filename
end

.avi'l,’'file’)

Within the loop, a new filename is requested and then check
against the directory contents. What is missing is the initial value
of filename_check. In a previuos example, we simpy set a value at
the start. If we did that here, the first line of this code would look
like:

filename_check = 2

In this case, we do not need a default filename as the user provides
the veyr first filename that is tested. Alternatively, we could perform
a single check before the loop starts:

my_question = 'Please enter an alternative filename ...
(without the extension): ’;

my_filename = 'GE011ll_movie’;

filename_check = exist([my_filename ’'.avi’],’'file’)

while (filename_check == 2)

my_filename = input(my_question,’'s’);
filename_check = exist([my_filename ’
end

.avi'],’'file’)

5 Which first time around did not
actually combine loops and conditionals
in the same structure. Rather, a loop
came first in the program (loading in
and plotting the temperature data),
ended, and only then a conditional
checking the filename.

54 Effectively, all you have to do, if exist
returns a 2 and the file already exists,

is to ask for an alternative filename,
and use the string entered in as the new
filename (and don’t forget to add the
".avi” extension to the end when saving)

2.6 Even more (and loopier) loops

[Further examples of increasingly extreme loopiness.]

LOOPING THROUGH ARRAYS. In plotting e.g. global temperature distri-
butions, it would be nice to add on the continental outline. Currently
and particularly with the very basic 2D plotting you have seen so far
(pcolor) left to some extent guessing where the land and where the
ocean is.

A pair of files are provided (from the website), comprising a series
of pairs of lon-lat values that delineate the outline of the continents
and all but the smallest of islands:

continental_outline_lat.dat
continental_outline_lon.dat

Download, and load these into the MATLAB workspace (in the
‘usual way’). You should now have 2 vectors. Maybe view then in
the Variable Window to get a better idea of what you are dealing
with. Also keep an eye on the entries in the Workspace Window and
perhaps the Min and Max values to give you an idea of the range
(here: of longitude an latitude values). Try plotting these lon/lat lo-
cations. Use the scatter plotting function (which makes it all the
easier as your data is in the form of 2 vectors already). You might
need to reduce the size of the plotted points (refer to the earlier ex-
ercises, or help) and additionally, you might want to fill the points
(up to you). Remember you can set the axis limits, which presumably
should be o to 360 or -180 to 180, on the x-axis (longitude), and -9o to
+90 on the y-axis (latitude). Font sizes of labels can also be increased
if necessary. You might end up with something like Figure 2.3.

By plotting dots (points), the coastal outline at higher latitudes
gets increasingly pixelated (why?). So, we might instead plot as lines
between the lon-lat pairs. For this, you could simply use plot. Do
this, and see if you get something like Figure 2.4..

Well ... interesting. If you think about it, as one continental outline
is completed, the next lon-lat pair will be for the next continent or
island. What plot does is to join up *all* the adjacent points, which is
why you get the straight lines criss-crossing the map with the start of
each successive continent and island in the dataset joined to the end
of the previous one.

The continental outline dataset is not actually that useless. There
are additional files that specify which block of lon-lat pairs belong to
a single shape (i.e. continent or island). Load in the 2 additional files:

continental_outline_start.dat
continental_outline_end.dat

elements of ... programming 71

Continental outline

latitude

e
LT

4150 -100 50 50 100 150

o
longitude

Figure 2.3: Continental outline (of
sorts).

Continental outline

latitude

150 -100

50 o 50
longitude

Figure 2.4: Another continental outline
(of sorts).

72 str="do you like bananas?’ [exam version]

These vectors hold information regarding the start row and end row,
of each shape. Again, view the contents of these vectors to get an

idea of what is going on. For example, you'll see that the first entry is
that the first shape starts on row 1 (continental_outline_start.dat),
and ends on row 100 (continental_outline_end.dat). The and
shape starts on row 101, and ends on row 200. etc etc The simplest
way too start dealing with all this, is to just plot the very first shape,
defined by rows 1-100 of the lon and lat vectors. By now, you hope-
fully will be able to see that to plot rows 1-1600 of lon and lat data,
you are going to do:

plot(lon(1:100),lat(1:100));

(here I have named the arrays lon and lat for added convenience
rather than the long-winded default file-name based versions
(continental_outline_lat, continental_outline_1lon)).

Well ... this is probably about as unexciting as it gets — a small
piece of the Antarctic coastline. If you do a hold on and plot the
next block (rows 101-200), you'll get the next chunk of coastline.

(Try this and see.) You could keep going this — manually adding
additional sections of the global continental outline. This could

get tedious ... and it turns out that there are 283 different frag-

ments to plot, all one after another. (This number comes from ask-
ing MATLAB the length of continental_outline_start.dat or
continental_outline_end.dat.) This is, of course, why we need to
get clever with a loop and automatically go through all 283 fragments,
plotting them on on top of another in the same figure.

How? First you need to have the plot command in a more gen-
eral form — you do not want to have to read the values out of the
continental_outline_start.dat and continental_outline_end.dat
files manually. Hopefully, it should be apparent that you can re-write
the plot statement for the first fragment, as:

plot(lon(line_start:line_end),lat(line_start:line_end));

where for the first fragment, the values of line_start and line_end
are given by lstart(1) and lend(1), respectively (renaming the
original vectors to shorten the variable name)>>. Re-writing again:

plot(lon(lstart(1l):lend(1)),lat(lstart(1l):lend(1)));

Try this and check you still get the single piece of the Antarctic coast-
line.

Really, you should hopefully be making the mental leap to looking
at (1) and thinking that it could be: (n), where n is a loop counter
which can go from 1 to 2835° and hence loop through all the line
fragments. Yes? For instance, setting n=1, and plot (with n replacing

length

This function could almost not be
simpler — just pass the name of a
vector, and it returns its length (i.e.
the number of rows, or columns,
depending on the shape of the
vector).

55 You cannot use the obvious variable
name end — why not?

5 This number comes from a 5th file

— continental_outline_k.dat, that
numbers the continents/islands from

1 to 283. You don’t need it, although
downloading it, loading it, and deter-
mining the length f the vector gives you
the loop limit and you would not have
to go trusting me to write down 283
correctly without making a mistake ...

1 in the code fragment above) — you should again get that very first
fragment. Try setting n=283 and plot. Do you get the last fragment
(what is it of57)?

So ... create yourself an m- file. Load in the lon-lat pairs as vectors
(renaming then to something more manageable if you wish). Load in
the vectors continuing the start and end information. Create a do ...
end loop. Maybe print (disp) the loop count and run the program
(after saving), just to check first that the loop is functioning correctly.
Before the loop, create a Figure window. and set hold on. You now
have a basic shall of a program — loading in the data, initializing a
figure, and appropriate looping, but not yet actually doing anything
within the loop.

In the loop all you need is the plot command, but with the start
and end rows being a function of n (or whatever you call the loop
counter). Set axis dimensions and label nicely (after the loop ends).
Run it. Hopefully ... something like Figure 2.5 appears(?)

elements of ... programming 73

57 An island at about 20N and -150E if
you have done it correctly.

Continental outline

latitude

150 -100

50 o 50
longitude

Figure 2.5: Another go at the continen-
tal outline!

3
Further ... MATLAB and data visualization

This chapter is something of a potpourri of MATLAB data and visu-
alization methodologies and techniques, generally building on the
basics covered in Chapter 2.

76 str="do you like bananas?’ [exam version]

3.1 Further data input

Previously, you imported ASCII data into MATLAB using the load
command’. You might not have realized it at the time, but the use of
load requires that your data is in a fairly precise format. MATLAB
says "ASCII files must contain a rectangular table of numbers, with an
equal number of elements in each row. The file delimiter (the character
between elements in each row) can be a blank, comma, semicolon, or tab
character. The file can contain MATLAB comments (lines that begin with a
percent sign, %)." Firstly, your data may not be in a simple format and
often may contain both numerical values and string values. Secondly,
your data may not even be in a text/ASCII format. For instance,

you data maybe be in an Excel spreadsheet, or for spatial scientific
data, an increasingly common format is called 'netCDF’" (Network
Common Data Form). In this section, we’ll go through the basics and
some examples of each.

3.1.1 Formatted text (ASCII) input

The general procedure that you need to follow to input formatted
text data is as follows:

1. First, you need to ‘open’ the file — the command (function) for
this is called fopen (see Box). You need to assign the results of this
function to a variable for later use.

What is going on and why this all differs so much form using
load, where you only had to use a single command, is that you
first have to open a connection to the file ... before you even read
any of the contents in(!)>.

2. Secondly ... you can read the content in (finally!). The com-
plications here include specifying the format of the data you are
going to read in. You also need to tell MATLAB the ID of the file
that you have opened (so it knows which one to read from). The
function you are going to use to do this is called textscan.

3. Close the file using fclose (see Box). You are going to have to
pass the ID of the open file again when you call this function (so
MATLAB knows which file to close).

4. Lastly, you are going to have to deal with the special data struc-
ture that MATLAB has created for you ...

If you are interested (probably not) — the connection made to an
open file is called a file pipe. Typically, you have have multiple open
file pipes at the same time in programs, and this is why obtaining and
then specifying a unique ID for the pipe you wish to read or write
through, is critical.

* Or maybe "cheated” and used the
MATLAB GUI ...

opening and closing files

MATLAB has a pair of commands
for opening and closing files for
read /write:

e fopen will open a file. It
needs to be passed the name (and
path if necessary) of the file (as
a string), and will return an ID
for the file (assign (save) this to a
variable — you'll need it!).

e fclose ... will close the file. It
requires the ID of the file (i.e. the
variable name you assigned the
result of calling fopen to) passed
to it as a parameter.

textscan
According to (actually, para-
phrased from) MATLAB:

C = textscan(ID, format)

" ... reads data from an open text file into
a cell array, C. The text file is indicated
by the file identifier, ID. Use fopen to
open the file and obtain the ID value.
When you finish reading from a file,
close the file by calling fclose(ID)."

The ID part should be straightfor-
ward (if not — follow through the
Example).

The format bit is the complicated
bit ... There is some help in a fol-
lowing Box and via the Example.
Otherwise, there is a great deal of
details and examples in MATLAB
help - you could look at this as a
sort of menu of possibilities, and
given a particular file import prob-
lem, the best thing to do is simply
scan through help, looking for
something that matches (or is close
to) your particular data problem
(and/or ask Google).

> This is very common across all(?)
programming languages.

further ... matlab and data visualization 77

As AN INITIAL ExaAMPLE to illustrate this alternative (and more flexi-
ble) means of importing of data, we are going to return to the paleo

atmospheric CO, proxy dataset file — paleo_C02_data.txt3. Assum-

ing that you have already (previously) downloaded it, open it up
in a text editor and view it — you should see 4 neatly (ish) aligned
columns of numeric values ... and nothing else#.

OK - so having seen the format of the data in the ASCII file, you
are going to work through the following steps>:

1. First ‘open’ the file — you will be using the function command
fopen, and passing it the filename® (including the path to the file
if necessary). So that you can easily refer to the file that you have
opened later, assign the output of fopen” to a variable, e.g.

» openfile_id = fopen(’paleo_C02_data.txt’);

2. Now ... this is where it gets a trickier — the function you are go-
ing to use now is called textscan. Refer to help on textscan, but

as a useful minimum, you need to pass 3 pieces of information:

(@) The ID of the open file (you have assigned this to a handy
variable (openfile_id) already.)

(b) The format of the file (see margin note). (This is where it
gets much less fun, but hang in there!) You simply list, space-
separated, and between a single set of quotation marks, one
format option per element of data.

In this particular Example, there are 4 items of data (per
row) — each of them is an integer or a floating point number$,
depending on how you want to look at it. Assuming that the

data is a floating point number, the format for the input of each

number item, is %f.

The result of textscan is then assigned to a parameter, e.g.
my_data = textscan(openfile_id, '%f %f %f %f’);

3. So far, so good! And you can now close the file:

» fclose(openfile_id);

4. Actually, it does get worse before the end of the tunnel ... what

textscan actually returns, i.e. your read-in data, is placed into
an odd structure call a cell array. It is not worth our while wor-
rying about just what the heck this is, and if you view it in the
Variables window (i.e. double click on the cell array name in
the Workspace window), it does not display the simple table of 4

columns of data that maybe you were expecting. For now, we can

transform this format into something that we are more familiar
with using the cel12mat function, e.g.

3 The version that you have used before
- not to be confused with a version
ending in .dat that we will look at
shortly ...

4 This 'nothing else’ is important as it
is the reason why you were previously
able just to load the data.

5 You can start off working at the com-
mand line if you wish, but ultimately,
you are going to need to put everything
into an m-file.

¢ For convenience, you could assign the
filename (+ its path) to a (string) vari-
able and then simply pass the variable
name — remember, no ' ’ needed for

a variable naming containing a string
(whereas ' '’ is needed for the string
itself).

7 The output is a simple integer index,
whose value is specific to the file that
you have opened.

According to MATLAB help:

"the format is a string of conversion
specifiers enclosed in single quotation
marks. The number of specifiers de-
termines the number of cells in the
cell array C." Take this to mean that
you need one format specifier, per
column of data. The specifier will
differ whether the data element is a
number or character (and MATLAB
will further enable you to create
specific numerical types).

The format specifiers are all listed
under help textscan. However,
your Dummies Guide to textscan
(and good for most common appli-
cations) is that the following options
exist:

%d - (signed)integer

%f - floating point number

%s - string

MATLAB will automatically repeat
the format for as many lines as there
are of data. Alternatively you can
specify precisely how many times
you would like the format repeated
(and hence data read in).

8 At least, none of them are clearly
strings, right?

78 str="do you like bananas?’ [exam version]

my_data_array = cell2mat(my_data);

And now ... it is done, i.e. there exists a simple array, of 4 columns,
the first being the age (Ma), the second being the CO; concen-
tration value (units of ppm), and the 3rd and 4th; minimum ad
maximum error estimates in the proxy reconstructed value. :)

As A FURTHER EXAMPLE, we are going to process a more complicated
version of the paleo atmospheric CO; proxy dataset. The file is called
paleo_C02_data.dat and is available from the course webpage. An
initial problem here is even opening up the file to view it — if you
use standard Windows editors such as Notepad it fails to format it
properly when displaying its contents®. The first lesson then in sci-
entific computing then is to have access to a more powerful/flexible
editor than default/built-in programs such as Notepad. One good
(Windows) alternative is Notepad++'°. So go open the file with this
instead'’. Note the format — there are a bunch of header lines and
moreover, some of the columns are not numbers (but rather strings).
So even if you were to edit out the headers with comments (%), you
are still left with the problem of mis-matched columns. You could
edit the file in Excel to remove the problematic columns ... but now
this seems like a real waste of time to be editing data formats with
one software package just to get it into a second! (Again, you could
use the MATLAB GUI import functionality ... but it will be a healthy
life experience for you to do it at the command line :0))

OK - so having gotten an idea of the format of the ASCII data file,
you are going to work again through the 4 steps:

1. First ‘open’ the file as before (fopen) and assigned the ID re-
turned by the function to a variable openfile_id2.

2. Call textscan. However, we now want to pass 3 pieces of infor-
mation (compared to 2 before):

(@) The ID of the open file.

(b) The format of the data.

(c) And now — a parameter, together with an (integer) value, to
specify how many rows of the file, assumed to be the header
information, to skip.

(Again — the result of textscan is then assigned to a variable
which will represent a cell array.)

Lets do the easy bit first — to tell MATLAB to skip # lines of a file,
you add the parameter 'HeaderLines’ to the list of parameters
passed to textscan, and then simply tell it how many lines to skip.
In this Example, you’d add:

MATLAB claims that a cell array
is "A cell array is a data type with in-
dexed data containers called cells. Each
cell can contain any type of data. Cell
arrays commonly contain pieces of text,
combinations of text and numbers from
spreadsheets or text files, or numeric
arrays of different sizes." I am sort of
prepared to believe this.

Basically, in object-oriented speak,
a cell array is an object, or rather, an
array of objects. As MATLAB hints
— the cells can contain *anything*.
Your limitation previously is that
an array had to be all floating point
numbers, all integers, or all strings,
and if strings, all the strings had
to be the same size. For strings in
particular, it is obvious that a more
flexible format where a vector could
contain both ‘banana’ and "kiwi’
is needed (try creating a 2-element
vector with these 2 words and see
what happens). You clearly might
also want to link a number with a
string (e.g. number of bananas) in
the same array, rather than have to
create 2 sperate arrays.

cell2mat

Having created this weird format
(cell array), now MATLAB has
to give you a way of converting the
data inside into something more
usable. The function is cell2mat,
which for a cell array C:

A = cell2mat(C);

will return the corresponding
(‘normal’) array A.

Now this is only true if all the
data in C is of the same tpye (e.g.
all floating point numbers). If the
data types are mixed or you only
wish for a sub-set of the data to be
extracted and converted, simply
index the required part of the cell
array (Examples on this later).

91f you use a Mac (or linux) however,
all text editors should display the
content jus fine.

** Conveniently installed on the Watkins
computer lab computers.

" Right-mouse-button-click over the file,
then select Open with and then click on
Notepadd++.

> Recall that MATLAB ignore lines
starting with a % and this includes
loading in data lines using load.

further ... matlab and data visualization

my_data = textscan(openfile_id2, ... ,’HeaderLines’,3);

OK - now to dive back into the MATLAB syntax mire ... Lets
just load in just the first 2 columns of data, and assume that they
are both integers (and skipping the first 3 lines of the file as per
above). We might guess that we could simply write:

my_data = textscan(openfile_id2, '%d %d’', 'HeaderLines’,3);

Try it (including closing the file, and a call to cel12mat, as before).
What has happened?

It seems that MATLAB translates your format ('%d,%d’) into: read
in a pair of integers, and keep automatically repeating this, until
something else is encountered’. That something else is sequence
of characters at the end of the first data line (line #4, because we
skipped the first 3), that makes MATLAB think that it has finished
(or rather, that it cannot reading in 2 pairs of integers any longer).
This leaves you with 2 pairs of integers —i.e. a 2x2 matrix (as
you'll see if you look at my_data_array).

Here is a solution — we could omit all the information following
the first 2 elements (something for Google to help with)."3:

my_data = ...
textscan(openfile_id2, ’sd %d %*["\n]’, 'Headerlines’,3)

3. Now close the file:
fclose(openfile_id);

4. And now convert the results to something more human-
readable:

my_data_array = cell2mat(my_data);

This should do it — a simple array, of 2 columns, the first being the

age (Ma) and the second the CO; concentration value (units of ppm).

There must be some sort of important life lesson hidden here.

Perhaps about only working with well-behaved data files, or using
the GUI import functionality? But hopefully it does illustrate that
messy files can be dealt with, without the need for laborious editing
or processing in Excel.

3.1.2 Importing ... Excel spreadsheets

If your data is contained in an Excel spreadsheet, and you want it in
MATLAB, your options are:

1. Select some, or all, of the columns and rows in a specific work-
sheet, and either copy-paste this into a text file (but taking care
that the worksheet column widths are formatted such that they

3 This turns out to be specifying
"ssx[\n]’, which in effects sort of
says:

’skip everything (all the fields) (%*)
up until the end of the line is found

(I"\nD).

79

80 str="do you like bananas?’ [exam version]

are wider than the widest data element), or save in an ASCII for-
mat, with comma or tab delineations between columns. In either
case, then load in the data using load, or if consisting of mixed
numbers/text, go through the Hell that is textscan ...

2. Use MATLAB function xlsread.

So ... option #2 looks ... is looking the easiest ... :)

As AN EXAMPLE, lets return to the paleo proxy CO, data again, but
this time, as an Excel sheet. The data file you need is:
paleo_CO2z_data.xlIsx

(You may as well go load this into Excel just to take a look at the
format and so subsequently, you'll know if you have imported it
faithfully or not.)

From the help box on x1lsread, it should be pretty apparent what
you do. And in fact, I am going to leave you to work it out - try and
import the age and CO; data (the numeric part of the data) from
paleo_CO2z_data.xIsx.

If you need to, you index a cell array, pretty well much like a nor-
mal array, except it has an alternative syntax. For a normal, numeric
array A, you might write:

» A(4,3)

to reference the value in the 4th row, 3rd column. For a cell array C, to
index the cell in the 4th row, 3rd column, you'd also write:

» C(4,3)

but you'd get a cell returned, not the value in the cell. If you want
the value in the cell located at (4,3), you'd put the index in curly
brackets:

» C{4,3}

and you’d get a value of 3000 returned in the example of raw.

3.1.3 Importing ... netCDF format data

Much of spatial, and particularly model-generated, scientific output,
is in the form of netCDF files. This is a format designed as a com-
mon standard to facilitate sharing and transfer of spatial data, but in
a way that enables e.g. a ‘complete” description of dimensions and
various types of meta-data to be incorporated along with the data.
The format is platform independent and a variety of graphical view-
ers exist for viewing and interrogating the data. Most programming
languages support the reading and writing of netCDf format data.
MATLAB is no exception here.

xlsread

There are various uses (i.e. alterna-
tive allowed syntax) for xlsread for
an Excel file with name filename.
The 2 relevant and more useful ones
look to be:

1. num = xlsread(filename)
which will return the *numeric*
data in the Excel file filename in
the form of a matrix, num. Note
that non-numeric (e.g. string)
headers and/or columns, are
ignored. Also note that num is a
‘normal’ numeric array and does
not require any conversion.

2. [num,txt,raw] = ...
xlsread(filename) will
additionally return text data in a
cell array txt, and *everything* in

a cell array raw.

You can also specify a particular
worksheet out of an Excel file to load
in:
num = ...
xlsread(filename, sheet)

(and there are further refinements
and options listed under help).

further ... matlab and data visualization 81

As per the previous subsection on data import, and indeed file
read/write in programming languages in general — one opens a file
and receives an ID for that file. The file can then be written to or
read (including just interrogating its properties rather than neces-
sarily extracting spatial data) using this ID. And of course, closed
(using the ID). However, the netCDF standard is a little odd in how
reading /writing is implemented and everything has to be done by
determining the ID of a particular data variable or property of the
file. As you'll see ...

The general approach for reading netCDF data is as follows:

1. Open the netCDF file by

ncid = netcdf.open(filename, 'nowrite’);

where filename is the name of the netCDF file (which generally
will end in .nc). "nowrite’ simply tells MATLAB that this file
is being open as read-only (this is the 'safe’ option and prevents
accidental deletion of over-writing of data).

2. This is the weird bit, as we cannot ask for the data we want
automatically :0) Instead, given that we know'# the name of the
variable we want to access, we ask for its ID ...

varid = netcdf.inqVarID(ncid,NAME);

where NAME is the name of the variable (as a string), allowing us
to then request the data:

data = netcdf.getVar(ncid,varid);

that says — assign the data represented by the variable varid, in
the netCDF file with ID ncid, to the variable data.

So actually, not totally weird — you request the ID of the vari-
able, then use that to get access to the data itself. The names of
the MATLAB commands vaguely make sense in this respect —
inqVarID for inquiring about the ID of a variable, and getVar for
getting the variable (data) itself’>.

3. Finally — close the file, by passing the ID variable into the func-
tion netcdf.close, i.e.

netcdf.close(ncid);

Note that you need to pass the ID of the netCDF file for each
and every command (after netcdf.open) so MATLAB knows which
netCDF object you are referring to.

For A netCDF ExaMmrLE, we'll take the output of a low resolution
Earth system model (GENIE). To start off, download the 2D marine
sediment results’ netCDF file — fields_sedgem_2d.nc. The data here

4 There are ways of listing the variables
if not.

5 It is beyond the scope of this course to
worry about why in the case of netCDF,
the function are all netcdf. something.
Just to say, it involves objects and
methods and is a common notation

in object orientated languages (that
nominally, MATLAB isn't).

http://www.seao2.info/mycgenie.html

82 str="do you like bananas?’ [exam version]

is relatively simple — a 2D distribution of bottom-water and surface
sediment properties, saved at a single point in time. In other words,

there are only 2 (spatial) dimensions to the data?®. 16 Adding time would make it 3 dimen-
sions (2 spatial + 1 of time). Adding

. height or depth in the ocean would also
downloaded it!), remembering to assign its unique ID to some vari- make it 3 (3 spatial). 3 spatial + time

able. Then, you'll want to get hold of (and assign to another vari- would make for a 4-dimensional dataset
able), the ID of the variable we want to get hold of and plot — in this

OK - we'll start by opening the file (assuming that you have

Example, it is called 'grid_topo’. Having obtained the ID for this
variable, you can then fetch it — assign it to a variable data. Then

close the file.7 7 You should be able to do all of this
without further hints — the sequence

. .18 . . . of commands and how they are used,
size. Why not plot it™®. Can you guess what it might be? Is it in the is given in the introduction to this

You should now have an array called data. It should be 3636 in

correct orientation? (If not — correct it.) iubsection: . .
Clearly what is missing are the x and y axis values, which you Your choice of 2D plotting funcion.
should have correctly deduced are longitude and latitude, respec-
tively, with latitude presumably going from -9o to g9oN, and longitude
... well, maybe it is not completely obvious exactly what the value of
longitude is at the original.

A great strength of netCDF its the ability of this file format to also
contain the grid (axis) details that the data is on. There are ways of
finding out the names of the axis variables (dimensions), but for now,

I'll give you them:

* ’lat’ —is the latitude axis. (Technically, the axis values are the
mid-points of the grid cells.)
® ’lon’ —is the longitude axis.

The axes are held in the netCDF file as vectors and we can retrieve
this (1D) data in a similar way to the 2D data:

varid = netcdf.ingVarID(ncid, 'lat’);

lat = netcdf.getVar(ncid,varid);
varid = netcdf.inqVarID(ncid, 'lon’);
lon = netcdf.getVar(ncid,varid);

in which we obtain the ID of the axis variable ’lat’, then retrieve the
axis data and assign it to a vector lat (and then likewise for longi-
tude). Do this, and confirm that you get plausible vectors represent-
ing positions along a longitude and latitude axis.
The final task would then be to take the 2 axis vectors, and create
a pair of matrices — one containing longitude values associated with
the 2D data points, and one containing latitude values associated
with the 2D data points. For this, you need to use meshgrid'. See 19 See subsequent section.
if you can create the necessary lon/lat matrices and then plot the

model topo data on its correct axes.*° 2 If you have flipped the data matrix
around earlier when plotting, un-do
this, or re-load the 2D data, or else the
experiment with in terms of plotting function, color scale, and any axes will no long correspond to the data

matrix orientation ...

The variable names of other data-sets that you might load and

further ... matlab and data visualization 83

other refinements that help visualise the data, include:

¢ ’ocn_sal’ — deep ocean salinity (units of per mil).

* ‘ocn_O2’ — concentration of oxygen in bottom waters (units of
mol kg~ 1).

e ‘sed_CaCO3’ — % of calcium carbonate in surface sediments.

IN A RELATED netCDF ExaMrLE, we'll extend the problem to 3D —

2 spatial dimensions (longitude and latitude) and one of time. The
file you need is called fields_biogem_2d.nc*'. You are going to go
through the same basic procedures of: opening the file, obtaining the
variable ID, accessing the data using that ID, and closing the file. The
name of the variable is called 'atm_temp’. Create a script to do this
all, calling the data array that you obtain by calling

netcdf.getVar(ncid,varid);

data3. How many dimensions does this array have? What are the
lengths along each dimension? Can you guess which dimension of
the 3 time is?

The name of the time axis variable is ’'time’, and you can access

the times along this axis (i.e. the times at which the model saved a 2D

spatial state) by:

varid = netcdf.ingqVarID(ncid, 'time’);
times = netcdf.getVar(ncid,varid);

Ideally, you should be able, given the 3D array that you have ob-
tained (from the data variable atm_temp), to specify and plot, the
1st model-projected surface air temperature distribution, as well as
the last distribution. And given that the variables for latitude and
longitude are also 'lat’ and 'lon’, you should be able to plot the
temperature distribution with appropriate axes (and contoured).

You should also ... using find, be able to determine (and plot) the
2D data slice corresponding to the year (mid point) 1999.5.

Finally, test yourself and understanding to date, by creating an
animation of how the surface air temperature in the model evolves
over time.*?

** The back-story is that this contains
the 2D surface ocean and atmosphere
fields form a model experiment in
which the climate system was spun-
up from rest and uniform values of
everything, so as time progresses, the
spatial patterns of the climate system
start to evolve and stabilize.

2 You have everything you need — the
vector of times, and from this you can
determine how many times there are
and hence the number of iterations of a
loop.

84 str="do you like bananas?’ [exam version]

3.2 Further (spatial / (x,y,z)) plotting

As you have seen earlier — the simplest possible way of taking a ma-
trix of data values and plotting them spatially, as a function of (x,y)
location, is the function image. In effect, this is treating your data as
if it were an image — the data values being the “color” of each pixel
and the location in the matrix defining where in the image (row,
column) the pixel is. The problem with this is that information re-
grading what is on the x and y axes is lost, be this distance, lat/lon,
or some set of observed/experimental variables, or whatever. instead,
the points are evenly spaced on both axes. Moreover, the raw values
are plotted and there is no possibility of interpolation/contouring

or smoothing. One could regard scatter plotting as an improvement
over this and a sort of x,y,z plotting, in as much as a 3rd dimension (z
data value) can be represented through color and/or symbol shape
and at time this can be quite effective. However, again, no interpola-
tion/contouring or smoothing is possible with scatter.

For plotting true (x,y,z)/’3D’ plots (i.e. data values in 2 spatial
dimension), MATLAB provides a wide variety of more formal ways
of plotting data spatially, including even the possibility of adding a
4th dimension representing the data value (x,y,z,zz) (see Box).

For a feel of what you should be able to learn to achieve using
MATLAB - go to the following webpage. In this data repository you
can do things like re-plot with different longitude, latitude, and tem-
perature ranges. Overlay the coastlines, and other useful things like
that. You can also click through the different months of the year to
get a feel for how the surface temperatures on Earth change with the
seasons. Note that the graphic produced from this particular website
is not particularly great, and you can all do better than this using
MATLAB already. Presumably there are some lazy PhD students
out there lacking the skills that you are (hopefully) learning. Perhaps
they should take GEO111 (or maybe you are ...)?

As AN EXAMPLE, load in the global topographic data file (etopoxdeg.dat)

from the course webpage. This is the height of the (solid) surface of
the Earth relative to mean sealevel in meters, with the continents
having a positive value and the ocean floor, negative. The data is
conveniently on a 1° (longitude and latitude) grid. You could view
the resulting elements of the 2D array in the Variable window if you
like ... but at 360x 180 in size, there may not be much of use you can
glean by visually inspecting the matrix>3.

Try throwing the array into the image function see what happens
(hopefully something like Figure 3.1). It it had happened to come out

x,y,z PLOTTING

MATLAB calls plots of a (z) value
as a function of both x and y, '3D’.
Strictly, one could look at some of
these functions as 2D, as scatter can
plot a 3rd data (z) value as different
colors/shapes/sizes as a function of
both x and y ... Anyway, the most
commonly used/useful and fortu-
nately simple, functions which create
a 2D (x, y) plot but with contours in
the value of (z), are:

1. contour — Plots a figure with the
data contoured, with a range and
increment between contours that
is fully specifiable, color-coded or
not, and labelled or not. Options
are also provided for specifying
how the contouring is done (and
the data interpolated).

2. contourf — Similar to contour,
except in between the (now sim-
ple black, by default) contours, a
fill color is plotted and scaled to
the data value.

For a genuine 3D plot, with surface
height determined by the data in

the 3rd dimension of the array, col-
ors and/or contours in the data in
the 4th array dimension, suitable
functions include:

surf, surfc, mesh

(but are not considered further here).

imagesc For a data array (matrix) A,
imagsc(A)

displays the data array as if a
bitmap, but unlike image (see ear-
lier), “uses the full range of colors in the
colormap".

3 More useful then are the summary
details in the Workspace window, such
as the apparent absence of NaNs and
that the Min and Max Earth surface
heights seem plausible.

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.MONTHLY/.temp/#nameddest=views

further ... matlab and data visualization 85

displayed upsidedown?4, then you’d need to flip the matrix upside-
down using the command:

etopoldeg=flipud(etopoldeg);

and if the Earth instead appeared on its side®>, you need to swap the
rows and columns (x for y axis):

etopoldeg=etopoldeg’;

It is not unusual for a first plotting attempt of spatial data to be in-
correctly orientated and a little trial-and-error to get it straight is
perfectly acceptable!

This is not exactly the prettiest of images. You can distinguish
ocean (blue) from land (mostly brown, but other color pixels in
places). Fortunately, MALTAB provides a variant of this plotting
function, imagesc, that calculates the color scale to exactly span the
min/max values in the data. Try it (and get something like Figure 3.2
hopefully).

The function imagesc also enables the range of data values the
cologr range corresponds to, to be set. Refer to help on this func-
tion and see if you can plot just the above-sealevel, i.e. land surface
heights, spanning zero (sealevel) to the maximum height2°.

Which sort of in a round-about sort of way also brings us to how
to set the color scale, which can be changed using the colormap com-
mand (see Box). Try out some different colormaps and re-plot the
global topography data.What scales work well and what do not?
Which scales help pick out details of e.g. ocean floor depth variation
and which help pick out simple land-sea contrasts. Think about what
one might want to highlight about global topography and what color
scale might be best for this purpose?

STICKING WITH GLOBAL EARTH SURFACE TOPOGRAPHY, how else can we
display the spatial data? For instance we might want to interpolate

it, contour it, or simple get the longitude and latitude exes correct.
Note that only by luck, because this particular dataset is 1 degree

by 1 degree, the default axis scale in MATLAB when using image is
approximately correct, although note that ‘latitude” has been ordered
in reverse and it goes from 1 to 180 rather than -go to 9o ... We'll
explicitly address this shortly.

To start with, you can simply use the contour function (see Box),
passing only the matrix (of global topography values). Try this. Now
you might want to think about flipping the matrix up-down, and/or
left-right, as your plot should have come out looking like Figure 3.3.

Once you have fixed the orientation of the topography map, you
might play about with the color scale (colormap) as before. You

It doesn’t in this particular case.

25 Actually, in this example, it is OK in
this respect too. Boring!

50

Figure 3.1: Very basic imaging (image)
of an array (2D) of data — here, global
bathymetry.

Figure 3.2: Slightly improved very basic
imaging (imagesc) of bathymetry data.
% Don't forget the function max.

colormap MATLAB has a number of
‘colormaps’ built in — color scale that
determine the colors that correspond
to the data. The command to change
the colormap from the default is:

» colormap NAME

where NAME is the name of the col-
ormap. You can find a list of possible
colormaps in help on colormap (in

a table towards the bottom). But a
brief summary is:

e parula - the current MAT-
LAB default — chosen to provide
a wide range of color and color
intensity.

e jet —the old MATLAB de-
fault, but one which uses red and
green in the same color, which
should be avoided (why?).

* hot, cool — relatively simple
color transitions but useful — hot
is something like you'll see in
publication figures.

® pink — another simple and at
times useful transition and from
dark (almost black) to white.

To return to the default colormap:

» colormap default

86 str="do you like bananas?’ [exam version]

might also try the companion to contour — contourf. Re-orientating
the matrix, switching to a different colormap, and plotting using
contourf, might give you something like Figure 3.4.

OK, so a next refinement in plotting esp. maps and contour plots,
is firstly to specify the range of the color scale, as we may not want
the min-to-max range chosen by default by MATLAB, and the num-
ber of contours (e.g. in the topography example, they are pretty far
apart and it is difficult to make out much detail). Both of these fac-
tors can be addressed simultaneously, by giving MATLAB a vector
containing the value at which you want the contours drawn?7.

Taking the global topography data — lets say you were interested
only in low lying and shallow bathymetry, and wanted 20 con-
tours intervals. Assuming a range in topographic height (relative
to sealevel) of -1000 m to +1000 m, you should be able to deduce how
to create the vector(?)28

Do this and check e.g. by opening up the vector in the Variables
window. You should see the numbers from -1000 to 1000 in intervals
of 100. Why, for instance, can you not simply write:

» v = [-1000:10001];

??? (Or rather: why might this not be a good idea ... ?)

Having created a specific vector of contours to plot, try it out. OK
- so this is a little weird and maybe not so useful, but you get the
point hopefully. So try plotting the following;:

1. Just above sealevel topography, up to 10,000 m, in increments
of 100 m.

2. Just the sealevel (coastline) contour ... trickier — create a vector
with a value at zero, and a value either side — one very high and
one very low. Use contour rather than contourf, although the
latter produces a lovely land-sea mask!

3. Convert the data matrix of value in units of m, to ft, and plot
the ocean floor (values equal to or below sealevel) in intervals of
1000 ft.

4. Finally — try some different color scales for the above. Think
about which color scales best help illustrate the data, and whether
contour or contourf is clearer. Also: how many contour intervals
is ‘best’? You key is to make features clear, within the plot becom-
ing cluttered or overly detailed.

The final refinement in contour plotting we’ll look at is adding la-
bels to the contours. The command to do this is clabel (for 'contour
label’) (see Box). Now, before anything, there is a slightly complica-
tion. clabel needs to know details of the contours and graphics ob-
ject with which to do anything with. For the purposes of this course,

7 By default: MATLAB determines the
minimum and maximum data values,

and draws 10 equally spaced contours
between these limits.

B1If not, it is:

» v = [-1000:100:1000];

contour There are various uses of
contour. The simplest is:

contour(2)

where Z is a matrix. Thsi ends up
similar to image except with the data
contoured rather than plotted as
pixels (the ‘simularity” here is that
the x and y axis values simple are
the number of the rows and columns
of the data).

You can specify the values at which
the contours are drawn, by passing a
vector (v) of these values, e.g.

contour(X,v)
More involved and practical, is:
contour(X,Y,Z)

where X, Y, and Z, are all matrices
of the *same* size (there is impor-
tant). X and Y contain the x and y
coordinate locations of y data values
(contained in matrix Z). In the exam-
ple of a map — X and Y contain the
longitude and latitude values of the
data values in Z.

Similarly, you can add a vector v
containing the contours to be drawn,
by:

contour(X,Y,Z,v)

further ... matlab and data visualization 87

you don’t have to worry about the details of this, but simply need to
know the following:

1. When you call contour (or contourf), 2 parameters are re-
turned, which so far you have not cared about or even noticed. We
now need them. SO when you call either potting function, using
the syntax:

[C,h] = contour(...)

which saves a matrix of data to C, and a ID (technically: graphics
object "handle’)to h.
2. When you call clabel, pass these parameters back in, e.g.

clabel(C,h)

(in its most basic usage).

If you do this, in an earlier example of plotting just the zero height
contour, and now using the most basic default usage of clabel (as
above), you get, for good or for bad, Figure 3.5.

In the default usage of clabel, you'll get a label added on every
contour that you plot. This ... can get kinda messy if you have lots
and lots of contours plotted. You may well not need every single
contour labelled, particularly if you also provide a color scale (see
below). So you can also pass in a vector to tell MATLAB which con-
tours to label. For example, if you have a contour interval vector:

v = [-1000:100:1000];
maybe you onyl want labels every 50om, so you’d use a vector:
w = [-1000:500:1000];

to specific the labelling intervals. The complete set of commands
becomes:

[-1000:100:1000];
[-1000:500:16000];

» [C,h] = contour(etopoldeg,v);
» clabel(C,h,w);

» vV
» W

M

Finally — missing from our color-coded plots so far, is a color scale
to relate values to colors (although labelling the contours works as an
OK substitute). The MATLAB command is simple:

» colorbar

(and see Box for further usage). Try adding a colorbar, and in different
places in the plot. Refer to the Box to try and add a caption to it ...

Figure 3.3: Example result of basic
usage of the contour function.

Figure 3.4: Example usage of contourf,
with the hot colormap (giving dark-
/brown colors as deep ocean, and
light/white as high altitude).

Figure 3.5: Example usage of contour,
contouring only the zero height isoline,
and providing a label.

clabel
» clabel(C,h)

labels every contour plotted from
[C,h] = contour(...);

(or from contourf).

By prescribing and passing a vec-
tor v of contour intervals, you can
label fewer/specific intervals rather
than all of them (the default), e.g.

» clabel(C,h,v)

88 str="do you like bananas?’ [exam version]

IN THIS NEXT EXAMPLE, we'll address the issue with missing/incorrect
lon/lat axis labels on the plots.

Each data point in the etopoldeg matrix should have one longi-
tude value (x-axis) and one latitude (y-axis) value associated with
it. It should hopefully be intuitive to you now ... that what we need
is a pair of matrices, of exactly the same size as the etopoldeg data
matrix — one holding longitude values and one latitude values. There
are various ways of creating the required matrices 'by hand’ (or in-
volving writing a program including a loop). All of them are tedious.
There is a MATLAB function to help. But it is not entirely intuitive®?
... meshgrid.

Spend a few minutes reading about it in help. In particular, look
at the examples given to help you translate the MATLAB-speak
gobbledegook of the function Description. You should be able to
glean from all this that this function allows us to create two a x b
arrays; one with the columns all having the same values, and one
with the rows all having the same values (exactly what we need
for defining the (lon,lat) of all the global data points). If not, and
probably not — see Box. And then lets do a simple example (adapted

from help):
» [X,Y] = meshgrid(1:3,10:14)
X =
23
23
23
23
23
Y =
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14

Here, we are taking 2 vectors — [1:3] and [10:14], and asking MAT-
LAB (very nicely) to create 2 matrixes, one in which [1:3] is repli-
cated down, until it has the same number of rows as the length of
[10:14], and one in which [10:14] is replicated across until it has
the same number of columns as the length of [1:3]. (Try it.)

It'll become apparent *why* bother shortly. Honest.

In our Example — start my noting that the topography data is on a
regular 1 degree grid starting at o° longitude. Latitude starts (at the
bottom) at -9o° and goes up to +90°). We need a matrix containing
all the longitude values from 0° to 359° and latitude from -90° to 89°

colorbar
This almost could not be simpler:

» colorbar

plots the color scale! By default, is
places it to the RH sice of the plot. If
you wish for it to appear anywhere
else, use the modified syntax:

» colorbar (PLACEMENT)

where PLACEMENT is one of:
"northoutside’, "southoutside’,
'eastoutside’, 'westoutside’. Note
that these are strings and so need

to be in quotation marks. (More
options are summarized in a table in
help.)

Finally, you can also add a label to
the colorbar, but only if you get hold
of its ID (‘graphics handle’) when
you call colorbar, e.g.

» h = colorbar

will save the graphics handle in
variable h, which you can then muck
about with via:

c.Label.String = 'The

units of my lovely

colorbar’;
(Don't fight this — use this syn-
tax to set a label for the colorbar —
don’t worry about what it means.
MATLAB keeps rather annoy-
ingly changing the way it does this
anyway :()

2 DON’T PANIC!

meshgrid
The unholy syntax is:

[X,Y] = meshgrid(xv,yv)

Pause, and take a deep breath. On
the left — the results of meshgrid are
being returned to 2 matrixes, X and
Y. These are going to be our matrixes
of the longitude and latitude values
(in the particular example in the
text). So far so good(?)

On the right, passed into the func-
tion meshgrid, are two vectors — xv
and yv. Pause again.

What MATLAB is going to do,
is to take the (row) vector xv, and
it is going to replicate it down so
that there are as many rows as in
the vector yv. This becomes the
returned output matrix X. MATLAB
then takes the column vector yv, and
replicates it across so that there are
as many columns as in the vector xv.
This becomes the returned output
matrix Y.

further ... matlab and data visualization 89

3° These matrices need to be the same size as the data matrix.
Maybe just ‘do” it and then understand what has happebned after.
Create the longitude and latitude grids by:

» [lon lat] = meshgrid([0:359],[-90:89]);

View (in the Variables window) the lon matrix first. Scan through
it. Hopefully ... you'll note that it is 360 columns across, and in each
column has the same value — the longitude. The matrix is 180 rows
"high’, so that there is a longitude value for each latitude. Similarly,
view lat. This also should make a little sense if you pause and think
about it, with the one exception that the South Pole latitude is at the
"top” of the matrix — don’t worry about this for now ...

The only way to fuly make sense of things now, is to use it. Re-
member that use of contour (and contourf) can take matrices of x
and y (here: longitude and latitude) values that correspond to the
data entries in the data matrix (etopoldeg). Re-load the topography
data in case you have flipped it about in all sotes of odd ways, and
then do:

» [lon lat] = meshgrid([0:359],[-90:89]);
» contour(lon,lat,etopoldeg);

Almost! Note that the x and y axis labelling is "correct’ and parti-
caulrly the y-axis, where latitude gos from -go to go (although by
default MATLAB labels in intervals of 20 starting at -8o it seems).
But it also turns out that we do need to flip the data op-side-down.
We can actually do this in the same line as we plot:

» contour(lon,lat, flipud(etopoldeg));

Phew! (Figure Figure 3.6.)

The final complication is that the data points in the gridded
dataset (matrix etopoldeg), technically correspond to the mid-points
of a 1 degree grid, not the corners. So if we were going to try and be
formally correct3?, our vectors that we’d pass into meshgrid, would
be:

» XV [0.5:359.5];
» yv = [-89.5:89.5];

OK — ANOTHER ExAMPLE on this. Previously, you downloaded and
plotted monthly global distributions of surface air temperature. You
plotted these simply using pcolor (or image) and the results were

... variable. Certainly not publication-quality graphics and missing
appropriate longitude and latitude axes for the plots.

3 There is a slight complication with
this, which we'll get to shortly, but note
that the data array is 360 elements (x-
direction) by 180 elements (y-direction).

Figure 3.6: Usage of contour but with
lon/lat values created by meshgrid
function and passed in (and with the
hot colormap (giving dark/brown colors
as deep ocean, and light/white as high
altitude).

31 Don’t worry about this for now —
grids will be covered more in subse-
quence chapters surrounding numerical
(environmental) models.

9o str="do you like bananas?’ [exam version]

Make a copy of your original script (m-file) in which you cre-
ated the animation, and give it a new name. Edit your program,
and in place of pcolor, use contour or contourf (your choice!). Pass
in just the data matrix (of monthly temperature) when calling the
contour(f) function and don’t yet worry about the lon/lat values.
Get this working (i.e. debug it if not). You should end up with a
contoured animation (rather than a bit-map animation).

The problem with the axis labelling should be much more appar-
ent (than compared to the topography data, which was on a handy 1
degree grid already). So you need to make a matrix of longitude val-
ues, and one of latitude. using meshgrid. The grid is a little awkward:

1. The longitude grid runs from o°E (column #1) with an incre-
ment of 1.875°; i.e., 0.000°E, 1.875°E, 3.750°E, ... up to 358.125°E
(column #192).

2. Latitude runs from 88.54196°S (-88.54196°N) at row #1, to
88.54196°N (row #94) with an increment of about 1.904.

so I'll give you the answer up-front:

» lonv [(1.875/2):1.875:360-(1.875/2)1;
» latv = [-90+(1.904/2):1.904:90-(1.904/2)1;
» [lon lat] = meshgrid(lonv,latv);

Now use the longitude and latitude values matrices, in conjunction
with contour(f), to plot the global temperature distributions "prop-
erly’. Try plotting just one plot first, before looping through all 12
months.

At this point (before creating an animation), you might also ex-
plore some of the plotting refinements we saw earlier. For example,
as per Figure 3.7. Firstly — get the units of the temperature data array
into units of °C or °F rather than °K. Either: assign the temp array
data to a new array and make the appropriate conversion from °K
(all within the loop), or you can do this subtraction on the line that
you actually plot the data (i.e., within the contour/contourf func-
tion), for example:

contourf(lon(:,:),lat(:,:),temp(:,:,month)-273.15);

would convert to °C as it plotted the data.

You can also get the plotting temperature limits and contouring
consistent between months and with greater resolution by adding the
following line (before the loop starts):

v=[-40:2:401;
and then to the contour(...) (or contourf(...)) function, add ,v to

the end of the list of passed parameters. This particular choice for the
vector v tells MATLAB to do the contouring from -40 to 40 (°C), and

further ... matlab and data visualization 91

Climatological July surface air temperature

at a contour interval of 2 (°C).. Play around with the min and max

limits of the range, and also with the contour interval to see what
gives the clearest and least cluttered plot. For instance, maybe you

Latitude

don’t want the low temperatures to go “off’ the scale (the white color
in the filled contour plot).

150 200
Longitude

3.2.1 Plotting maps

-100 50 0 50

You can do some nice spatial plotting with this data using the MAT- Figure 3.7: Example con-

LAB Mapping Toolbox. This should be available as part of the MAT- tour plot including meshgrid-
generated lon/lat values. Result of
contourf(lon,lat, temp7,30), where
installed an academic version on a personal laptop). Refer to the on- the data file was temp7. tsv, with some
embellishments.

LAB installation in the Lab (and also if you have downloaded and

line documentation for the Mapping Toolbox to get you started. The
key function appears to be geoshow. Try plotting the region encom-
passing the ‘quake data, with a coastal outline (of land masses), and
the "quake data overlain. Explore different map projections. Remem-
ber to always ensure appropriate labelling of plots.

4
Further ... Programming

In this chapter we’ll get some (more) practice building programs

and crafting (often) bite-sized chunks of code that solve a specific,

normally computational or numerical (rather than scientific) problem

(algorithms) L * According to the all-mighty Wikipdeia
(and who am I to argue?) — an "algo-
rithm ... is a self-contained step-by-step
set of operations to be performed.
Algorithms perform calculation, data

processing, and/or automated reason-
ing tasks."

94 str="do you like bananas?’ [exam version]

4.1 find!

So — a single MATLAB function gets a high-level section, all to itself.
Either it’s really powerful and useful, or I am running out of ideas for
the text?.

find ... finds where-ever in an array, a specific condition is met. If
the specific condition occurs once, a single array location is returned.
The specific condition could occur multiple times, in which case find
will report back multiple positions in the array.

What do I mean by a “specific condition’? Basically — exactly as per
in the if ... construction — a conditional statement being evaluated
to true.

OK - some initial Examples.

Lets say that you have a vector of numbers, e.g.:

A=1[37519742];

and you want to find the maximum value in the vector — easy3

But ... you want to find *where* in the vector the maximum value
occurs. Why might you want to do this? Rarely do you have a single
vector of data on its own — generally it is always linked to at least one
other vector (often time or length in scientific examples). Trivially,
our second vector might be:

B = [0:7];

and is time in ms. The question then becomes: at what time did the
maximum value occur? Obviously, this is easy by eye with just 8
numbers, but if you had 1000s ...

We can start by determining the maximum value.

c = max(A);

Now, we use find to evaluate where in the array A (here: a vector)
the element with a value of max(A) occurs, or where the condition d
== c is true,where d is the element in question (the maximum value).
So:

find(A(:) == c);

should do it. Here, what we are saying is: take all of the elements in
A and find where an element occurs that is equal to ¢ (the maximum
value which we already determined). Try it, and MATLAB should
return 5 — the 5th element in the vector.

Finally, if we assign the result of find to d, we can then use d to
determine the time at which the value of 9 occurred, i.e. B(d) which
evaluates to 4 (ms):

In this example, find returned just a single element, but if we
instead had:

2 It is really powerful and useful.

find

MATLAB defines find, with a basic
syntax of:

k = find(X)

as 'return[ing] a vector containing
the linear indices of each nonzero
element in array X'. That means ...
nothing to me. This is going to have
to be a job for some Examples ... (in
order to see what find is all about).

31 hope so ... check back earlier in the
course on max.

further ... programming

A=1[39519742];

The maximum value is still the same (9) but now ...

» find(A(:) == c)
ans

U Nl

What has happened is that find has determined that there are 2
elements in vector A that satisfy the condition of being equal to c (9)
and these lie at positions (index) 2 and 5. The result vector, if you
assigned it to the variable d again, can be used just as before to access
the corresponding times in vector B;

» d = find(A(:) == c); » B(d)
ans =
14

i.e. that the times at which the values of 9 occur are 1 and 4 (ms).
Any of the relational operators (that evaluate to true or false) can
be used. In fact — looking at it this way leads us to maybe understand

the MATLAB help text, because true and falsea are equivalent to

1 and 0, and find is defined as a function that returns the indices
of the non-zero elements in a vector. By writing A(:) == c we are
in effect creating a vector of 1s and 8s depending on whether the
equality is true or not for each element. You can pick apart what is
going on and see that this is the case, by typing:

» A(:) == c¢
ans

© 0O 0o 0 o = O I

(the statement being true at positions (index) 2 and 5, which is exactly
what find told you).

For instance, we could ask find to tell us which elements of A
have a value greater than s5:

» find(A(:) > 5)
ans

o U1 Nl

95

96 str="do you like bananas?’ [exam version]

(Inspect the contents of vector A and satisfy yourself that this is the
case.)

We can also use find to filter data. Perhaps you do not want val-
ues over 5 in the dataset. Perhaps this is above the maximum reliable
range of the instrument that generated them. Having obtained a
vector of locations of these values, e.g.

d = find(A(:) > 5);

we can plug this vector back into A and assign arrays of zero size to
these locations — effectively, deleting the locations in the array; i.e.

A(d) = [];

They it, and note that the size* of A has shrunk to 5 — all the other
elements remain, and in order, but the elements with a value greater
than 5 have gone. You could apply an identical deletion (filtering) to
the time array (B(d) = []).

Play about with some other relational operators and criteria, and
make up some vectors of your own until you are comfortable with
using find.

Back TO THE 'QUAKE ExaMPLE: Find> how may earth quakes there
were bigger than M = 8? Also determine how many quakes occurred
bigger than M = 7, 6, 5, 4, and 3. Determine the day on which the
magnitude 8.7 shock occurred.

In the first problem (number of quakes greater than a specified
limit) — you need ask find to return the row numbers for all quakes
satisfying the condition: magnitude > 8.0. find will return you a
column vector. You don’t actually need to worry about or access the
contents of the vector, you just need to know how many elements
there are in the vector (because there will be one element for each
occurrence of magnitude > 8.0). This is the same as its length (see
earlier and/or help).

In the second problem - you need to find the row number of the
quake magnitude data which satisfies the condition: magnitude >
8.7. Knowing the row number, you can then access the data column
containing the sate information, and hence extract the day and solve
the problem.

All these problems can actually be solved in a single line of MAT-
LAB, but feel free to break it down into multiple steps.

IN THE SEALEVEL (OXYGEN ISOTOPE) EXAMPLE, you could start by de-
termining the maximum and minimum sea-levels that have occurred

4Use the command length or view in
the Workspace Window.

5 Intentional joke *and* clue.

over the last 782,000 years. Then ... because it would be helpful to
know *when* the minimum and maximum sea-level heights oc-
curred, use the find function to find the data row in which the mini-
mum and maximum values occurred. Once you know the respective
data rows, you can then easily pull out the ages.® Find the ages of
both minimum and maximum values.

Also find all the occasions (times) on which sealevel was higher
than today (modern). (Or equivalently, when the oxygen isotope
value, that we are assuming directly reflects changes in level, was
lower than modern?.)

You can also ask questions based in time, such as what was the
sealevel (or oxygen isotope value) at 21 ka (i.e. without having to
look through the data manually and determine on which row 21 ka
occurs, because this is exactly what find can do this for you)? This
can be particularly useful if the value of time is calculated or passed
in from elsewhere, rather than specified as e.g. 21 ka, because you
may not a priori know what the value will be, hence automating the
script with find is super useful. Effectively then you are creating an
algorithm for taking a time input and determining sealevel.

FOrR AN EXAMPLE OF DATA-FILTERING — dig out the paleo-proxy (not
ice-core) atmospheric CO, data you downloaded. One further way
of plotting with scatter is to scale the point size by a data value. We
could do with by:

SCATTER(data(:,1),data(:,2),data(:,2))

... except ... it turns out that there are atmospheric CO, values of zero
or less and you cannot have an area (size) value of zero or less ...

This leads us to a new use for find and some basic data filtering.
The simplest thing you could do to ensure no zero values, would be
to add a very small number to all the values. This would defeat the
'no zero’ parameter restriction, but would not help if there were neg-
ative values and you have now slightly modified and distorted the
data which is not very scientific. Substituting a NaN for problem val-
ues is a useful trick, as MATLAB will simply ignore and not attempt
to plot such values.

So first, lets replace any zero in the CO; column of the data with a
NaN. The compact version of the command you need is:

data(find(data(:,2)==0),2)=NaN;

But as ever — perhaps break this down into separate steps and use
additional arrays to store the results of intermediate steps, if it makes
it easier to understand, e.g.

further ... programming 97

SHINT - if your maximum value was
stored in the variable max_value, you
found find the corresponding row by:
find(data(:,2) == max_value)

What this is saying, is search the 2nd
column (the sea-level values) of the
array data, and look for a match to
the value of max_value. The equality
operator (==) is used in this context.

7 Lower d180 => less ice volume =>
higher sealevel.

NaN

... is Not-a-Number and is a
representation for something that
cannot be represented as a number,
although if you try and divide some-
thing by zero MATLAB reports Inf
rather than a NaN.

NaN can also be used as a function
to generate arrays of NaNs. The most
common/usage in this context is:

N = NaN(szl,...,szN)

which will (according to help) "gen-
erate a a sz1-by-...-by-szN array of
NaN values where sz1,...,szN indi-
cates the size of each dimension. For
example, NaN(3,4) returns a 3-by-4
array of NaN values."

98 str="do you like bananas?’ [exam version]

list_of_zero_locations = find(data(:,2)==0);
data(list_of_zero_locations,2) = NaN;

What this is saying is: first find all the locations (rows) in the 2nd
column of data which are equivalent (==) to zero. Set the CO, value
in all these rows, to a NaN (technically speaking: assign a value of NaN
to these locations). You have now filtered out zeros, and replaced the
offending values with a NaN and when MATLAB encounters NaNs in
plotting — it ignores them and omits that row of data from the plot.
Alternatively, we could have simply deleted the entire row con-
taining each offending zero. Breaking it down, this is similar to be-
fore in that you start by identifying the row numbers of were ze-
ros appear in the 2nd column, but now we set the entire row to be
‘empty’, represented by []:

list_of_zero_locations = find(data(:,2)==0);
data(list_of_zero_locations,:) = [];

If you check the Workspace window?, you should notice that the size
of the array data has been reduced (by 4 rows, which was the number
of times a zero appeared in the 2nd column).

We are almost there with this example except it turns out that
there is a CO; proxy data value less than zero(!!') We can filter this
out, just as for zeros. I'll leave this as an exercise for you? ... The plot
should end up looking like Figure 4.1. As another lesson-ette, given
that the circles are insanely large ... try plotting this with proportion-
ally smaller circles™.

As a last (optional) exercise on this ... In the CO; data, there are
min and max uncertainty limit values. One could color-code the
points in a scatter-plot to represent either the min or the max (per-
haps try this first), but one on its own is not necessarily much use.
One could color-code by the difference, but this is a function of the
absolute value and one would expect large uncertainty bars if the
mean (central) estimate was high, and lower if it were low. Per-
haps we need the relative range in uncertainty? Can you do this?

i.e., scatter-plot the mean CO, estimate (as a function of time),
but color-coding for the range in uncertainty as a proportion of the
value?

It turns out this is not entirely trivial because as you have seen,
the data is not as well behaved as you might have hoped. In fact, it
is just like real data you might encounter all the time! Before you do
anything — break down into small steps what you need to do with
the data, as this will inform what (if any) additional processing you
might have to carry out on the data. It should be obvious, that to
create a CO, difference, relative to the mean, you are going to have
to divide by the mean value (column #2 in the array). So first off —

8Or:
» size(data)

9 But you might e.g. use <=.

° HINT: you are going to want to apply
a scaling factor to the vector you passed
as the point size data.

Proxy-atmospheric CO
/4 A :

7000

(\

I
\\

||
6000 /]

5000

(ppm)

4000

Atmospheric CO.
8
8

8

100 150 200 300 350 400 450

Time (Ma)

Figure 4.1: Proxy reconstructed past
variability in atmospheric COz2 (scatter
plot).

further ... programming 99

if any of the mean values are zero, it is all going to go pear-shaped.
Actually, equally unhelpful, or at least, lacking in any meaning, may
be negative values. If you inspect the data (in the Variable window),
there are both zeros and negative values for mean CO; proxy esti-
mates. We need to get rid of these. Follow the steps as before. You
may also have to process the min and max values should they turn
out to be the same. Likely you are going to have to delete all the rows
in which (1) column #2 values are zero or below, and (2) column #3
and #4 values are equal (you could also try the NaN substitution and
see if it works out). (If you need a slight hint ... one possible answer

is here' , but try and work it out for yourself.) " In this possible solution — all rows
. L. . TP in the array data, with mean CO2
All that is missing now, is any indication of what the color scale values less than or equal to zero, are
actually means in terms of values (and of what). MATLAB will add a deleted. Also, all rows for which the
) max and min values are the same, are
colorbar to a plot with the command ... colorbar. Although the color also deleted.
. . . » data=load('paleo_C02_data.txt’,
scale gets automatically plotted with labels for the values, looking . .rlascii’):
. , . » data(find(data(:,2)<=0),:)=[1;
at the plot, we still don’t know what the values are of (e.g. units). » data(find(data(:,3)==data(:,4)),:)
We can label the colorbar, but MATLAB needs to know what we o=l
. 3 » scatter(data(:,1),data(:,2),40,
are labelling. Each graphic object is assigned a unique ID when you ...100%(data(:,4)-data(:,3))./data(:,2),
. . .. Filled”);
create them and which normally you know nothing about. We can Xtabel ("Tine (Ma)’)

» ylabel(’Atmospheric C0_2 (ppm)"’)
» title(’Proxy atmospheric C0_2")

create a variable to store the ID, and then pass this ID to MATLAB to
tell it to create a title for the colorbar. To cut a long story short:

colorbar_id=colorbar;
title(colorbar_id, 'Relative error (%)';

Proxy atmospheric CO Relative error (%)
500

7000

It should end up looking something like Figure 4.2 in which you -

can see the high relative uncertainty (bight colors) prevail at low CO;
values and "deeper time’ (ca. 200-300 Ma). The colorbar title (label)

is maybe not ideal, nicer would be one aligned vertically rather than
horizontally. We'll worry about that sort of refinement another time.

5000 350

. 300
4000 °
250

3000 e
° LY 200

. 150

Atmospheric CO,, (ppm)
.

100

50

0 100 200 300 400 500
Time (Ma)

Figure 4.2: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

5
Graphical User Interfaces (GUIs)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adip-
iscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et ne-
tus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec var-
ius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet
orci dignissim rutrum.

102 str="do you like bananas?’ [exam version]

5.1 MATLAB GUI basics

MATLAB kindly" provides a tool (itself a GUI) for creating GUIs —
the ‘Graphical User Interface Development Environment’ (GUIDE).
GUIDE does 2 main things for you:

1. Firstly, it facilitates the design of the GUI window(s).
2. Secondly, it creates a code framework for the associated pro-
gram.

You run GUIDE at the command line by typing its name:
» guide

and a window as shown in Figure 5.1 should appear. We’ll only
concern ourselves with the default option amongst the (4) "GUIDE
templates” — ‘Blank GUI (default)’2. As for the tick-box ‘Save new figure
as:’ — we'll leave this alone3. The 'Preview’ window is blank at this
point because you have selected a blank template (d’uh!) (and are

not loading in a previously created GUI). So, all that remains, is to go

ahead and click on "OK’.

Actually ... before you move on, it is worth pausing at this point
and reflecting on what happened and what the implications are
for what you might like to do (GUI-wise). At the command line,
you entered the command guide, which presumably ran a script
or function (a piece of code in any case). A windows (the "GUIDE
Quick Start” window) was summoned (actually a figure window was
created). The (figure) window did not open completely blank, but
instead you might not:

¢ It has a close/minimize/maximize buttons at the top right (and

the window can be re-sized).

e It has a title at the top (in the title bar) with a cute (barf) MAT-

LAB icon.

¢ There are 3 buttons at the bottom right — “OK’, “Cancel’, and
"Help’. Presumably they’ll all do something (different) when
clicked.

¢ Everything else is neatly enclosed in a pair of tabs (one labelled

"Create New GUI” and one 'Open Existing GUI” and you can switch
between tabs by clicking on the required tab.
¢ In the "Open Existing GUI’ tab, there is:

- A list (of template names plus that annoying cute little icon
again).

— An area with a border labelled "Preview” with a grey box
labelled ’Blank’ in the middle.

— There is a tick box and next to it (grey-ed out by default),

a box with a file path and name in and to the right of that, a

* For once, it is not a sperate, zillion-
dollar license ...

o/

Create New GUL | Open Existing GUL |

GUIDE templates Preview

<4\ GUL with Uicontrols
4\ GUL with Aves and Menu
4\ Modal Question Dialog

BLANK

7.GEOL11| Browse...
Cangel Help

Figure 5.1: Starting GUI window of the
MATLAB GUIDE, GUI design tool.

>So don’t go randomly clicking on
anything just yet!

3 You can save the resulting figure (and
code) under whatever filename you
wish, later anyway. (If you really want,
you can enter it in now here — it makes
little difference.)

graphical user interfaces (guis) 103

button labelled 'Browse’.

In essence, most of the primary (or at least, basic) features of a
GUI are here to see. Funnily enough, nothing much had changed,
at least in Windows, since ... the 8os*. Maybe that is a good thing 4 That is: 1980s, as much as some
as despite the MATLAB GUIDE tool being completely new to you, might believe Microsoft has made little
progress since the 1880s ...

you hopefully can guess what would generally likely happen if you

clicked on random bits of the ‘"GUIDE Quick Start” window. —

(If you have not already clicked OK — do it now.)

Rather than creating some basic code first>, MATLAB now throws
you straight into a window design tool as per Figure 5.2. There is a
lot going on here, but start by noting there is the usual drop-down

menu bar at the very top (under the title bar ("untitled.fig’) of the win-
dow) and a row of icon underneath that (no re-appearance of the
MATLAB icon thankfully). At the bottom of the window there is

some information, mostly about location (of what?). To the left of the —— e e
. . . 6 Figure 5.2: (Blank) GUI window editor

Wll.’ldOVV' is a group of 1C01’15. plus é (depressed, by default) mouse GUL window,

pointer icon. Most of the window is made up of a pane (whose 5 Actually, MATLAB has done this too

contents apparently is, or might be, larger than the area shown as and you would have seen it open up in

the Code Editor window if you have
provided a filename in the "GUIDE Quick
edges). The pane itself is ruled with a grid pattern. Start’ window.

6 Still no re-appearance of the MATLAB
icon!

indicated by the presence of scroll bars along the right and bottom

Again — the great advantage of familiarity (of program GUI de-
sign) — you might guess (you'd be correct if you did) that the icons
to the left allow you to select an object and place it in the pane, the
grid serving to help you position the object. And this leads us to an
important point — creating GUI-based programs is as much (or more)
about design as it is about programming. The cleverest program (and
most complex calculations) might simply be a total fail if the GUI
is wholly unappealing or complete un-intuitive (or lacks a GUI en-
tirely). The grid is hence there for a reason and that is to guide you
towards creating an ordered (and aligned), logical, and uncluttered
arrangement of things (we’ll come to what the "things’ are shortly)
within the GUI window.

You might be tempted ... to click on everything and throw all
sort of objects (what things?) into the pane of your embryonic GUI
window. But the more GUI objects you have ... ultimately, the more
code and the more debugging” you'll have to do. So we'll start as 7 Which has a steep power relationship

with the amount of code.

simply as possible and build up.

5.1.1 Hello, World [Static Text (box)]

This is as simple as it is going to get for a ‘program” with a GUL
In the GUIDE window editor already open, if you haven't fatally
mucked about with it, or open up a new GUI by typing guide (or
GUIDE) at the command line again — identify the Static Text icon (by

104 str="do you like bananas?’ [exam version]

hovering the mouse pointed over an icon, its function is revealed).
Click (L mouse button) on it. The mouse pointer, when over the grid-
ded design pane, should change to a cross-hairs. Find a convenient
place perhaps at the intersection of two grid lines, click the mouse
down and drag out a box — this will be the size (and location) of the
Static Text object. Release the mouse button to finish. If you don’t like
the size or location, you can move/re-size just like you would to a
Windows (or MacOS etc.) window.

So far, the (static) text object as a rather unappealing content of
’Static Text” in a pretty small font. You can edit the properties of this
object by double-clicking on it%. Whoa! That’s a long list of ... actu-
ally, properties of the object. Each property (the column on the left)
has a default value (the column on the right) assigned to it. Evi-
dently, you can edit the properties using the design tool rather than
in the code code, setting a parameter value.’® For now, we’ll just
make two changes:

1. For the String property — click in the box to the right, delete
’Static Text” and write "Hello, World’.

2. The text is pretty small ... so for the FontSize property, click in
the box to the right, delete 8.0 and write ... well, try something
larger.

Within reason, play with some of the other properties if you like (at
least, the ones that you can make a reasonably informed guess as ot
what they do). Maybe you end up with a design window looking
like Figure 5.3. Note that the effect of your changes is only shown if
you e.g. hit Enter or click on a different property. If you accidently
click outside of the text object an in the design pane, you'll end up
switching the property editor to the window itself, which you don’t
want. (You can simply click back inside the text object to return the
property editor to the text object’s settings.)™*

When you are done (editing properties) — click the Save icon. If
this is a GUI that you have not previously created or previously as-
signed a filename to, you'll get a Save As dialogue box. At this point,
MATLAB is going to save the window design with a .fig extension.

Something a little scary now happens — MATLAB opens up the
code editor and some code, with a filename the same as you entered
in but now with a .m extension. There is nothing we need worry
about ... yet. And in fact, half the file is taken up with a main func-
tion that has the comment: DO NOT EDIT. Please take this advice ...
:0)

Close the design window (and the code editor if it distracts you).
At the command line, type the filename (no extension) to run the
automatically generated code m-file. A window opens up ... the

8 Note that this is to facilitate the po-
sitioning of the icon rather than being
anything about guns and shooting at
the coders behind Windows.

91 didn’t actually read this anywhere —
the operation of the editor or Windows
has the same feel and intuitive usage

as the sort (hopefully) of Windows you
you are going to create in your GUI(s)).

* In reality: MATLAB is secretely
writing the relevant code and setting
the parameter value ...

" Unfortunately, the title of the prop-
erty editor window is completely
unhelpful — matlab.ui.control.UIControl
when the text object properties are be-
ing edited, and matlab.ui.Figure when the
(figure) window properties are being
edited. So maybe watch out for Figure
appearing in the title bar as an indicator
or quite what is being edited.

sBEBbd D% >

- Hello, World -

Tog: text2 CurentPont: [38,20] Poston: 150, 268, 251, 51)

Figure 5.3: Design of the Hello, World
window!

contents should come as no surprise, because you have just speci-
fied them (via the GUIDE GUI design tool). Your first GUI! But one
you might notice does not actually ‘do” anything — it just sits there
unresponsive. Although you can at least close it (because it is auto-
matically generated with the usual basic close/minimize icons plus
the name of the m-file in the titlebar.

5.1.2 Simple GUI responses [Push Button]

A GUI is only of any particular use if it allows some response to
input. This is going to involve a little code ... so we’ll start with the
simplest possible action — a button that performs a simple action
(closes the window).

Re-run guide and open up a new window editor (by clicking OK
in the GUIDE Quick Start window). Now find the Push Button icon,
click it, and drag out a push button object in the design pane. You
should see a box (with a pseudo 3D shading at the edges) with the
text Push Button in the centre as per Figure 5.4. As before, you can
edit the properties of the push button object (because the default
properties are totally boring) by double-clicking it. Start by editing
the font (size) and message. Perhaps ‘Go away!’. And save ...

When it saves, MATLAB again opens up the code it generated.
There is slightly more code in the file this time and shortly, we’ll
need to look at it. But for now: type the name of the file at the com-
mand line. You'll get a window opening with the push button you
created in it. Click on it. It does seems to ‘respond’ (pretends to de-
press by means of changing the edges with the pseudo 3-D shading)
to the mouse click, but ... nothing else happens. This is where YOU
(and your amazing coding skills) now come in.

If you have closed the design window, re-run guide and rather
than creating a new GUI — switch to the Open Existing GUI tab and
double-click your filename (of the push button GUI) or select and
OK. Double-click on the push button object to open up the property
editor. We'll make only one (more) change here — down the list of
properties your fine ‘Tag’. This is the name (ID or handle) of the push
button object.’ By default, the name is pushbuttonl. Edit this to ...
goawayButton (or pick an alternative name) and re-save the GUL

Go to the code editor for the associated m-file (which will have the

same name remember). In the file we have:

¢ The main function which we can ignore (and indeed apparently

should not be edited!).

e function goaway_OpeningFcn which is executed when the GUI
is started up. This is the place to put code for initializing models
or whatever.

graphical user interfaces (guis) 105

8 untited:
Fle Edt Vew Lajout Te

et vew Loyout Toos b
AEEIE LR - E IR

Tog:pusbbutiant Cumentpoin: [3,215] oston: 150, 21, 251, 101]

Figure 5.4: Design window with a
default push button object.

2In essence, no different from a file-
name — a unique identifier for an object

(/file).

106 str="do you like bananas?’ [exam version]

¢] have no idea what function varargout = goaway_OutputFcn.
Textbooks helpfully say to ignore this. Great idea.

¢ Finally, function goawayButton_Callback. This function is
executed when your ‘Go Away!” push button is pressed.

In this simple GUI, we have only one figure and it is active (has
the mouses’ attention), so we could simply use the close com-
mand ('deletes the current figure’). Insert this simple command in the
function goawayButton_Callback function, after the last comment
line."3 Save the m-file and re-run. Now if you click on the ‘Go Away!’
push button, the window does indeed go away (aka, closes).

5.1.3 Updating object properties (do you like bananas?)

Bananas. Do you like them? Perhaps the GUI can provide an answer
(rather than just text statements written to the command line via disp
as before).

Now you are going to want to think about the design of the GUI a
little. What we want is for the the GUI to display a question (‘Do you
like bananas?’). There will be two options, "Yes” and "No’ that can
be clicked. Depending on which one is clicked, some appropriately
supportive, or otherwise, message will appear in response. We need:

1. A plain (static) text box as before to display the question.
2. A pair of push buttons (again as before).
3. Another plain (static) text box to display the answer/response.

And ... we are going to need some code that, depending on which
button is pushed, displays a different message.

The latter part is not as bad as it sounds. We could have no test
initially in the 2nd (static) fext box. We just need to change its text
property (i.e. change the no text to our message). This is mostly a
case of working out and using the unique identifier of this text box
object AND the identifier of the text property (of the text box object).

Firstly — re-run GUIDE. Create a new GUI window with the 4
elements (2 static text boxes and 2 push buttons). It is up to you
how you arrange these 4 objects in the design pane. You might be
guided how windows in programs you have used are designed. AT
the minimum, it is standard practice to place a "No’ push button next
to and aligned horizontally, with the "Yes’ (and often "Yes’ to the right
of 'No’).

No idiot would design anything like Figure 5.5 and certainly not
with those color choices ... but you get the idea.

For each of the objects (2 text boxes and 2 push buttons), I have
renamed them (the Tag property) to something more memorable than
e.g. button or box, #1, #2, #3, etc etc..

> Note that automatically generated
MATLAB code does not seem to ever
formally end a function as one really
should do ...

nnnnnnnnnnnnn Curentpont: [5,411] positon: [50, 319, 41, 51]

Figure 5.5: (completely) Bananas design
window.

The code that MATLAB generates for bananas.m (my name) is
not a lot more involved than before. Primarily, there is just a second
function associated with a mouse click on the 2nd push button.

The logic is going to be very simple. In fact, we don’t need any,
because if the Yes button is clicked, MATLAB will call one function
(my name: function yesbutton_Callback), and if the No button is
clicked, the other function (function nobutton_Callback) is called.
As alluded to above, how do we get the text to change in the 2nd text
box (from the default of no text)?

Unfortunately, MATLAB get all weird here.’# If you had a friend
called Luna, you might reasonably communicate with them via the
name ‘Luna’. MATLAB doesn’t do it this way and instead assigns a
numeric ID. Luna might have an ID of 8.206034. So you are going to
have to get this ID, which in this case is the ID of the 2nd text box, if
you want to change a property (here: the displayed text).

First off, you can get the ID of the object property using findobj
and assign the result to some memorably variable, e.g.

h_answertext = findobj(’'Tag’, 'answertextbox’);

This is as simple(!) as asking to find the ID of the object which has a
Tag with value “answertextbox” (which was the value I set in the design
editor).*>

Where would we put this line of code? Why not in the initializa-
tion function, function bananas_OpeningFcn and I am guessing, at
the end of that function®.

Now — we have the ID of the 2nd text box and we can now set its
property (from no text t a suitable message). Lets first implement
an answer if the Yes push button is clicked. The command to set
a property is ... set. In our example, the handle we have already
obtained and assigned to the variable h_answertext. The name of the
property we want to change (refer to the column list in the property
editor if you like as a reminder) is 'String’. And the text ... well,
you can have whatever you want. The complete line is then:

set(h_answertext, 'String’, 'Yes, it is an excellent fruit.’);

Well, it turns out that this does not quite work? Why? My guess
that we could add the line:

h_answertext = findobj(’'Tag’, 'answertextbox’);

to the initialization function was incorrect. One possibility is that the
function states:

% -- Executes just before bananas is made visible.

meaning that this function is called before the window is opened. If
the objects have not yet been created at this point, they will obviously

graphical user interfaces (guis) 107

4 Actually, no wierder than netCDF. Or
arguably Python ...

5 What we might refer to as an ID,
MATLAB calls a handle. Hence com-
monly an 'h” might appear at the start
of a variable name to indicate it con-
tains a handle.

6 Be careful as MATLAB is not auto-
matically adding an end to the end of
functions ...

set
Sets ... the property value of an
object. The syntax is:

set (h,name,value)
where h is the handle (the ID ob-
tained via findobj), name, is the

name of a property, and value, the
value of a property.

108 str="do you like bananas?’ [exam version]

have no ID and the variable h_answertext would be empty. Alterna-
tively, the variable h_answertext created in the initialixation function
is simply not accessible (visible) to function yesbutton_Callback.
Sod it, the line has been added to functionyesbutton_Callback in-
stead, giving:

h_answertext = findobj(’'Tag’, 'answertextbox’);
set(h_answertext, 'String’, 'Yes, it is an excellent fruit.’);

Now it works and creates the result shown in Figure 5.6.

Now extend this so that an alternative answer is provided if the
"No” button is instead clicked. Other embellishments you could make
might be to make the color of the button you clicked change. This
is simply a matter of finding its object ID, and setting the property
BackgroundColor.

Finally, and to put a little of your coding skills to the test, how
about displaying a 3rd message ("Make up your mind!"?) if someone
changes their mind - i.e. if a second button is pressed (after the first).
You’ll need a variable to store whether any button has been pressed
and assign this an initial value of false, e.g.

var_pressed = false;

Whenever a button is pressed, var_pressed will become (will be set
to) true. So before displaying the message in both of the button press
callback functions, the value of var_pressed needs to be tested — a
false means this is the first time any button has been pressed. Once
that initial message is displayed, the var_pressed becomes true, and
when the next time a button is pressed and the value of var_pressed
tested, a true leads to a different message. All that is needed is an if

. in each callback function, and a line initializing var_pressed to
false (in function bananas_OpeningFcn). There is just one problem ...

Variables in functions are “sectret” (private) and limited (in scope) to
just that function. So the variable var_pressed which you initialized
at the end of function bananas_OpeningFcn cannot be seen by the
callback function.

We can enforce that the same variable is seen by multiple functions
by stating that it is global (in scope):

global var_pressed;

This line needs to appear at the start of each function in which you
need to read or write the value of var_pressed, i.e. in both callback
functions as well as the initialization function. The complete code for
the Yes button call box function would then look like:

Do you like bananas?

[[

Yes, it is an excellent fruit.

Figure 5.6: (completely) Bananas GUI in
action.

% -- Executes on button press in yesbutton.

function yesbutton_Callback(hObject, eventdata, handles)

% hObject handle to yesbutton (see GCBO)

% eventdata reserved - to be defined in a future version of
MATLAB

% handles structure with handles and user data (see GUIDATA)
%h_answertext = findobj(’'Tag’, "answertextbox’);

global var_pressed;

h_answertext = findobj(’'Tag’, 'answertextbox’);

if ~var_pressed

set(h_answertext, 'String’,’'Yes, it is an excellent fruit.’);

else

set(h_answertext, 'String’, '"Make up your mind!’);
end
var_pressed = true;

graphical user interfaces (guis)

109

Part I
Part 11
Part 111
Part IV

Part V

Part VI

110 str="do you like bananas?’ [exam version]

5.2 GUI Pokemon game

Now we’ll build on your excellent GUI skills and create a GUI inter-
face for the ballistics (ball trajectory) model.

The idea of the ‘game’ is that you are going to launch a ball, the
behaviour of which will be calculated as per your time-stepping
ballistics model. Rather than simply detect whether or not the ball
falls below zero (height), there will be a graphic (Pokemon) displayed
and a "hit” will be recorded if the position of the ball falls within the
boundary of the graphic. The key initial conditions — initial speed
and angle of the launched ball, will be set by controls in the GUI
rather than set in code. Finally, there will be a series of refinements
to improve the look and feel (and game-play) of the game that will
introduce a few further concepts in creating good MATLAB GUIs
and also new MATLAB functions. Ultimately, the GUI (app) might
look something like Figure 5.7, but how the controls are positioned
in the window and their relative size and shape, is pretty well much
up to you. You could also control how the initial parameter values
are set in a different way (e.g. using an Edit Text box rather than a
Slider). Quite what buttons you want and how they are used is also a
matter of personal aesthetics.

There is quite a lot of coding to be done and the risk of a huge
mess ensuing. So we’ll go through this all in a number of discrete
steps:

Create a basic GUI interface using MATLAB guide.
Load in and display the graphics needed for the game.
Add in the ballistics model.

Utilizing the sliders.

Create the detection (logic) needed for a successful 'catch” and associ-
ated outcomes.

Refinements to improve the look and feel of the game.

Because of the complexity of the project, the complete code (m-
file) as well as associated . fig GUI file, are provided (on the course
webpage). These are provided if needed for guidance (e.g. what code
goes where?), only. Try your best to work through the creation of the
App without this.

Example images are provided (download via the course webpage)
and you can substitute your own if you prefer.

If you run into unexpected and apparently nonsensical “issues’
when you make changes and text the App, try closing the design
window and any open Figure windows and type » clear all.

SETE

133803 59.5775
ms1 degres

Throw! |
New Game b’\
END S/
Figure 5.7: Screen-shot of he Pokemon
game App.

Part I — the basic GUL

To achieve a GUI along the lines of Figure 5.7 you need to create
the following objects in the window design editor (but don’t create
them quite yet — details will follow ...):

1. Something to display all the action and graphics in. This is
pretty well much like MATLAB creates when you use plot,
scatter, or any of the graphical functions that create a Figure
Window. This is called an Axes object.

2. A Push Button for telling MATLAB to start calculating (and
displaying) the balls’ trajectory.

A Push Button for resetting the game once it is finished.*”
A Push Button to finish the game and close the App.

A Slider (bar) to set the initial speed of the ball.

A Slider to set the initial angle of the balls’ trajectory.

For each slider bar: a Static text box to display the value.
Also for each slider bar: a Static text box to display the units.

PN VAR

Make a start by running GUIDE at the command line. Create a
new (blank) GUIL You might save it once the GUI editor window
has open up'®. MATLAB then opens the Editor and the GUI code
template.

Sketch out on a piece of paper how you might lay out the objects
in your GUI window before you actually start to create anything. If
you have graph paper to hand, you could sketch out your design
on a grid similar to the design window grid and size. Note that
should should be aiming to make the Axes object square (i.e. the
same length in both x and y dimension) as the background image
we are going to use is square.’® Also note that the Sliders can be
horizontal rather than vertical if you prefer and if it make it easier to
pack in all the objects.

OK - to begin for real.

1. You have to start somewhere (i.e. you have to pick on one ob-
ject as the first one to be created!), and the best place to start is
arguably with the Axes object as it is the largest object in your
window. Click on the Axes icon and drag out the position and size
of the object you want.?° By default, it is assigned a name (its Tag
property) of axes1. You are not going to have so desperately many
objects that it is necessarily worth re-naming it, but you can if you
wish (although the text will refer to axes1 where needed). Remem-
ber that you can move and re-size it at any point after creating it.
Its position as x,y of the objects origin as well as dimensions (x-
length and y-height) are indicated by Position at the bottom right

graphical user interfaces (guis) 111

7 This we’ll only worry about making
use of this in Part IV.

® File — Save As...

9 Later on you might want to try
substituting your own background
image. In this situation, you might
need a different aspect ratio to the Axes
object.

* Note that you can drag the GUI editor
window larger, and you can also drag
larger the gridded design area, meaning
that your App window will be larger
that you run the program.

112 str="do you like bananas?’ [exam version]

of the design window. For e.g. creating an approximately square
Axes object, you can also simply count the number of grid lines in
each dimension.

Save the .fig file and run it*'. You do indeed have a graph-like # Note that there are two things that
potentially might both need being

, . . X saved — the m-file and the .fig file. If
have the axes labels when you don’t need any in this particular you make code changes, save the m-file,

example). In the design window — double click on the Axes object and if you make design change sin the
GUI editor, save the .fig file.

object with labelled axes. This is not actually that convenient (to

to bring up its list of properties. Find and edit XTick — delete all
the tick mark numbers. Do the same for the y-axis. Close the GUI
window from the previous version if it is still open, then save and
re-run. Now you should see a large white square(ish) with two

thin black lines delineating the axes??, and nothing else. 22 We could remove these black lines,
but they’ll get covered up later.
2. Next Push Button #1. Create (position and size, where- and

how-ever you think best). Simplest is to leave the default name
("pushbutton1’). Change the text associated with the Push Button
(property ‘String’). Label as "Throw’, ‘Go’, or whatever seems
appropriate. Remember that you can change the default font size,
family, color ... (and e.g. make bold etc.) as well as the color of the
button itself (plus a host of other property options).

3. Create a 2nd Push Button (‘pushbutton2’) as per before. Label
consistent with the GUI aim (and e.g. Figure 5.7).

4. Similarly, create 3rd Push Button ('pushbuttons’).

5. Now we need a Slider?3 bar. These are bar with a slider (‘knob’) 2 Not anything to do with baseball.
that can be slide up and down via the mouse, or moved by click-
ing in the bar above or below the position of the slider. By doing
so (changing the position of the slider along the slider bar), you
change the numerical value of the slider. We are going to use one
in order to set the initial speed of the ball. So go create one (leav-
ing the default name of "slidert’).
Because we need to link the Slider to our model (in terms of
parameter value), we need to specify a minimum and maximum
value that the Slider can take, as well as an initial value. These
properties can be set at in the code, but we’ll start off by specifying
them using the design GUI tool. If you double click on the Slider
you'll get its property list opened up. The minimum and maxi-
mum property value name are Min and Max — edit these to span
a plausible initial speed range®4. Also set a default initial value %] used 0 to 20ms ™.
(parameter name "Value’)5. 2] assumed Oms~ 1.

6. Create a second Slider ('slider2’) for setting the initial angle of

the ball (theta).26 6 Here I assumed a range of 0 to 90°,
with a default of 0°.
7. Because the Sliders themselves do not tell you quite what

value you have slide the slider to, it is a Good Idea to somewhere

graphical user interfaces (guis)

display the value. We'll do this via a Static Text box ("text1’) and
you’ll need to create one to go with each Slider (so you'll also have
a "text2’ named object). For now — simply leave the default text
property as it is.

8. Finally, if you follow the design in Figure 5.7, you could add a
further pair of Static Text boxes in order to display the units. This
is far from essential and I'll leave it up to you whether you bother,
particularly if your window is cluttered already.

That is the basic GUI design done. Save and run (having first
closed any open, running, instances of your GUI program). You
should have a window with all the objects discussed, but with none
of them yet doing anything.
At this point it is worth quickly orientating you around the automatically-
generated code m-file:

* At the very top:

function varargout = pokemon(varargin)
appears at the very top of the m-file and defines the main func-
tion. In this example, the main function is called pokemon (meaning

the App is run by typing » pokemon). Remember that you do not
have to edit any of this function.

e Next comes:

% -- Executes just before pokemon is made visible.
function pokemon_OpeningFcn(hObject, eventdata, handles,
varargin)

This is the function that is called just before the window is made
visible and we’ll edit it later in order to carry out some initial tasks
(i.e. before the ballistics model itself runs).

¢ Then:

% -- Outputs from this function are returned to the command
line.

function varargout = pokemon_OutputFcn(hObject, eventdata,
handles)

which is mysteriously useless and we will not edit.
e The first actually useful automatically generated code is:

% -- Executes on button press in pushbuttonl.
function pushbuttonl_Callback(hObject, eventdata, handles)

This will contain the code that is executed when the "Throw’ (or
‘Go’) button ("bushbutton1’) is pressed and will end up containing
the complete ballistics model code.

¢ The function code for when second button ("bushbuttonz2’)

is pressed appears in order after the function associated with
‘bushbutton1”:

113

114 str="do you like bananas?’ [exam version]

°

% -- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)

We'll only make use of this towards the very end of this section is
making the final refinements to the App.
e Then, the third button ("bushbutton3’):

°

% -- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)
This will contain more more than a command to close the App (as
you have programmed previously).

* The code that is called whenever the position of the first
slider the appears:

% -- Executes on slider movement.
function sliderl_Callback(hObject, eventdata, handles)

¢ This is then followed by a second function associated with
slidert whose purpose is ... not obvious. Perhaps slider initializa-
tion? Regardless, we’ll be ignoring the following code:

% -- Executes during object creation, after setting all

properties.

function sliderl CreateFcn(hObject, eventdata, handles)

¢ The final code is the pair of functions for the 2nd slider (of
which we’ll only edit the first function (slider2_Callback)):
% -- Executes on slider movement.

function slider2 Callback(hObject, eventdata, handles)

% -- Executes during object creation, after setting all
properties.
function slider2_CreateFcn(hObject, eventdata, handles)

Before we move on, you could add your fist code to the m-file — a
close action if you click on the lower of the three Push Buttons. Refer
to the previous sub-section and example to remind yourself how to
do this. You are aiming to have the App window close when you
click on pushbutton3, whose associated function is called function
pushbutton3_Callback.

Save the m-file and re-run the App by typing its name (e.g. »
pokemon) and the command line (first closing any already open in-
stances of it). The App window should now close when you click
on the third button. In the GUI design editor, edit the 'value’ of
the String property of this Push Button so that it has a logical and
vaguely meaningful label.

Part II — (graphics) initialization. Note that in this section, all the
code will go in function pokemon_OpeningFcn, after the (automati-
cally generated) lines:

% Choose default command line output for pokemon
handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes pokemon wait for user response (see UIRESUME)
% uiwait(handles.figurel);

First, we'll read in a background image (‘background.jpg’ — avail-

able for download from the course webpage) and then display it.
We'll use the commands imread for reading in the graphics format

(and converting it into something MATLAB prefers) and then imshow

to display it. The first part is easy enough:

img_background = imread(’background.jpg’);

The question then becomes ‘'where’ to display it. You might not think

there is even a question in this — in the window! Except ... where
in the window? We actually want the background image in the
(currently) blank Axes area, not just anywhere in the figure win-
dow (which also have various button etc. objects positioned in it).
We need to find the ID of the Axes object and tell MATLAB that is
‘where’.?7 We can get the handle (ID) of the Axes object via:

h_axes = findobj(’'Tag’, 'axesl’);

and then tell MATLAB that this is currently the object to put things
in by:

axes(h_axes);
We then use this handle in the call to imread:
h_background = imshow(img_background, 'Parent’,h_axes);

The only problem with this is that MATLAB may completely fail to
scale the image to fit the Axes. We’ll fix this shortly.
While we're at it (editing this function), we can specify the axis

range for plotting the position of the ball in the Axes object, and add
a hold on for completeness. We may as well then also define the axis

ranges (in m) as parameters (that we can use elsewhere).

The complete code (so far), at the end of the automatically gener-

ated code in function pokemon_OpeningFcn, becomes:

% define grid dimensions
X_max = 10.0;

graphical user interfaces (guis) 115

*7 Actually, it may work without wor-
rying about this, but we’ll need to be
able to specify where to position other
images later anyway.

116 str="do you like bananas?’ [exam version]

y_max = 10.0;

% read in background image

img_background = imread(’background.jpg’);

% set axes suitable for game

axes(h_axes);

axis ([0 x_max O y_max]);

hold on;

% draw background

h_background = imshow(img_background, 'Parent’, h_axes,
'Xdata’, [0 x_max],'Ydata’', [0 y_max]);

Now, as part of the call to imshow, the size and position of the image
is explicitly prescribed.

When you run all this, you should get Figure 5.8.

Next, we want a Pokemon to throw the ball at! The load-in code
(which can go after the code fragment above) for the image is identi-
cal to before:

img_eevee = imread(’'Eevee.png’);

(The image itself ("Eevee.png’) can be downloaded from the course
webpage.) There are two complications in using imread, however. To

see what these complications are, after the img_eevee = line, add the

following:

h_eevee = imshow(img_eevee, 'Parent’, h_axes);

to also display the image. Well, it is a bit of an odd mess. By default,

imshow tries to fit an image to the space, so that might, at least partly,

help explain things.

We can start by making the Pokemon image smaller and see
whether that helps us to work out what is going on. To do this, we
could e.g. pick half of the size of the Axes object, and plot the Poke-
mon from the origin. A replacement line to do this would look like:

h_eevee = imshow(img_eevee, 'Parent’,h_axes, 'Xdata’, [0 x_max/2],...

"Ydata’', [0 y_max/2]1);

When you run this, you should get Figure 5.9.
You can see firstly that the Pokemon image is half the size of the

space — exactly as we requested via 'Xdata’, [0 x_max/2] which says

to start the image at zero on the x-axis and stretch it horizontally
until half way along (x_max/2), and similarly for the y-axis. Except
.. with imshow, it seems that the y-axis origin starts at the top and
is positive downwards (which the Pokemon is in the top left, rather
than bottom left, corner).

To cut a long story short, we can generalize the position and size
of the Pokemon that is displayed (and use this at the end when we
refine the App), via the following code fragment?8:

|1 t

-

pushbuttont
pushbutton2
pushbutton3

Figure 5.8: Template App with back-
ground image.

texts textd
pushbuttont

pushbutton2
pushbutton3

Figure 5.9: Template App with back-
ground image plus Pokemon.

#You should delete the lines starting
img_eevee = and h_eevee = first.
This 10-line code fragment then follows
directly on from the previous 11-line
one.

graphical user interfaces (guis) 117

% define pokemon size

dx_pokemon = 0.2x*x_max;

dy_pokemon = 0.2xy_max;

% define initial pokemon position

X_pokemon = x_max-dx_pokemon;

y_pokemon = y_max-dy_pokemon;

% read in pokemon image

img_eevee = imread(’'Eevee.png’);

% draw pokemon

h_eevee = imshow(img_eevee, 'Parent’, h_axes, 'Xdata’, [x_pokemon. ..
X_pokemon+dx_pokemon], 'Ydata’, [y_pokemon y_pokemon+dy_pokemon]);

Now giving you a small Pokemon — in fact, 20% of the Axes size as
specified in the definition of the Pokemon size parameters, dx_pokemon
and dy_pokemon. If you run this, you should get Figure 5.10.

One final thing now is the background to the Pokemon image. The

original format (png) is actually defined with a transparent back-
ground. MATLAB can make use of this with a small tweak to the
code —replacing the img_eevee = line with:

pushbutton3

Figure 5.10: Template App with back-
ground image plus small Pokemon at

bottom right.
[img_eevee, h_map_eevee, h_alpha_eevee] = imread('Eevee.png’);

which grabs additional graphics information and specifically about -
the transparency. And after the last line (h_eevee =), add: -
set(h_eevee, ’'AlphaData’, h_alpha_eevee); ﬂ
which implements the transparent background and hopefully gives 4 = :
you Figure 5.11. sttt
pushbutton2 ;}V’/
Part III - incorporating the ballistics model. Figure 5.11: Template App with back-
Here — almost all the code in this section will go into function ground image plus small Pokemon at
bottom right, now with its transparency

pushbuttonl_Callback — the function that is executed when the first applied.

Push Button is clicked. But before any coding — ensure that the text
label associated with the first Push Button is appropriate for launch-

ing the ball ('Throw’, ‘Go!’, whatever).?9 2 Remember — double-click on the
pushbutton1 object in the design editor

e . . and then find and edit the value of the
been modified from a stand-alone m-file that would plot the trajec- String property.

Below is a simple rendition of the ballistics model. All that has

tory of a ball, is that the creation of a figure (and associated hold

on) is not necessary (because this has already bene done within the
initialization function). either copy-paste your own version (and com-
ment out the figure creation line), or add the below version.

% model constants
g = 9.81;

% model parameters
thetal® = 80.0;

s0 =

.0;
ho = 2.0;

118 str="do you like bananas?’ [exam version]

% model parameters - time (s)
dt = 0.05;
t_max = 10.0;
% calculate initial velocity components
= sOxcos(pixtheta0/180.0);
= sO+sin(pixtheta0/180.0);
set initial position of ball
=0.0;
= ho;
create Figure window and hold on
Figure;
hold on;
% run model
for t=dt:dt:t_max,
% update horizontal and vertical positions
dx = dtxu;
X = X + dx;
dy = dtxv;
y =y +dy;
% plot current position of ball
scatter(x,y);
if (y < 0.0)
break;
end
% update vertical velocity (horizontal velocity unchanged)
dv = -dtxg;
vV =V + dv;
end

X < X o < c

o°

o°

When you rn the complete App, and press the first Push Button,
you should see the balls’ trajectory plotted. Upside-down! WTE!?

Well, this does seem to be the coordinate system in this Axes ob-
ject. We can fix this by subtracting the model calculated height (y)
from the maximum y-axis value (y_max) and adjust the scatter code
line to:

scatter(x,y_max-y);

Except ... we defined y_max in the initialization function, and its value
is not available in this function, unless we define it as global in both,
so lets do that — add the following lines:

global x_max;
global y_max;

to both

e function pokemon_OpeningFcn
e function pushbuttonl_Callback

(before any of your other code in these files, but below anything that
MATLAB generated automatically in the first place).

It works, and in the right direction (for "up’), but it is hardly
iTunes grade App material. What we can do, is to replace the point
plotted by scatter, with an image.

graphical user interfaces (guis) 119

At the top of function pushbuttonl_Callback (after the global
declarations) load in a ball image:

[img_ball, h_map_ball, h_alpha_ball]l = imread(’'Pokeball.png’);

(using the full format of returned parameters because we’ll make use
of its transparency). We’ll then define the size of the ball:

dx_ball = 0.05xx_max;
dy_ball = 0.05*xy_max;

and finally, in place of scatter ..., write:

h_ball = imshow(img_ball, 'Parent’,h_axes, 'Xdata’, ...
[x x+dx_ball], 'Ydata’, [y_max-y y_max-y+dy_ball]);
set(h_ball, ’'AlphaData’, h_alpha_ball);

The first of these final two lines, displays the image given by the
parameter (ID) img_ball. It ensures it is displayed in the axes area
pointed to by h_axes (and because of this, you also have to de-

fine x_axes as global3°, i.e. global h_axes;). Its size is dx_ball by 3 Directly underneath the other two
global definition lines AND in a sim-

dy_ball. Its x-coordinate is simply x (hence the image goes from x
y Py (8¢ 8 ilar position in the initialization func-

to x+dx_ball) and its y-axis coordinate ... well, don” worry about it, tion: function pushbuttonl_Callback
after much trial-and-error, it works. Now you should have something
like Figure 5.12 when you run it. E
To finish this section off, we’ll improve how the trajectory f the ball oe
is displayed. Firstly, we could add a delay between each addition of
the ball image, rather than them all sort of appear at once. After the
set ... line, add: = =
pause(0.005); [pusimiant |

&
pushbutton2

This is some improvement visually. We could also remove the previ- s % uj

ous ball image, so that only one ball image is displayed on the screen
Figure 5.12: App with ball trajectory

at any one time, hopefully giving the impression of movement. Since tradl.

we were good and obtained the handle (h_ball) of the ball image
when we displayed it, this gives us a means to tell MATLAB to get
rid of it again. Now, after the pause line, add:

delete(h_ball);

which simply deletes the last ball image object that was plotted.

Now when you run it you should see a single ball image that
follows the trajectory that you calculated with your time-stepping
ballistics model.

Part IV — utilizing the sliders.
So far it is not much of a game — the values of the parameters
determining the initial speed and angle of the ball are set in the code.

120 str="do you like bananas?’ [exam version]

You could always edit the code, save, and re-run to replay the game
with a different throw, but ... really(?)

The Sliders are there to allow you to adjust the two key parameter
values and the "Throw’ (/’Go’) button can be re-clicked on to then
re-run the game. The Sliders are set up such that when you move
the slider, its value changes. In designing the GUI and creating the
objects you have already set the min and max values of the Sliders
to something reasonable. What remains is to obtain the value of each
Slider and pass that to your ballistics model.

The first step is to read the new Slider value when the slider is
moved. Taking the example of the first Slider ('slider1’) which con-
trols the initial speed of the ball — we first need to request the handle
(ID) of this Slider. As before, we use the findobj function:

h = findobj('Tag’, 'sliderl’);

which simply asks for the handle (passed to variable h) of the object
whose ‘Tag’ is ‘slider1’. You then3' use the get function to get the 3 On the next line.
‘value’ (one of the properties of the object):

s0@ = get(h,'Value’);

where here the value is assigned to the variable s0 (initial speed).

These two lines of code go in function sliderl_Callback just after

the comment lines (there is actually no other code (automatically

generated) in this function as it currently stands).
While we're here editing this function, what else might be helpful

to happen when the slider is moved and its value changes? Although

from creating the Slider object you know (unless you have forgotten)

what the min and max Slider values are, you would still be some-

what guessing what its exact (or even rough) value was. During the

GUI design phase, you created a pair of Static text boxes for each

Slider. One of each pair was intended to display the Slider value. So

lets do this now. The Static text box for the value display was called

(its Tag) text132. 32 At least, it was in my GUI design -
Once again, before we can change any of the properties, we need check the name of yours.

to determine the handle of the object. For Static text box text1, the

code would be:

h = findobj(’'Tag’, 'textl’);

(this should be starting to become familiar to you by now ...).
To set its value, which in this case is a text string, we write:

set(h,’String’,num2str(s0));

where num2str(s0) converts a numeric value into a string (as you
have seen before). These two lines of code will go after the first two

graphical user interfaces (guis)

in the same function (as you need to have obtained the value of so
before you can use it to change then text box display).

At this point you may as well save and re-run. Now, when you
drag and release the slider for initial speed, its new value is displayed
above it in the text box. At least, this should be what happens ...

Write the analogous four lines of code for the other Slider, which
will go in function slider2_Callback. Now the parameter value
being read and displayed in the text box is the initial angle of launch,
theta0 (of whatever you prefer to call the parameter).

Again — save and test what you have so far. This should now be
two Sliders that are linked to two Static text boxes such that when
the slider is moved, the new values are displayed.

There is one final step to take. If you change either or both Slider
values and click on "Throw’ /’Go’, the trajectory of the ball is the
same as before — you are not actually changing the parameter values
used to initialize the ballistics model yet. Recall that variables within
functions are private — they cannot be ‘seen’ outside of the function
their value is set in. Unless you declare them as global variables.

So, in each Slider function, you need to declare the respective
parameter (s0 or theta®) as global. This will need to be the first line
of the code (after the comment lines and before the four lines of code
you inserted). You will also need to add the global declarations at
the start of the pushbutton1 code where your model lives (function
pushbuttonl_Callback(hObject, eventdata, handles)):

global s0;
global theta0;

You then need to comment out the lines that set your initial model
parameter values:

%thetad® = 80.0;
%s0 = 5.0;

You can test it now, and if you do, you might find that nothing
appears to happen if you press "Throw’. Only if you change the slider
positions does anything (i.e. a moving ball) happen. We have created
the situation where the ballistics model takes it values for initial
speed and angle from the parameters s0 and theta0. The only place
in the code in which these values are set are the Slider functions.
BUT, the Slider functions are only called when the slider is moved.
So on starting the App, unless you first move the Sliders, the values

of s0 and theta0 are undefined33. 33 Invariably, undefined variables in

121

What to do? Well, recall there is the function that is called when code are assigned a value of zero, but
you should never try and use a variable

the App first starts up and in which we loaded up various images whose value has not somewhere been

etc. In this function, we could also check the value of each Slider defined.

122 str="do you like bananas?’ [exam version]

(even though the slider could not have been moved yet), set the pa-
rameter values, and display the Slider values in the Static text boxes.
At the end of the code in function pokemon_OpeningFcn, add:

% read in default model parameters and set labels
h = findobj('Tag’, 'sliderl’);

s@ = get(h,'Value’);

h = findobj(’'Tag’, "textl’);

set(h,’String’, [num2str(s0)]);

h = findobj('Tag’, 'slider2’);

theta® = get(h,'Value'’);

h = findobj(’'Tag’, 'text2’);

set(h,’String’, [num2str(theta0)]);

which is pretty well much just an amalgamation of the code you
have added to the two Slider callback function. The last final piece
is to remember that the initial Slider values you read and set s6 and
theta0 on the basis of, cannot be seen outside of this function. So at
the top, along with the other global statements, make s0 and theta0
global to.

Note that if you do not like the new defaults for s@ and theta®,
you can always edit the properties of the Sliders in the GUI design

editor window thing.34 34 Equally, you could have coded in
defaults and then set the Slider values
to be these defaults when the App
starts up. The process is basically

Part V — pokeball /Pokemon collision detection. exactly the same as for setting the Static
text box string values.

Part VI — final game refinements.

6
zero-D / equilibrium modelling

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dic-
tum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis in, pretium
quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mol-
lis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

8.1.1

8.1.2

8.1.3

124 str="do you like bananas?’ [exam version]

6.1 A zero-D Energy-balance model of the climate system

Box, or zero-D models need not involve the reservoir of a substance
(e.g. trace metal, carbon, or nutrient concentrations) per se — the reser-
voir and fluxes of energy (heat) will do just fine. Which leads us to
the climate system.

In this Section, you are going to create, and then use in a series of
applications, a zero-D equilibrium global ‘climate model” — the sim-
plest representation of the energy-balance of the Earth’s climate that
it is possible to make. The model assumes that the climate system
is in balance, with no net gain or loss of energy, and hence that the
energy absorbed from incoming (short-wave) solar radiation equals
the (long-wave) radiative loss from the Earth’s surface (or top-of-the-
atmosphere). The equations are outlined in the Box and you’ll need
to rearrange them in terms of T (mean global surface temperature).

The exercises that follow are structured and you need to pay at-
tention to which m-files you are creating from scratch, which ones,
having been created and coded up, you do not then further edit ...

In this first Subsection ("The basic EBM’), you'll create a script (#
scr_1") containing the Energy Balance Model (EBM), and test
it.

(See Figure 6.1.)

Next, you'll turn your EBM script (scr_1) into a function (fun_1)?
— passing in the solar constant and albedo as parameters, and
returning the surface temperature. (And test it.)

(See Figure 6.2.)

In the Subsection 'Parameter sensitivity experiments using the EBM — #1’,
you will create a new script (scr_2) with a single loop in it. Within
the loop, you will make a call to the EBM function (# fun_1) that
you created.3
(See Figure 6.3.)

Then, in an extension to the previous Subsection work, you will create
another new script (scr_3), this time with a double (nested) loop
in it. As before — within the loop, you will make a call to the EBM
function. Note that there is going to something of a diversion in
this Subsection that will illustrate nested loops for you.

(See Figure 6.6.)

In the penultimate Subsection (‘Calculating the evolution of the solar
constant’), you'll create a new function (fun_2), which will take
time (counted from the formation of the Sun) in Ga, and return the
value of the solar constant at that time (S(t) (Wm=2)).

(See Figure 6.9.)

Energy balance modelling (1)

The surface energy budget at the
Earths surface, to a zero-th order
approximation, can be thought of
as a simple balance between in-
coming, sort-wave radiation that is
absorbed, and out-going, infra-red
radiation.

On average (over the Earths surface
and annually), the energy flux per
unit area received from the sun, can
be written:

F, = %2
(the I appears because the cross-
sectional area of the Earth is 1 of
its total surface area —i.e. you take
energy intercepted by the Earth,
which has an effective area of 7t - 72,
and spread it out over the entire
surface — an area of 4 - 7 - r2).

Albedo («) varies hugely across
surface types (and angle of incom-
ing radiation). A commonly used
mean global approximation is to set:
a = 0.3.

Net outgoing infrared radiation
proceeds according to black body
emissions:

Fout =€-0-T*
where € is the emissivity, o is the
Stefan-Boltzmann constant (in units
of Wm=2), and T the temperature in
Kelvin (K) (273.15K == 0.0°C).

For a perfect black body radiator,
we would set e=1.0. However, it
turns out that the Earth is not a
smooth and perfectly matt black
sphere radiating directly from the
surface to space ... there is an atmo-
sphere and water surface over ~70%
of its surface etc etc. A common
modification is then to reduce the
effective emissivity of the surface to
less than 1.0. A value of 0.62 is given
in Henderson-Sellers [2014], making
the expression for the out-going flux:

Epyt =062-0-T*

* This is not a suggested name of the
m-file, but an ID to help you not get
confused as to which script or function
is being referred to in the text ...

2 Once the EBM function has been
created, you do not at any point edit it
any further!

3 DO NOT put code the loops into the
EBM function — leave the function alone

And then ...

8.1.5 ... finally (Subsection 'Evolution of Earth’s surface temperature’), you'll

create one last script (scr_4), with a loop in time in it, and from
within this loop, you'll call first the solar constant function (fun_2),
taking time as an input and returning the value of S(t), which you
will then pass into the EBM (# fun_1), returning T.

(See Figure 6.10.)

6.1.1 The basic EBM

To kick off — create a new script (m-file) ('scr_1" in the summary
notation) and code up the analytical solution to the basic global mean
energy budget at the surface of the Earth (see Box) in a program
structure illustrated schematically in Figure 6.1.4 The equations for
in-coming and out-going radiation (energy) were given previously.
You simply need to re-arrange these and write them as code. This
will form the basis of subsequent, more complex (and later, time-
stepping) models. You will need to find (from the Internet?) the
values of the constants you need ... and will need to be careful with
units of these.

For now — prescribe the value of Sg — for which the modern value
is 1368 Wm 2 as well as the value of surface albedo (« = 0.3 by
default) — somewhere near the start of the program. Then run it.

If you found a reasonable value for the solar constant, and did
not screw-up the units on the Stefan-Boltzmann constant, then you
should have an equilibrium (global, annual mean) surface temper-
ature of around 14°C ... If not — debug. Assuming that the code ran
without errors but gave a nutty answer:

1. Check that the units are correct.

2. Check that the equation has been re-arranged correctly — a
common root of errors is incorrect placement of parentheses ...
or not placing parentheses around multiple variables you are
divining something all by.

3. If still 'no” — maybe take the 2 component equations (for F;;, and

Fout), plug Sg into the equation for F;, and then play with different
values of T to find a value for F,;; that is approximately equal — is
the value for T sane? If not, double-check the units and values in
both component equations.

4. If still 'no” - WHAT HAVE YOU DONE?

Once it is working, have a quick play about, changing the value of
Sp and albedo («) (saving the m-file each time and re-running) to get
a vague feel for how sensitive the surface temperature is to these two
parameters.

zero-d / equilibrium modelling 125

4 Note that the code is relatively simple
and does not involve (yet) loops or
conditionals or anything like that.
Although ... I am sure it will involve
lots of nice juicy comments and sensible
variable names(?)

Simply set up the values of the
various constants and parameters
you need at the start of the code, then
solve for T at the end of the code. The
structure (omitting % comments) of your
code may look like:

% section for constants
(variables you do not expect
ever to change)

% section for parameters
(variables you might adjust)

% solve for T

~

scr 1.m

$EMB program

4 define model
parameters

4 set S, value
< set o value

4 solve for T

Figure 6.1: Form of the basic EBM
model.

function

4 define model
parameters

4 solve for T
< end function
[T out]

Figure 6.2: Form of the basic EBM
model as a function.

126 str="do you like bananas?’ [exam version]

6.1.2 The EBM as a function

We’ll now make your model mode flexible so that it can be applied to
the subsequent Examples. So — turn it into a function> that takes in 2
parameters — the solar constant (Sp) and the mean global albedo («).
The function should return the global mean surface temperature, T.°
(See Figure 6.2)

Try playing with the function in the same way as before, but now
passing the different values of Sg and « (rather than having to edit
the m-file, save, and re-run each time). To use the function (assuming
you called it e.g. fun_1), and assuming the 2 passed parameters are
in the order: Sy, « and are given their default values, you'd write (at
the command line):

» fun_1(1368.0,0.3)

(and get a value close to 14°C returned).

6.1.3 Parameter sensitivity experiments using the EBM — #1

Now to utilize your new function ('fun_1" in the summary notation).
Create a new blank script ("scr_2’) and define 2 parameters near the
start — one for the value of Sy and one for «, then further down the
code, call your function (fun_1), passing it these 2 parameters. So far
so boring, as this is in effect what you had been doing in "playing’
with the function previously.

Common in numerical modelling is quantifying how sensitive a
system is to the choice of parameter values — called a sensitivity exper-
iment. You may already have gotten a feel for roughly how sensitive
T was to changing Sp on its own, or changing « on its own, but what
about when both parameters vary together?

Lets start with a simple 1-D case, and consider just a change in
the value of Sp. To automate generate different values of Sp and call
the function, you are going to need a loop”. There are two ways of
constructing the loop®:

loop option #1 You could loop directly through the range of values of

Sp that you are interested in, e.g.

for SO = 1000:100:1500
% CODE GOES HERE
end

in which Sy will go from 1000 to 1500 Wm ™2 in steps of 100 Wm 2
9-

Perhaps a little inconveniently, this does not pass through the
modern value (1368 Wm~2), although when you plot as a contin-
uous line (e.g. in plot) or otherwise interpolate the results, maybe

5 Refer to earlier in the text and also
help on the required structure/syntax
of a function. Recall the basic structure
of a function m-file, has as its VERY

FIRST LINE:

function [OUT] = ...
FUNCTION_NAME(IN)

where OUT represents one (or more)
variables that are passed out (the
‘result’ of the function), FUNCTION_NAME
is the name of your function, and
IN is the name (or names, comma-
separated) of one (or more) variables
(parameter values) that are passed into
the function. (The very last line of the
function should have an end.)

For example, to pass in two variables,
IN_1 and IN_2, you'd have:

function [OUT] = ...
FUNCTION_NAME(IN_1,IN_2)

° Note that the parameters passed
into, and returned by, the function,
can be called anything you want. As
long as they are useful (and clearly
defined/explained in a comment
somewhere).

7 You are going to put the loop in the
function (# fun_1), NOT the script (#
scr_2).

An entire plane of Hell is reserved
for anyone coding the loop in the
function.

8 In both cases a for ... loop.

9 You can pick a different range and
increment ... this is just a quasi-random
example to illustrate ...

this does not matter. You could have addressed this by construct-
ing a slightly less convenient form of the loop, e.g.:
for SO = 1068:100:1568

% CODE GOES HERE
end

which now passes exactly through the modern value of Sy.

loop option #2 Alternatively, you could have an integer count for the
loop, and then derive a changing value of Sy from this. For exam-

ple:

S0_modern = 1368.0;

for m=-5:5
SO = SO_modern + 100x*m
% CODE GOES HERE

end

Look carefully through this code and follow what is going — as
m counts from -5 to 5 (in steps of 1), 100 times the value of m is
added to the modern value of Sy'°, meaning that Sy ends up going
from S0_modern - 500, to S&_modern + 500 Wm ™2 (in steps of 100
Wm—2).
Or, alternatively:
SO0_modern = 1368.0;
for m=1:11
SO0 = SO_modern + 100%(n - 6)
% CODE GOES HERE
end

which does exactly the same (do a mental check on this) but now
counts m starting from a value of 1.

So what does it matter, and/or is one ’better’ than the other? Actu-
ally, both are equivalent and you could make either work out just
fine. The advantage with the second version is that you implicitly
have an integer counter. For the first version, you’d have to add lines,

e.g.

count = 0;

for SO = 1068:100:1568
count = count + 1;
% CODE GOES HERE

end

And why might we want some sort of an integer counter in the
first place? Well, you might want to save the data(!), i.e. the calcu-
lated (by your function) value of T vs. the inputted value of Sy.

There are also two ways of saving the data (assigning calculated
values to sequential locations in an array):

zero-d / equilibrium modelling 127

° The variable definition S6_modern =
1368.0 at the top of the code fragment.

128 str="do you like bananas?’ [exam version]

save option #1 Create the necessary array(s) beforehand, e.g. using the
zeros function. For instance, to create a vector with 11 rows (and 1
column), suitable for saving the value of T calculated by each call

to the EBM function, you could write:

data_T = zeros(11,1);

which would create a (single) column vector with 11 rows. You'd
need an equivalent vector (e.g. data_S0 in this example) for storing
the corresponding value of Sy used in the temperature calculation.
These vectors are created before the loop starts.
Then within the loop (and after the calculation of T), you'd assign
your values of Sy and T by using whichever index you created":

data_S@(m) = S_0;

data_T(m) = T;
or:

data_SO(count) = S_0;

data_T(count) = T;
where m and count are integers, starting at a value of one, and
incrementing by a value of one on each successive execution of the
loop. m (or count) represents an index that allows you to store the
result of each successive calculation (as well as the corresponding
input value) in a vector.

save option #2 Or ... MATLAB will allow you to ‘grow’ a vector, one

element at a time (but not for matrices).’* The the code within the
loop actually looks identical — you just omit the 2 lines at the start
of the program creating vectors of appropriate size (and zero in
value).

So pick one (i.e. a way of saving a pair of values each time around
the loop) and code it up. (Or try both!) Then, at the end of your
program, plot (plot or scatter) how T varies as a function of Sp.

The structure of your code should look like Figure 6.3. and your
resulting figure (depending on the range you assume for Sp), some-
thing like Figure 6.4.

6.1.4 Parameter sensitivity experiments using the EBM — #2

In this Subsection, we’ll extend the sensitivity experiment to 2D,
assuming that you are interested in how T also varies as a function
of a. So, you'll need to vary both Sy and «, and in all combinations of
the two. In fact, in a grid pattern, with Sy increasing in steps on one
axis (as before), and « on the other.

Hopefully, you might have guessed that you'll need a nested loop(?)
— one loop going through all possible values of «, for each and every
possible value of S¢??

" i.e. which of the two OPTIONS you
chose earlier.

> The vector automatically grows in
length as you add values to it. If you
don’t believe me, try the following:

» A=1;
» A2) = 2;
» A(3) = 3;

You could instead define at the start f
the code (before the loop) a vector of
zeros of the correct length, the ’correct
length’ being the number of time
around the loop. See function zeros. Or
even NaNs ...

scr_2.m

%EMB program
4 define output
vector

4 initialize loop
coun
4 set o value

%a
°
9 0 |4 store 0
=l data in
vectors

.

)

fun_1.m

[S;,0 in]
< define
function

4 define model
parameters

4 solve for T

<4 end function
[T out]

5
'
\
Y
'
4 plot data “_
v

Figure 6.3: Schematic structure of the
model configured to carry out a single
parameter sensitivity study.

Temperature (degree C)

N

5
1100 1200 1300 1400 1500 1600 1700

Solar constant (W m '2)
Figure 6.4: Sensitivity of global mean
surface temperature vs. solar constant
(mean surface albedo held constant at
an albedo value of 0.3).

Perhaps, as an aside, we’ll go through a simpler example/system
first.

A chess board consists of squares in a 8 x 8 grid. The squares
alternate black and white. To define 8 squares (points) along the
x-axis on the bottom row, you’d write something of the form:

for m=1:8

% SOME CODE GOES HERE
end

Now, if you wanted to define 8 squares along each column (the y-
axis), at each and every x-axis value, you'd need to loop through all
the rows, So you need a loop in e.g. n, inside the loop for m:
for m=1:8
for n=1:8
% SOME CODE GOES HERE

end
end

Follow this through to satisfy yourself that for each and every value
of m from 1 to 8, n loops from 1 to 8, and hence visits every point in
turn of a 8 x 8 (n, m) grid.

Actually, now we have got this far, it is good practice to consider
how we’d define the black and white squares. We’ll assume that
black is represented by "1’ (true) and white by '0’ (false) and create a
board (array) of all white squares to start with, i.e.

board = zeros(8);

(Refer to help or earlier for the syntax for help on the function
zeros.'3)

If we start with a black square ('1’) at the bottom left, we could
define an algorithm for creating the grid as: odd column number
squares are black, as long as the row number is odd, otherwise they
are white.’™# So to implement this in code — as we loop through both
column (m) and row (n) on the board, we test for the column number
being odd and row number odd, OR, the column number being
even and row number being even. If true, the square is defined as
black. The only tricky bit is to determine whether the row or column
number is even or odd. We do this by testing whether there is any
remainder after dividing by 2, using the function mod.

The complete code looks like:

board = zeros(8);

for m=1:8
for n=1:8
if ((mod(m,2)>0 && mod(n,2)>0) || (mod(m,2)==0 && mod(n,2)==0))
board(n,m) = 1;
end
end

end

zero-d / equilibrium modelling

3 You could alternatively write this:

board = zeros(8,8);

mod

Not ... the opposite of rocker
(which doesn’t exist in MATLAB
anyway) but short for modulo.
Wikipedia helpfully tells us:

"In computing, the modulo operation
finds the remainder after division of one
number by another (sometimes called
modulus)."

Or in MATLAB-speak:

b = mod(a,m)

"returns the remainder after division of
a by m, where a is the dividend and m is
the divisor".

It turns out that as long as a is pos-
itive, you can use to test for whether
an integer a is even or odd by:

b = mod(a,?2)

When the returned value b is 0, a is
even, and when b is 1, a is odd.

4 Look up a picture of a chess board to
convince yourself that this works.

129

130 str="do you like bananas?’ [exam version]

Spend a little time decoding the if statement for practice ... If you
want to see that it works — code it in a new m-file, run it, and then
plot up board by e.g. using imagesc (cf. Figure 6.5). Beautiful.

OK - that was easily the greatest diversion in pedagogical history,
but nested loops should now come almost as second nature to you
:0) So how about coding up the nested loop for the question we were
meant to be addressing — carrying out a 2D sensitivity test of the
parameters Sy and a. See if you can create this.

Start with a new (script) m-file ("scr_3’). For constructing the loop
— you have already seen the 1D example of parameter sensitivity
code, and also an example of creating a nested loop for a 2D grid.
Your chess board columns (m) become S, and rows (n) become «.
You don’t need to do anything so awful as that if ... statement —
instead just call your function (fun_1) for solving the global surface
temperature (passing it the values of Sy and a generated in the loop).
A schematic of the program structure is shown in Figure 6.6.

For saving the data (within the loop), you cannot not simply index
the locations you want in a 2D array (matrix) that did not previously
exist and expect it to ‘grow’ as before, becasue a matrix must have
all complete rows and columns. Instead, near the start of the code
(before the loop), create a matrix of the size of the parameter grid.
For example, if you were going to loop through 10 different values of
Sp and 10 of &, you could write:

data_output = zeros(10);

(creating a 10 x 10 array of zeros). Or if for example, you had 20
different values of Sy, and 10 of a:

data_output = zeros(10,20);

(20 columns times 10 rows).
Within an (n,m) loop you then assign your calculated value of T to
the appropriate location:

data_output(n,m) = T;

Don’t forget that you'll also need to know the values of Sy and « that
correspond to the column and row numbers. Perhaps save these as 2
individual vector (as per before) or ignore them for now.

One slight complication if you use a pair of counters and incre-
ment their value each time around their respective loops (rather than
having a integer count for the loop itself (i.e. n and m)) — the inner-
most counter must be reset in value each time the outer loops starts:

count_outer = 0;
for ...
count_outer = count_outer + 1;

Figure 6.5: Chess board grid pattern.

scr_3.m

$EMB program

4 define output
matrix

4 initialize S,
loop count

A\ 4

A

[
L

<
4 plot data
v

/-b—\ 4 initiali
o loop
count

\ 4
r N

IS

23|

w 3

<
< A 4

function

4 define model
parameters

< solve for T
< end function
[T out]

store data in matrix

Figure 6.6: Schematic structure of the
model configured to carry out a double
(in terms of solar constant AND now
albedo) parameter sensitivity study.

Albedo

50
40
30
20
10
0
10
20

2 a 6 8 10

Solar constant (W m?)

Figure 6.7: Global mean surface tem-
perature (°C) as a function of solar
constant and surface albedo grid point

number.

2 £

05
1150 1200 1250 1300 1350

1400 1450 1500 1550 1600

Solar constant (W m '2)

Figure 6.8: Global mean surface temper-
ature (°C) as a function of the value of
solar constant and surface albedo.

count_inner = 0;
for ...
count_inner = count_inner + 1;
% CODE GOES HERE
end
end

(Try it instead by initializing both prior to the outer loop, and see
what happens ...)

When you *think* you have this working and generating a matrix
of T values™, plot the resulting surface of T vs. the two parame-
ters. Rather than using e.g. imagesc (Figure 6.8)°, try contour'7 or
contourf (e.g. Figure 6.7).

6.1.5 Creating a function for the evolution of solar constant through ge-

ological time

In this and the final Subsection, you are going to leave the 2D-ness
aside and consider how Earths surface temperature has changed
through geological time.

So far you only have a function equating solar constant (S) to
temperature (T). What you need is some way of equating time (t) to
the value of the solar constant at that time S; (which you can then
turn into temperature). We’ll remedy this toot sweet.

Start by creating a new (blank) m-file and define it as a function
that takes in time (in units of Ga) and spits out Sy (Wm~2) (this will
be "fun_2" in the on-going notation).

The background to the equation that will go into your function is
given in the Solar constant Box. In this, you'll first need to substitute
the modern value of the solar constant into the equation to leave it
in terms of S; (the solar constant value at time f) rather than L;. Your
function, aside from the all-important 1st line (and end at the end)
and appropriate % comments, need have little more in than a defi-
nition for any constant you might want to use, such as the modern
value of Sy and perhaps time now (4.57 Ga) ... and a single line for
the equation giving the value of S;. Be careful that in the equation, ¢
is measured as the age of the Sun (since its formation), meaning that
time 'now’ (modern), is equivalent in the equation to t = —4.57 (Ga).

When you think you have done this — check it — plug in values of
time into your function, i.e.

» fun_S(4.57)

for passing the time now into a function called "fun_2’ in the on-
going notation (which in this example should return a value of 1368
(Wm™2)).

zero-d / equilibrium modelling

131

5 HINT: create a 2D array of the appro-
priate size first, before the loop starts,
using zeros, and then populate it with
the values of T as the loop loops.

® Note that the temperature grid points
are plotted as a function of column and
row number and that the plots ends

up “up-side-down’ compared to the
coutourf version.

7 You'll need to employ meshgrid based
on the same 2 vectors of values that the
loop creates for Sp and «.

Solar constant

The long-term evolution of solar
luminosity L as a function of time ¢
can be approximated [Gough [1981];
Feulner [2012]) by:

L 1

Ly — 1+%~(1—%)
where tj is the age of the sun —
457 Gyr (4.57%x10° yr) and Ly is
the present-day solar luminosity
(3-85x10% W).

The value of L is equivalent to
a flux (Wm—2) of 1368 Wm 2 inci-
dent at the top of the atmosphere
at Earth, which is given the symbol
Sp. In the equation, Ly can be substi-
tuted for Sy to give the value of S at
ant time, i.e. S; (Wm_z).

Note that in the formula, t is
counted (in Gyr) relative to the for-
mation of the Sun (i.e. present-day
would be: t = 4.57).

fun 2.m

[t in]
« define
function

4 define model
parameters

« calculate S,
4 end function
[S, out]

Figure 6.9: Schematic structure of
code for calculating the solar constant
(output) as a function of time (input).

132 str="do you like bananas?’ [exam version]

6.1.6 Using multiple functions and calculating global surface temper-

ature as a function of geological time

Finally ... you are going to bring it all together and calculate and plot
the surface temperature of the Earth, at 100 Myr intervals, from 4.0
Gyr (4 billion years) in the past, to 4.0 Gry in the future — spanning
approximately the age of the Earth and much of its potential long-
term future.

Start by creating one final new (blank m-file) script ("scr_4’).. You
are going to need a loop in time, perhaps looping from 4.0 to -4.0
Ga relative to now (but you can chose what limits you like ... except

remembering the Sun is only 4.57 Ga old ...). Within the loop, you
will:

1. Pass to your solar constant function the current time, and ob-
tain the corresponding value of the S; — remember that you must
add 4.57 to the time you pass into your function as the equation
for S; is in terms of time since the formation of the Sun, not rela-
tive to now.

2. Call your EBM function to calculate the corresponding surface
temperature, passing it the value of S; you have just calculated.

3. Store in an array, or pairs of vectors, time and the correspond-
ing value of T.

Likely bug possibilities include the units of time (Gyr), and that
time in the equation for Sy is counted forwards from the formation of
the Sun. Also be careful with nested parentheses (()). A schematic of
the program structure is shown in Figure 6.10.

Assuming that you have managed something like Figure 6.118
— what strikes you, in light of (hopefully) what you know about the
past history of climate and evolution of life on this planet, about your
model projection (for the past)? What is ‘missing’?

scr_4.m fun 2.m

% EBM program P [t in]

4 define output ! 4 define
vectors i

4 initialize loop ," function
count 4 define model

4 set o value

i
Y :," parameters
A 'l I < calculate S,
___________ N 4 end function
.

& -1 15, out]

o

L B A PP

fun_1.m

\
L o .
4 store | ‘-L> [S,,a in]
ﬁg:oi‘; i « define
' function

4 define model
H parameters

[

'

4 plot data
v

4 solve for T

H < end function
i@ [T out]

Figure 6.10: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, and solar constant
and EBM functions.

50

5
8

@
8

Global mean temperature (C)
5 8
Y

Y
kY

.8

-3 -2 -1) 1 2 3 4
Time relative to modern (Gyr)

Figure 6.11: Simple EBM projection of
the evolution of Earth surface tempera-
ture with time. Time at the present-day
is highlighted by a vertical line (drawn
using the MATLAB line function).

8 Note that a line has been added to
highlight t = 0 (i.e. the present-day) —
see line.

line ... quite simply, draws a line.
The basic syntax of the command is:

line(X,Y)

which plots a line between a paid of
(x,y) coordinates. In the MATLAB
usage, for a single straight line seg-
ment: the vector X contains both the
x coordinate values, and Y both the y
coordinate values.

In the specific Example in the text,
the vertical line is drawn by:

line([0 0],[-10 50]);
NOT forgetting to put hold on first

zero-d / equilibrium modelling 133

6.2 'Daisy World’

There is an absolutely classic paper from the early 1980s — Watson
and Lovelock [1983] — that illustrates how simple (biological) feed-
back on climate can lead to a close regulation of global climate over
an appreciable span of the Earths past (and future). The premise
for this model is a planet covered in bare soil (essentially, as per in
the earlier EBM), but on which 2 different species of daisies (could
be any pair of plants with contrasting properties) can grow — one

white (high albedo) and one black (low albedo)'. Because the two 9 As pointed out in Watson and Lovelock
[1983], the actual "colors” are immaterial

species modify their local (temperature) environment and their net
p y (P) —just tat the albedos differ.

growth depends on how close the local temperature is to their op-
timum growth temperature, a powerful climate feedback operates
and as the solar constant increases, the abundance of daisies switches
from black to white — driving an increasing cooling tendency of the
planet surface in the face of increasing solar-driven warming. This
regulation emerges as a property of the dynamics of the population
ecology and interaction with climate and does not require an explicit
regulation of climate to be specified. Just dumb daisies doing their
day-to-day stuff.

We'll code up this model ... but as before, in discrete stages (aka,
the following Subsections).

8.2.1 This will be the simplest addition to your previous model*°. You'll j.e. the one comprising a loop
through time, and within this loop,

. , calls to your function to convert time
inputs, and return a value for mean global albedo. You'll also to solar constant, and take the solar

copy-rename yourself a new script ("scr_5" — based on scr_4) constant (and albedoo and solve for
mean global surface temperature. This
was ‘# scr_4’ in the previous Section
function, and pass it into you EBM function (fun_1). (See Figure notation.

6.12.)

create a new ‘fixed daisy’ function (fun_3) which will take no(!)

and in it, take the albedo value generated by the call to the daisy

8.2.2 Now, in the next stage it gets a little more complicated, because in
a further new function ("fun_4’ — copy-renames-and-edited from
fun_3) you'll modify the equations such that the relative abun-
dance of each daisy type is now responsive to the value of global
temperature. The situation thus becomes — the relatively fractions
of dark and light colored daisies is a function of global surface
temperature, yet ... global surface temperature, through the mean
(fractional area weighted) albedo of the daisies, is a function of the
relatively fractions of dark and light colored daisies — a circularity
(feedback loop). We'll resolve this circularity (i.e. come to a steady
state solution) by creating an inner loop that comprises only the
daisy function and EBM function and keeps looping until ... well,
we’ll start by simply prescribing a fixed number of iterations of the
loop.

134 str="do you like bananas?’ [exam version]

(See Figure ?? for a schematic of the code setup.)

8.2.3 Finally (almost) — we’ll allow the daisies affect their *local * (temper-
ature) environment. Now it gets more interesting (honest!). Al-
though the code structure is exactly the same as in the last step?’,
you will require a further copy-rename-and-edit of the previous
daisy function ("fun_4" — ’fun_5") and one further copy-rename-
and-edit of the previous script ('scr_6" — ’scr_7’) that calls the
daisy function.

8.2.4 In a minor extension to the previous work, we can modify the loop
involving the daisy function and EBM function such that it will
proceed until an adequately accurate solution (for global tem-
perature) has been converged upon (rather than looping a fixed
number of times).

6.2.1 'fixed daisy’ daisy-world

To start: read Watson and Lovelock [1983]. You should be able to take
away from this some of the essential information that you need to
specify and keep track of. For now, we’ll just concern ourselves with
defining the albedo of bare ground (soil) and the albedo of each daisy
together with how much area is covered by each species of daisy.

Create a new function (fun_3) — configure it so that it returns a
single parameter — albedo. For now it has no inputs.?* How it re-
lates to your previous program and code for how the Earth’s surface
temperature evolves over geological time, is illustrated in Figure 6.12.

Now, in the daisy function (fun_3) near the top, define yourself
some parameters for the daisy model:

% define model parameters - daisy albedo

par_a_s = 0.3; % albedo - bare soil
par_a_w = 0.5; % albedo - white daisies
par_a_b = 0.1; % albedo - black daisies

% define model parameters - daisy land fraction
par_f_w = 0.01; % (land) fraction - white daisies
par_f_b = 0.01; % (land) fraction - black daisies

(or using whatever parameter names you prefer). Here, the albedo
values associated with each daisy type are fixed and will be used
regardless of what the model does. The values have been chosen,
assuming equal proportions of black and white daisies, to given an
average of 0.3 — the albedo of bare soil and also the assumed value
in the previous EBM. You'll modify and play with this value all too
soon enough. The surface area fraction values are just initial values to
start the model off with.?3

Next, and actually the only line of any note in the function — you
need to calculate an average albedo?# — calculated based on the area

** A loop through geological time, as
per in the previous Section. Within this
main loop, you'll have a sub-loop with
just the daisy function followed by the
EBM function.

> A funny sort of function, although
pretty well much like pi.

fun 2.m

,-J; [t in]

H <4 define
function

4 define model
scr 5.m | parameters

H
H
H
H < calculate S,
H
H

% daisyworld 1

4 define output
vector H

<4 end function

« Tnitialize £ |i ;@ IS, out]
loop count H
v i :,' fun 3.m
A | I { r# [(nothing) in]
........... - <4 define
' function
," <4 define model
[
O |]
'2 \‘ < calculate a
\
i s <4 end function

........... 1 [0 out]

\
M fun_1.m
\
vectors || i .
[[S,,a in]
i
'

<4 define
4 plot data function
v

4 define model
parameters

i
'
1
'
'
i
'
[
H <4 solve for T
'
'
'
'

< end function

'—4' [T out]

Figure 6.12: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant
and EBM functions, and now the 'daisy’
albedo function.

3 As you'll come to see subsequently,
these cannot be zero. Or rather, a daisy
species can start with a fractional area
of zero, but you'll never ever get any
of that species growing, regardless of
the environmental conditions (because
there are none to start with!).

* Note that it is very easy to accidently
prescribe a total area covered by daisies
of >100%. You should ideally put

a check (if ... end) in the code
before it tries to calculate anything for
whether the total area initially covered
by daisies exceeds what is possible. If
this is the case, your code might spit
out a warning message (a simple disp
command would do). You might also
terminate your program (see exit).

weighted average of: bare soil, white daisies, black daisies. The cal-
culation is simple and you already have the areas of the two species
of daisy as fractions. You weight the contribution to global albedo by
the albedo of each daisy by its fractional area. You then just need to
calculate the fraction of the Earths surface that is bare soil — the area
fraction not covered by daisies. In maths-speak, the mean albedo is
given be:

a=Fy-oap+F-a,+(1.0—Fy—F,) - as

where ay,, ap, and ag, are the albedos of white and black daisies,
and bare soil, respectively, and F, and F, are the fractional areas

of occupied by white and black daisies, respectively (with bare soil
comprising the remainder). You simply need to translate this into
MATLAB code using the parameters you defined earlier (for ay, oy,
and g, and F, and F,). Write this line of code, which the one and
only calculation the function carries out, just before the end of the
function.

Thats actually it. All the parameter values are specified and fixed
(see above), so nothing particularly exciting is going to happen ...
Regardless — run the the complete model with the value of albedo
now depending on the fraction of white and black daisies — it should
look identical to before in terms of the evolution of surface tempera-
ture with time (it must, because the default parameters above ensure
that the mean albedo is always 0.3 and the daisies don’t even know
anything about growing (or dying) yet). Model (surface temperature)
output, including how the populations of the 2 species of daisy also
vary with time, is shown in Figure 6.13).

You might play briefly with the prescribed daisy fractions and
albedo values and e.g. check that when you specify a configura-
tion with 100% of land area covered by black daisies, the climate is
much warmer throughout the simulation, and when white daisies
are assigned an initial value of 1.0, the climate is always much cooler
compared to in the default simulation.

6.2.2 'dumb daisy’ daisy-world

OK - step #2 in the evolution of Daisy World, and for the next mod-
ification and one which will actually make something "happen’ (i.e.
the simulation will be different to that of the default EBM based sim-
ulation of mean global temperature response to increasing Sp). In
fact, the daisies are going to grow and die (but unlike Southern Cal-
ifornia, not burn), with their population changing over time until an
equilibrium is reached (for a particular specified value of Sp). Watson
and Lovelock [1983] give a simple population model formulation for

zero-d / equilibrium modelling

Daisy World -- fixed daisies

Global mean temperature (C)
8

Time relative to modern (Gyr)

Figure 6.13: Evolution of global surface

135

Daisy fraction (%)

temperature and the two populations of

daisies with time ... but with no change

allowed in the daisy populations
(d’uh!). The fractional coverage of

white daisies is shown by large empty

circles, and for black, by small filled
black circles. Data points for mean

surface temperature are color-coded by

temperature (color scale not shown).

Daisy population dynamics (1)
For an area fraction occupied by

white and black daisies of F;, and F,

respectively, the change in occupied
fractional area with time (f) can be
written:

dEy/dt = Fy - (x - Bw —)

dFy/dt = Fy - (x- By —7)
where x is the free (i.e. not occu-
pied by daisies of any color) area of
(fertile) ground, equal to:

x=10-Fy,—F
(assuming here, unlike the more
general case in Watson and Lovelock
[1983], that all the land area is po-
tentially fertile), B is a temperature-
dependent growth function (one
for each species of daisy), and <y the
mortality rate (as a proportion of
the area covered by that species of
daisy per unit time). The value of y
given in Watson and Lovelock [1983]
is 0.3, but this could be a parameter
that you could play about with and
investigate its effects.

To simplify things to start with,

growth is a function only of the
global mean temperature (in °C):

Bw = 1.0 — 0.003265 - (22.5 —
T)?
By = 1.0 — 0.003265 - (22.5 —
T)?
(where the value of 22.5 °C is a ref-
erence temperature and represents
where optimal (maximum) growth
occurs).

136 str="do you like bananas?’ [exam version]

the change in area fraction covered by both sorts of daisy with time
(also see Box) that we will implement here.

The unit of population in Daisy World is fractional area covered.
So each time-step, the fractional area or each species will grow or
shrink, depending on whether mortality is higher than growth. Both
growth and mortality are formulated as being dependent on the frac-
tional area (at the previous time-step), i.e. growth in covered area
depends on how much is already covered. Similarly, mortality also
depends on how many daisies are currently there. The growth rate
is further modified by the available fractional area, such as that the
area left shrinks, the growth rate shrinks. (Effectively, this is perhaps
trying to account perhaps for shrinking resources available for fur-
ther growth. It also has the effect of adding numerical stability to the
model and helps presents over-shoots where the total fractional area

% daisyworld 2

4 define output

vector

4 initialize t
loop count

4 initialise
variables
T,F, F, (S,,a)

)

4
A

t loop

covered by daisies far exceeds 1.0 ...).

How them to implement this in code? * Satacin

A 4

¢ In general - start by identifying any constants —i.e. fixed and

4 plot data

invariant, fundamental values, such as 7t or the Stefan-boltzmann
constant. These values could be hard-coded into the equation as
numbers, but better is to replace them with variables that you'd
define at the top of the m-file as this makes for neater and easier-to
read MATLAB code.

* Next identify any parameters — values that are not fundamental

y

properties of the universe, but may be considered invariant for
sequential uses of the equation. The characteristic albedos of the
two species of daisies is a good example — these values are fixed’,
although, one day you might change them. If the code file is a
script — define MATLAB variables and assign values to them, near
the start of the code file. Otherwise, if a function, you may need to
pass these parameters into the function and so they need to appear
in the function definition on the 1st line of the code.

¢ Identify any output variables, i.e. result(s) of the calculation.

In a function, these are invariably pass back out and hence need
to appear in the function definition on the 1st line of the code.
Output variable may also be input variables —i.e. a calculation
may take the current value of a variable (as an input), update it,
and then pass it back out. In which case, the variable will need ot
appear as both input and output. Perhaps pick distinction variable
names to avoid confusion, e.g. var_in and var_out.

* You may have local variables (i.e. used only within the script
and out outside of it). If scalars, these need not be defined and
initialized, unless used as e.g. a counting or running-sum vari-
able. If in doubt, maybe also define and initialize e.g. to zero local

variables.

scr_6.m |

vectors |

-

By

fun 2.m

-J; [t in]

4 define
function

4 define model
parameters

4 calculate S,
4 end function
[S, out]

fun_4.m

'L; [T,F,,F, in]

<4 define
function

4 define model
parameters

<« update F,,F,
calculate o

<4 end function
[a, F,, F, out]

fun_1.m

-L; [S,,& in]

4 define
function

4 define model
parameters

4 solve for T
<4 end function
[T out]

-

Figure 6.14: Schematic of the evolution
of surface temperature over geological
time program, and relationship between
main program script, the solar constant,
EBM, and ‘daisy’ albedo functions.
Note the creation of an inner loop,

with EBM, and ’daisy” albedo functions
called from within this, while the solar
constant remains called form the start
of the outer loop as before.

zero-d / equilibrium modelling 137

e Otherwise, it is mostly just a case of writing the maths, in
MATLAB - changing symbols where necessary and replacing
the letters (invariably) used in the equations with your variable
names.

Figure 6.14 gives a schematic of the overall code structure for this
model. DON'T PANIC. There are actually only 2 (or 3-ish), relatively
incremental changes, compared to previously. Start off by noting
what is the same — both the function for the solar constant (fun_2)
and the EBM model (fun_1) are exactly the same as before. The loop
in (geologic time) and hence some of the script (scr_6) is also the
same. What is different and yet to-do?

1. Lets start with the daisy function. You could deal with the in-
puts and outputs first. As as well as T, now the previous values of
the fractional areas of the two daisies are required (Fy, F;) (which
is different from before where the values were assumed and the

respective parameters set at the start of the function?5). This is % So if you are copy-pasting the previ-
because each time the daisy function is called, the fractional areas ?k?:ﬁaelssy function, you need to delete
are updated (hence why they are inputs). And outputs. Beasue the barfu = 0.01;
daisy function is updating the fraction al areas, these two parame- par_f_b = 0.01;

ters also need to be outputs too. So the very first thing to do is to
modify the function definition, so that the inputs are:

T,Fy, Fy
and the outputs are:
o, Fw , Fb

(see help of various sorts on functions, but it not at all a fundamen-
tal change as to compared to before).

Then, the only other development in the function, is to imple-
ment the equations for daisy growth/death and update the values
of Fy, F, (and at the end, calculate the value of « as before). And ...
set the parameter values for § and -y of the two daisy species (near
the start of the function).

2. Secondly, it is going to take a number of iterations for the
daisies to grow/die ... changing their fractional areas and hence
albedo as their fractional areas change ... and hence ultimately,
reaching a new equilibrium with global climate. Each time around
the outer loop — because the value of Sy will change each time,
climate will change and the daisy population will no longer be in
equilibrium (because their fractional areas are carried over from
the previous loop iteration). Hence in the outer loop you will need
an inner loop to determine the new equilibrium and global tem-
perature for that particular value of Sy. For now the loop can be

138 str="do you like bananas?’ [exam version]

quite simple — we’ll assume 100 iterations (i.e. the loop counter n,
will go from 1 to 100).

3. Lastly, the initialization of the main program (scr_6) will be a
little different from before. Because the daisy function now takes
as input, F, and F, — you'll need to give these variables each an
initial value (near the start of the program) so that first time the
function is called, there is a value for the equations to work with.
Similarly, temperature T now also becomes an input to the daisy
function (and it is not set anywhere else beforehand in the very
first iteration of the loops), so it also needs an initial values to be
assigned.2®

If you have set this daisy population dynamics enabled EBM (a
DPDE-EBM!) up correctly, and drive it with your -4.0 to +4.0 Ga solar
constant calculating script, you should get something like Figure 6.15.

OK, so actually, this is not different in terms of the global mean
temperature response (to solar evolution), to before. But then again,
you have set both species of daisy with the same temperature growth
response. In other words, as the white daisies with a high albedo
grow, so to the black ones with a low albedo. Equally. And their dif-
ferent albedos balance, meaning that « still never changes. One thing
you could try to liven things up a little is to change on of the value
of B (and/or %) so that their population dynamics are not identical.
Now, if the relative abundance of white and black daisies changes, so
too with global mean albedo and hence global temperature.

6.2.3 ’clever daisy’ daisy-world

The last step is to give each species of daisy a different environmental
preference for growth (why? because that is how the World works —
different plants and ecosystems tend to inhabit different environmen-
tal regimes as a result of being (evolutionary) adapted to different
environmental parameters). Watson and Lovelock [1983] assume that
both species of daisy have the same temperature preference but mod-
ify their local environment differently — white daisies inducing a local
cooling relative to the global mean temperature, and the presence of
black daisies driving a local heating (see Box). The result is Figure
6.16.

Now the behaviour of the system and the evolution of global mean
surface temperature with time, is very different. Towards the start of
the experiment, and at very low values of Sy, the global mean tem-
perature is too cold to support a daisy population (of either type).

As the value of Sy increases, initially global mean temperature fol-
lows the path it did before, in the absence of daisies (or with fixed, or
equal populations). At a certain point, black daisies, because of their

2 For completeness, you could also
initialize Sp and «, but it is not strictly
needed, as they are calculated and
defined before they are first used.

Daisy World -- identical daisies

Global mean temperature (C)
8
Daisy fraction (%)

%
®
®
°

-4 -3 -2 -1] 1 2 3 4
Time relative to modern (Gyr)

Figure 6.15: Evolution of global surface
temperature and the two populations of
daisies with time ... but now assuming
that the growth of each depends on the
global mean surface temperature.

Daisy population dynamics (2)

To make the different species of
daisies interact differently with
the environment, the temperature-
dependent modifiers of growth are
made functions of the local (to the
daisy population or individual),
rather than global, temperature:

Bw = 1.0 —0.003265 - (22.5 —

T

B, = 1.0 —0.003265 - (22.5 —

Ty)?
There are all sorts of says of defining
how the local temperature deviates
form the global mean. In Watson
and Lovelock [1983] this is simply
reduced to a simple deviation that
scales linearly with the difference be-
tween mean global and local (daisy)
albedo:

Ty =T+q-(A-Ayp)

Iy = T+q(A7Ab)
(noting that A is albedo here, not
alpha as was the case in the original
(non daisy enabled) EBM). g is a
simple scaling factor that describes
how strongly the local temperature
deviates from the mean (or con-
versely, how efficiently heat energy
is mixed between differen daisy
fractions) and is assigned a default
value of 10.0.

advantage that they absorb more sunlight and drive a locally warmed
climate, take off in population and rise to dominate 70% of the land
surface. The global mean temperature transitions sharply to a much
higher temperature state. As Sy further increases in value, they in-
crease slightly further in dominance (and global temperature climb a
little further in response) until locally they reach their optimal tem-
perature for growth. Past this (optimal temperature) point, white
daisies start to grow and slowly replace the black ones. Global cli-
mate is almost perfectly stabilized during this interval. Beyond this,
there is a short interval where black daisies die out and white daisies
go on to reach their own (local) temperature optimum. Beyond this
again, everything suddenly goes extinct in a rapid warming feedback
of increasing temperatures, declining white daisy numbers, further
solar radiation absorption and warming, etc etc. How everything is
dead and I how you are feeling happy with yourself.

You could code this modification in — adjusting the (local) value
of T that each species of daisy "sees’ (as per the Box and the refer-
ence). Or ... we could simply give them different temperature optima,
which is what the value of 22.5°C accomplishes in the temperature-
dependent growth modifier equation. For now, this is the way-
simpler approach and involves only a minimal edit to your existing
daisy function. So where in the equation for B, and B, you currently
have values of 22.5 (°C) in each — try making these different. Rea-
sonable would be to assume that the white daisies are more adapted
to hot climates and hence have a higher temperature tolerance, with
black daisies being better adapted to colder climates, using their
higher albedo and presumably local heating to make up for a colder
ambient environment. (You could be able to come up with something
not entirely dissimilar to Figure 6.16.)

zero-d / equilibrium modelling 139

Daisy World - interactive daisies

Global mean temperature (C
N ©
8 8
Daisy fraction (%)

Normalized solar constant

Figure 6.16: Evolution of global surface
temperature and the two populations of
daisies with time.

7
Dynamic (time-stepping) modelling

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus
elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dic-
tum gravida mauris. Nam arcu libero, nonummy eget, consectetuer
id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla
et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis in, pretium
quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.
Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mol-
lis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget
risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis,
diam. Duis eget orci sit amet orci dignissim rutrum.

Part 1

Part 11

Part 111

Part IV

142 str="do you like bananas?’ [exam version]

7.1 Catch the ball (ballistics and simulating trajectories)

In considering dynamic, time-stepping representations of physical
(/biogeochemical) systems, we’ll start with a simple, ballistics exam-
ple — that of the trajectory of a thrown ball.

The system we’ll consider is shown schematically in Figure 7.1. In
essence: we want to determine d — the horizontal distance (m) that
the ball travels before it hits the ground. The initial conditions are:

1. The ball is thrown from an initial height & (m).
2. The ball is thrown with an initial speed s (ms~!).
3. The ball is thrown at an initial angle 6 with the horizontal.

We'll neglect any air desistence or spin imparter with the ball, and
for the purpose of calculating its height, we’ll ignore its diameter, i.e.
we’ll consider that the ball is level with the ground when its centre
is at height zero. Over and above this, you'll only need to know the
gravitational constant (i.e. gravitational acceleration) — ¢ = 9.81ms~!
(i.e. the ball is being thrown on an Earth-like planet near sealevel).
To simply things and the construction of the code and encapsula-
tion of the physics of the model, we’ll break it down into 4 steps:

Considering only horizontal travel.
Considering only vertical travel.

Considering both horizonal and vertical travel and testing for when
the ball hits the ground.

Add some graphical output.

Part 1 Start with a new m-file. Create a structure along the lines of
Figure 7.2, i.e. you are going to need to define some constants (g),
parameters (the initial height #, initial speed (sp), initial angle (6) of
the ball).

Because you are going to use a time-stepping approach (rather
than solve the system analytically), you are going to need a loop in
time, starting at time zero. Can you guess the time-step you need?
No? Then we need to make the time-step a parameter that we can
change to ensure that the system is solved well (i.e. accurately and
without numerical instability). You could call this parameter e.g. dt
and set it to an initial (guessed) value® such as 0.1s. How long should
you run the simulation for? This is also a sort of unknown at this
point, at least until you have run the simulation a couple of times
to get a feel for what the longest time the ball stays in the air might

Figure 7.1: Schematic of the thrown-ball
system.

ball u.m

% fun with
ballistics I

4 define model
constants

4 set model
parameters

4 initialize:

P
* u (calculate)

A 4 »
A 1
4 calculate
Ap
" §" 4 update g
= |« displa
variable
values
A 4

A

v

Figure 7.2: Schematic of the code for
simulating the horizontal movement of
a ball.

* In the parameter section of the code.

dynamic (time-stepping) modelling 143

be. So why not pick 100s to start with. Again, create a parameter to
hold the value of the maximum model simulation time and assign
its value in the parameter definition section of the code. Assuming
a time-step parameter name of dt and a maximum time parameter,
max_t, if your current time is called t, your loop structure will look
like:

for t = 0:dt:max_t

%SOME CODE
end

with time t starting at zero, and progressing to max_t in steps of dt.

What else do you need? You need a variable to represent the hori-
zontal position of the ball (delineated here in the text as p, with units
of m). This will start at zero and be updated within the loop. So also
in the parameter section, why not define your horizontal position
variable p and assign it a (initial) value of zero.

Lastly, you need to know the horizontal component of the balls’
velocity.> You can calculate the (initial) horizontal component of
velocity from the given initial conditions of initial speed (sy) and
initial angle of trajectory (8). For now, pick any 'reasonable” values
for sp 3 and 6 4. In the figure, the velocity component is designated .

Along with the schematic of the code structure, this should be all
you need to create a basic code (but one at this point that does not
actually "do” anything). You should have a constant defined, and then
5 parameters — 3 representing the initial conditions of the model (the
parts Figure 7.1 colored in red), plus 2 parameters for the maximum
time and time step. You have 3 variables in the code so far — time ¢,
which is part of the loop, (horizontal) position p, which you should
have initialized to zero, and (horizontal) velocity component u, which
you should have initialized calculated from sy and 6. There should be
nothing in the loop so far.

Check that it runs without error even though it is doing nothing
useful! Maybe add some debug (e.g. a line in the loop using disp)
to check that the loop really does loop from zero to max_t in steps of
dt.>

Now to add some code to the loop. In each time-step, i.e. each
time around the loop, dt time (s) passes. In time dt, if the horizon-
tal velocity of the ball is #, you should be able to calculate how far
it moves, right? You need to add this increment in distance to the
current value of the position variable p®. Do this.

Re-run the code. Check it works at all (if not: debug). Try adding
debug code within the loop that displays the current time (t) plus
value of p at each time-step, e.g.

for t = 0:dt:max_t
%CODE TO UPDATE POSITION

2 In the absence of air resistance, hori-
zontal velocity does not actually change
throughout the simulation (i.e. in each
iteration of the loop, it will have the
same value).

3 On September 24, 2010, against the
San Diego Padres, Chapman was
clocked at 105.1 mph (169.1 km/h) -
the fastest pitch ever recorded in Major
League Baseball. If you convert 169.1
km/h into units of ms~1, this will give
you some reasonable upper limit for
your initial thrown velocity.

4 Obviously, the angle should lie be-
tween zero and 9o °(or else the throw

is going backwards and/or into the
ground). BE CAREFUL as MATLAB
assumes that angles are in units of
radians, so either work in units of
radians throughout, or convert from
degrees into radians when you calculate
the velocity component based on the
angle.

5 Note that depending on whether or
not max_t is divisible by dt with no
remainder, your loop might not exactly
finish at a value for a of dt.

%i.e. with code like
p = p + delta_p;

which you have seen endless times
before now and should becoming
wearily familiar ...

144 str="do you like bananas?’ [exam version]

disp([’current time = ', num2str(t), ', position = ', num2str(p)l);
end

so that you can track what is going on. (You can make a fancier out-
put if you wish and add in the relevant units to the output.)

Strictly, when updating the position of the ball in the first iteration
of the loop, time is dt at this point, not zero, which is what the loop
thinks (you already have a position of zero at time zero — the initial
conditions). So rather than starting the loop at zero, make a minor
modification and start at a value of dt.

You should have a working model at this point, albeit only for the
horizontal position of the ball.

Part II Now for tracking the vertical position (and velocity) of the
ball. Copy your previous m-file and we can use this as a starting
point for the new model.”

Think about what is different about the physics of the system (Fig-
ure 7.1) from before — this is going to directly inform how you adjust
and add to the code. To start with, you should have noticed that the
initial position (p) of the ball, does not start at zero, but rather at 5.
This is one change to make in the code (i.e. having defined # as a pa-
rameter, you subsequently use % to set the initial value of p). Also —
the initial velocity component, v, is different from before (and in fact
is assigned a different letter in Figure 7.1). So change the calculation
of the initial velocity component and change the name of whatever
variable you used for u to something distinct that you'll remember
stands for v in the equation. Overall, the code structure looks like
Figure 7.3.

You could, and indeed should, test the code so far. It should in fact
do something very similar to before, with position p increasing, lin-
early, as a function of time (i.e. as the loop progresses in the number
of iterations carried out). The only differences you should see are that
p starts from value /1 and the rate at which p changes will be greater
or less than before, depending on the value of § you assumed.

So far so good. Except balls generally do not continue travelling
vertically for ever. You are missing gravity in this (vertical-only)
model. Your variable for v (vertical velocity) now needs to change
as a function of time and you’ll need to update its value within the
loop?®. How are you going to update v? Well, the change in velocity
with time is called acceleration and in this example the only force
exerting any acceleration on the ball is gravity. Mathematically we
can approximate the change in velocity, Av as:

Av=—At-g

7So for instance we will now interpret
p as the vertical, not horizontal position
of the ball.

ball v.m

% fun with
ballistics IT

4 define model
constants

4 set model
parameters

4 initialize:
*

* v (calculate)

A\ 4 »
A -
4 calculate
Ap
Q, | |4 update g
©3
« displa
- vargab e
values
4 calculate
Av
4 update v
A 4

A

v

Figure 7.3: Schematic of the code for
simulating the horizontal movement of
a ball.

8 What value of 6§ would result in

an identical change in d with time
(comparing the previous horizontal-
only model with the new vertical (only)
one)?

9 Before or after the updating the
position? Actually, a slightly tricky
question.

dynamic (time-stepping) modelling 145

where g is the acceleration due to gravity. Note the appearance of a
minus sign in the equation if we are considering a coordinate system
with distance upwards.

So in the loop™® calculate the change in velocity during the time-
step, and then update the value of v'".

Re-run the model ... what happens? Does this seem "reasonable’ ...
? At this point you might consider whether you really do need to run
the model for as long as 100s. Play about with the assumed initial
angle and also the velocity and get a feel for what is the longest the
ball lasts in the air (i.e. until its position becomes negative).

Part III You should now have 2 working models (sperate m-files) —
one for the horizontal position of the ball, and one for the vertical po-
sition (and vertical velocity) of the ball. You now want to combine the
2 sperate parts of the model. I suggest basing the combined model on
the vertical model (as it is the more complicated of the 2) and hence
copying-and-renaming the 2nd script.

How to merge? Mostly, the code content of the 2 individual mod-
els was almost identical. What you do need to copy across from the
horizontal model is:

* The calculation of the initial value of u.

* The initialization of the horizontal position.

¢ The calculation of the change in horizontal position each time-
step.

¢ The updating of the new horizontal position.

By now, you should have noted a slight problem — in both pre-
vious (sperate) models, the variable /1 was used to represent both
horizontal AND vertical velocity. D'uh!

My solution would be ... a vector to store the current position —
just of one row and two columns, i.e. exactly as you might write
a position in (x, y) notation. The horizontal position (x) is hence
assigned the first element (p(1)) and the vertical position, the 2nd
(p(2)). If you do this (i.e. resolve the variable clash this way), you'll
need to edit how you set the initial conditions in the code, e.g.

p(l) = 0;
p(2) = h;

as well as how the position is updated in the loop. You can leave the
name of the increment in position (Ap) the same if you wish (as this
is a temporary variable whose value is replaced each time around the
loop in any case).

Hopefully this works and runs ... Maybe add some output within
the loop to track its progress, such as:

*© HINT: at the end of the loop.
* Hint:
V(t+1) = Vqp) + A0
where v, 1) is the new (at the next

time-step) velocity and vy the current
velocity

duh

exclamation informal

used to comment on an action per-
ceived as foolish or stupid, or a state-
ment perceived as obvious. As in:

"I used the same variable name twice
— duh!"

146 str="do you like bananas?’ [exam version]

for t = 0:dt:max_t
%CODE TO UPDATE POSITION
disp([’(", num2str(p(1)), ",’, num2str(p(2)), ') @ t = ', num2str(t)])
%CODE TO UPDATE VELOCITY

end

You should end up with output, depending on how you con-
structed the string to be displayed by disp (and what initial condi-
tions you chose ...), like:

» ball_uv

0.5,1.866) @ time 0.1
1,2.634) @ time 0.2

.5,3.3038) @ time 0.3
,3.8755) @ time 0.4
.5,4.3491) @ time 0.5
,4.7247) @ time 0.6
.5,5.0021) @ time 0.7
,5.1814) @ time 0.8
.5,5.2626) @ time 0.9

(

(

(1

(2

(2

(3

(3

(4,5.

(4.5,

(5,5.2458) @ time 1
(5.5,5.1308) @ time 1
(6,4.9177) @ time 1.2
(6.5,4.6065) @ time 1
(7,4.1973) @ time 1.4
(7 1
(8 6
(8 1
(9 8
(

(

(

.5,3.6899) @ time
,3.0844) @ time 1.

.5

5,2.3808) @ time 1.7

,1.5792) @ time 1.
9.5,0.67938) @ time 1.9
10,-0.31849) @ time 2
10.5,-1.4145) @ time 2.1

which is far far far from exciting ... but does at least confirm a con-
stant change in horizontal position with time, and a vertical position
that initially increases above the initial condition (2 = 1.0) but subse-
quently drops back and eventually falls below zero. And the point at
which it reaches zero is the value of d of course.

The very least we could do at this point is to detect when the ball
has reached the ground and terminate the loop. I'll leave this code
for you to devise, but you'll need:

1. A conditional to test whether the vertical position has dropped
below zero. This would go in the loop just after the position of the
ball has been updated, And ...

2. The MATLAB command to exit a loop, which you have seen
before.

Now you might note that when the ball reaches the ground (tech-
nically: its height falls below zero) and the loop exists, you may al-
ready be way below zero. In fact, if you are even the least little bit
observant, you might note that the change in height per time-step at

dynamic (time-stepping) modelling

the end of the simulation is quite large (order meter) and hence it is
unlikely you'll ever capture the moment that the ball is very close to
the ground. Unless you shorten the time-step, that is. So play about
with a shorter time-step (you only need change the value you as-
signed to the parameter representing At in the code). How short does

it have to be in order to catch the moment the ball reaches the ground

(passes zero) to within e.g. 10cm?** What about 1cm?

Part IV Some graphics fun.

It would be kinda fun (really) to show the ball flying through the
air. There are a variety of ways of doing this. We’ll start with the
simplest first and use scatter.

As a departure from previous plotting, we don’t want to plot at
the very end (after the loop)'3 but rather, plot each position as it is
calculated, within the loop.

First open a new graphics figure window and set hold on by
adding the lines, before the loop starts:

figure;
hold on;

Within the loop, you want to plot each (x,y) position as it is calcu-
lated (after the position has been updated, that is):

scatter(p(1),p(2));

(feel free to add additional parameters to scatter to make the points
smaller or larger, or filled, or whatever). Comment out any debug
(disp) lines.

Well, not so exciting. The plots sort of appears all at once and
there is no sense of animation or of the ball moving. MATLAB is just
way too fast for its own good 4.

You can make the loop proceed slower, by adding a time delay —
i.e. each time around the loop, MATLAB will take whatever time it
needs to carry you the calculation and plot the current position PLUS
whatever additional time you tell it to chill out for. The command is
pause and you might initially try e.g.

pause(0.05);

which should insert a 50ms delay into the loop. Run it.

Now it has all got really trippy. If you tell it no different, MATLAB
insists on auto-scaling the (x and y limits of the) plot. As the position
of the ball increases (initially) in y-axis direction, and (constantly)
along the x-axis direction, MATLAB periodically re-scales the axes.
Annoying. So before the loop and after you create the figure window,
why not prescribe axes limits(?) Having played with the model you

147

>i.e. to have the loop terminate when

the height is no more than —10.0cm.

3 Although if you stored the position
of the ball at each time-step, you could

re-play the trajectory afterwards.

4 This is a Trump-ism. In truth, MAT-
LAB is about the slowest piece of *$&%
about.

pause

MATLAB says: "pause(mjs) pauses
the MATLAB job scheduler’s queue so
that jobs waiting in the queued state will
not run."

Garbage.

pause(n) will pause the execution
of the code by n seconds.

axis
For once, helpfully, MATLAB says:
"axis([xmin xmax ymin ymax])
sets the limits for the x- and y-axis of the
current axes."
which is about all you need to
know (other than the minimum and
maximum limits along the x-axis
are represented by xmin, xmax, and
the minimum and maximum limits
along the y-axis are ymin, ymax).

148 str="do you like bananas?’ [exam version]

should have a reasonable idea for what the maximum vertical and s
horizontal distances are associated with ‘reasonable’ choices for the * f e,
initial conditions (sp and 6). Don’t forget the command for specifying ss g e
a scale for the axis limits is axis. (Figure 7.4-esk maybe?)

Your final task is simply to play about with the pause interval,
and the model initial conditions. You can have al the trajectories :
appearing on the same plot if you comment out the figure command

Vertical distance (m)
o
&

2 5§7
§

0 2 4 6 8 10

in your script, and open a single new figure window at the command Horeaal dsace ()
line (» figure). Then each and every time you run the script, the Figure 7.4: Trajectory of a ball!!
new trajectory will be added on top. You might also try turning your

script into a function so that you do not need to edit the values of

sp and 6 in the code, but pass them into the program as parameters

instead (the function needs not return anything however).

dynamic (time-stepping) modelling 149

7.2 Dynamics in the zero-D Energy-balance climate model

We’ll now make the zero-D energy-balance climate model (very)
slightly more interesting, or at least, (very) slightly more realistic.
The time-dependent behavior of the initial version of the energy bal-
ance model is trivial. In fact: there isn’t any. The system is always in
equilibrium as constructed. Why? No thermal inertia — i.e. nothing
in the system defined so far has been given any heat capacity and
the outgoing (longwave) energy flux is always assumed to be in exact
equilibrium with the incoming (shortwave) flux. So we need to add
an ocean, or rather: a box (a variable in the MATLAB code) to store
the heat content, or temperature, of the ocean, and update this (tem-
perature) in the event of there being any imbalance between gain and
loss of energy at the surface of the Earth.

The science behind the new model is based directly on the basic
energy balance equations you had before, except this time you are
not going to assume the 2 equations equal (and solve for T) but em-
ploy them directly. Instead, you are going to calculate the net energy
gain (or loss) over a given interval of time and use the specific heat
capacity of a substance (assuming water here)'> to link the energy
change to a temperature change (see Box). This will be the basis of
the ‘dynamics’ of the climate model and will dictate how quickly the
mean surface temperature responds to any imbalance in loss vs. gain
of energy. You can also assume the following;:

¢ The average mixed layer depth of the ocean is 70 m.
* The average fraction of the Earths surface that is ocean is 0.7.

(both from Henderson-Sellers [2014]). You'll also need to know:
¢ The specific heat capacity of water.

but you can find this out for yourself ...*® Note that you do not need
to know e.g. the radius of the Earth as we are constructing the model
on a global average per m 2 basis as before.

The form of the program is shown schematically in Figure 7.5 and
you'll need to create yourself a new script (scr_1) to make this. Much
of this and the main sections of code should look familiar. Break
the code down into logical sections. Start by defining any constants
you need, as well as parameter values. For the time loop, we are
going to start off with a fixed total duration and a fixed time step (a
little later we'll relax these constraints). And to make things really
simple to start — assume a 100 year duration (starting at T = 1.0)
and a time increment AT = 1.0. So you are not even going to need
to initialize and update a loop counter in the code! In the loop itself,
you firstly need to calculate the energy imbalance (assuming there is

Specific Heat Capacity

According to wikipedia: "An ob-
ject’s [or here: ocean] heat capacity
(symbol C) is defined as the ratio of the
amount of heat energy transferred to
an object and the resulting increase in
temperature of the object:"

_ 9

C=zar
where Q is the (change in) energy
(so could equally be written AQ if

you prefer) and AT the associated
change in temperature. Units are:

e C—JK!
e AT—K
e Q—]J

5 Once again — be very careful with the
units. Or all will be lost ...

16 Be careful to end up with CONSIS-
TENT units!

scr_l.m

%dynamic EMB

4 define model
constants
(C,etc.)

4 set model
parameters
(t_max,Dt,etc.)

4 initialize:

* temeprature
* output vector:

4 calculate
energy fluxes

4 calculate
o, energy c¢hange
2 g 4 calculate
— AT
4 update T
4 store

data in
[V¥ vectors

4 plot data
v

Figure 7.5: Schematic of the script for
the basic dynamic EBM

0D EBM spin-up

5

Mean surface temeprature (C)

0

0 10 20 30 4 5 6 70 8 9 100
Time (yr)

Figure 7.6: 100 yr spin-up of the basic
EBM.

150 str="do you like bananas?’ [exam version]

one) — remembering that the energy fluxes are in units of Wm ™2, i.e.
Js~'m~=2, so you'll need to take the time-step duration into account
and find the number of | of heat gain/loss during that time (in s)-
then use this to update the temperature of the mixed layer ocean.”
Then after the loop, plot something helpful at the end.

If successful, you should see something similar to (actually, identi-

cal to) Figure 7.6 (assuming a 1 yr time-step).

Next, you are going to play a little with the time-step in the model.

So rather than a simple loop from 1 to 100 (years) with an increment
of 1, you are going to generalize the increment as At. If dt is your
parameter representing the increment in time (presumably, conve-
niently defined hear the start of the code)™®, and max_t the maximum
time (here: 100 years) (also conveniently defined near the start of the
code?), then:

% start of time-stepping loop

for t = 1l:dt:max_t,

% SOME CODE GOES HERE
end

Now however, you will need to crete yourself a loop counter in order
to store the results (for subsequent plotting), as because dt will not
necessarily be an integer, you will not be able to use a to index your
data storage vector (/array). The modification needed is only minor
however — see Figure 7.7. The only slight complication is in know-
ing the size of the output vectors, assuming that you have created
them (using zeros) up-front in the code (and as per the Figure 7.5
schematic), rather than growing the vectors as the loop progresses
(see earlier). Initially, you would have been able to simply write e.g.

data_time = zeros(100);
data_T = zeros(100);

One strategy is simply to pick a number larger than you think the
number of times the loop will execute. The downside being that you
might create a vast array with only a small portion of it ever being
used. Better in this example would be to append to the vectors as
the loop progresses and not attempt to define them beforehand (i.e.
Figure 7.5 rather than Figure 7.7).

By playing around with different parameter values for At, you
should discover that some care has to be taken with the choice of
time-step duration, e.g. Figure 7.8 has a time-step of 3.5 years, which
clearly is on the verge of going doolally. 9

So far, so far from exciting — you have been simply time-stepping
the model to equilibrium, for which there was an analytical solu-
tion anyway (with ocean heat capacity irrelevant to this). However, it
should be apparent that it takes some years (how many) for the sys-
tem to reach equilibrium. This would have important implications for

71t is much easier and less prone to
bug, if you do this in two stages. You
could even split things into four:

1. Incoming energy flux.

2. Outgoing energy flux.

3. Net energy change (per m?) at
the Earths surface.

4. Update surface temperature.

¥ Don't forget to convert dt into units
of s when you use it in the energy

calculation, S€r_2-m
%dynamic EMB
4 define model

constants
(C,etc.)

4 set model
parameters
(t_max,Dt,etc.)

4 initialize:
* temeprature
* output vectors
* loop counter

4 increment
loop counter

4 calculate
energy fluxes
2 | |4 calculate

Rl g energy c¢hange
— | |« calculate
AT

4 update T

4 store

data in
o VY vectors

4 plot data
v

Figure 7.7: Schematic of the script for
the basic dynamic EBM — now with
added loop count(!)

™ For practice (fun!?), you could turn
the script into a function. Make two
parameters as inputs: (1) the total
simulation duration, and (2) the time-
step, both in units of yr.

Doolally
Mad, insane, eccentric.

0D EBM spin-up

Mean surface temeprature (C)

0

0 10 20 30 40 5 60 70 8 90 100
Time (yr)

Figure 7.8: 100 yr spin-up of the basic
EBM, but with a poor choice of time-
step ...

dynamic (time-stepping) modelling 151

a (real world) system in which the one of the terms in the radiative
balance equation changes relatively rapidly (or on a time-scale com-
parable to the adjustment time of the system). The concentration of
CO,, and radiative forcing due to the ‘greenhouse effect’, is just such
an example.

A FOLLOW-ON EXAMPLE TO THIS, takes the time-stepping (dynamic)
zero-D EBM (scr_1) and drives it with a time history of atmospheric
CO; concentration (technically: mixing ratio) data.

First off: check out the CO; radiative forcing (Greenhouse Effect)
Box. This will guide you as to how you are going to modify your
energy budget (within the time-stepping loop) — basically, you are
simply adding a 3rd term (and a second incoming term) to the heat
budget. Test the model first with a fixed, assumed CO, concentration
and check that the mean surface temperature responds in a reason-
able way.?°-2!

The first thing you are going to do, is to take your previous script
(scr_1 or scr_2, it does not really matter) and turn it into a function,
with a single input (co02) and no output. The passed parameter co2
(or call it something different) will be the concentration of CO; in
the atmosphere in yatm (equivalent to units of ppm for 1 atmosphere
total pressure). You'll then need to edit the calculation of the energy
loss/gain by incorporating the greenhouse effect term. The code
looks not much different from before — Figure 7.9).

From your previous experiments, you should have determined
what value the equilibrium temperature ended up as. You should
make this your new initial condition for the planetary temperature
and set the appropriate parameter. (If you don't, the results of all
your subsequent experiments will be dominated by the climate sys-
tem adjusting from your initial condition rather than necessarily
responding to whatever perturbation you have applied (/experi-
ment carried out).) Having done this, explore the effect of calling
your function and passing values for CO, different from 278ppm (278
uatm). For reference:

e Peak of last glacial — ~ 190ppm

¢ Pre-industrial — 278ppm

¢ Current — ~ 400ppm

¢ End of century — ~ 900ppm

* Cretaceous — ~ 834 — 1112ppm(?)

or try other values.

The Greenhouse Effect

The effect of changing CO, concen-
trations on the global energy budget
is typically written in terms of a
virtual (long-wave) radiation flux
applied at the top of the atmosphere.
The flux anomaly, AF, as a function
of CO, concentration (technically:
mixing ratio) (CO;) relative to a ref-
erence (pre-industrial) concentration
(typically: COy) = 278ppm) can be
approximated:

AF =535 In(cp,2)

The complete basic EBM energy
budget now looks like:

-5 CO
Fin = 50 4535 In(cg%)

Fout =0.62-0-T*

2 What is 'reasonable’? Well, you could
conduct a pair of experiments — one

in which you do not modify CO,, and
one in which your double it. The IPCC
and there (now) five Assessment reports
have much to say about the climate
system response to a doubling of CO;.
So you can conduct a reality check

on your model based on existing and
widely available climate sensitivity
information.

' By way of reference: assume that the
pre-industrial concentration (mixing ra-
tio) of CO; in the atmosphere (CO,(g))
is 278 ppm.

fun 1.m

P [co, ini

4 define model
constants
(C,etc.)

4 set model

parameters
(t_max,Dt,etc.)

4 initialize:
* temeprature
* output vectors

4 calculate
energy fluxes

4 calculate
energy change

2
2 8 4 calculate
- AT

4 update T
4 store

L VY vectors

4 plot data
W [nothing out]

Figure 7.9: Schematic of the dynamic
EBM as a function and with the CO2
concentration passed in.

152 str="do you like bananas?’ [exam version]

THE FINAL ExAMPLE involves loading in a CO; data-set and driving
the dynamic zero-D EBM with a changing concentration of CO, in
the atmosphere.

Go back again to your first dynamic EBM program (scr_1). The
new version (scr_3) will be similar (Figure 7.10). You need to:

1. Add in code to load in the CO; dataset. You are going to use
the ice-core derived record from week #1

(etheridge_etal _1996.txt).

2. From the resulting data array — determine the minimum and
maximum years and the total length (number of rows) of the data.
All these values might usefully be stored in variables in your code.
3. Create results vectors of the same length. Create one vector

for each of: year, CO; value, temperature. (Create a single array
instead if you prefer.)

4. Edit the time loop such that it runs from the minimum to maxi-
mum year (with a time-step of 1 year).

5. In the loop — take the CO, value from that year and use it in
the calculation of the radiation balance.

6. Also in the loop — save the current year, CO, value, and asso-
ciated calculated temperature. Be careful that indexing of arrays
in MATLAB always starts at a value of 1. You will either need to
derive an index from the current year, or add a loop counter (it is
simple to do the former and it takes less lines of code).

When you have this working you should get something like Figure
7.11 (but note that this was done with not quite the same CO, dataset
...). If you want to be fancy you can add a horizontal line indicating
the pre-industrial equilibrium solution (using line).

Finally, the lagged behavior of the climate system (as encapsulated
in your EBM) is maybe not obvious as the forcing (CO,) is varying.
Common in model experiments and characterization, is to create
artificial and deliberately simplified forcings and perturbations, so
as to more readily diagnose the response time and characteristics of
a system. Crete an artificial CO; data-set, spanning the same time
interval as the real data, and at the same frequency, but substitute
an idealized CO, forcing in which CO, stays constant (at 278 ppm)
up until year 1999, then at year 2000, increases to 400 ppm, and stays
there. The result of such an experiment should look like Figure 7.12.

Other common model scenarios are linear ramps (up, and/or
down) and compound increases, such as a 1% per year increase in the
concentration of CO, (each and every year) starting ca. 1960.

scr_3.m

%dynamic EMB

<« define model
constants
(C,etc.)

4 set model
parameters
(Dt,etc.)

4 load CO2 data
4 determine
data size
4 set t min,t max

4 initialize:
* temeprature
* output vector:

energy

nl

[N
+ 8 4 calculate
~

AT
update

5

4 calculate
energy fluxes

4 calculate
c¢hange

"

4 store

< VY vectors

4 plot data
v

Figure 7.10: Schematic of the dynamic
EBM driven by a history of CO2 (read
in from a file).

0D EBM forced with observed CO

146 ////

Mean surface temeprature (C)

142

14
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Time (yr)

Figure 7.11: Transient EBM response
to observed changes in atmospheric
CO:s2. For reference, the pre-industrial
equilibrium global temperature is
shown as a horizontal black line.

0D EBM forced with observed CO

Mean surface temeprature (C)

14
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Time (yr)

Figure 7.12: Transient EBM response to
(fake) changes in atmospheric CO2.

Bibliography

Index

.mat environment, 33
; environment, 18
= environment, 17, 18

addition environment, 18

addpath environment, 32

and environment, 19

assignment operator environment,
19

axis environment, 26, 147

break environment, 66

cell array environment, 78
cell2mat environment, 77, 78
clabel environment, 86, 87
clear all environment, 20
clear environment, 20
close environment, 20
colon operator environment, 22—24,
29
colorbar environment, 88, 99
colormap environment, 85
Command Window, 14
comments environment, 78
contour environment, 84, 86
contourf environment, 84

disp environment, 44, 45, 63
division environment, 18
duh environment, 145

else environment, 52
elseif environment, 52
end environment, 23, 24
environments

.mat, 33

i, 18

=, 17,18

addition, 18
addpath, 32
and, 19
assignment operator, 19
axis, 26, 147
break, 66

cell array, 78
cell2mat, 77, 78
clabel, 86, 87
clear, 20

clear all, 20
close, 20

colon operator, 22-24, 29
colorbar, 88, 99
colormap, 85
comments, 78
contour, 84, 86
contourf, 84
disp, 44, 45, 63
division, 18
duh, 145

else, 52
elseif, 52

end, 23, 24
equality, 19
exist, 67, 70
exit, 20, 134
exponentiation, 18
fclose, 76
figure, 25
find, 94, 95, 97
fliplr, 23, 30
flipud, 23
flipup, 30
fopen, 76—78
for, 58
fprintf, 33
functions, 20
geoshow, 91

getframe, 65
greater than, 19

greater than or equal to, 19

hist, 41
hold, 38

if ... end, 52
image, 42, 84
imagesc, 84
imread, 42
inequality, 19
input, 52, 53, 70
legend, 38
length, 23, 72
less than, 19
less than or equal to, 19
line, 132, 152
load, 3234
1s, 32
m-file, 44
m-files, 26
meshgrid, 88
mod, 129
movie2avi, 65
multiplication, 18
NaN, 97

not, 19
num2str, 64

or, 19

pause, 147
pcolor, 42, 71
pi, 20

plot, 25
print, 27
rocker, 129
rotate, 30
save, 33
scatter, 25, 39
set, 107

sin, 26

156

size, 23, 29
sort, 34
sortrows, 34
strcmp, 53
subplot, 27
subtraction, 18

sum, 30
switch case end, 57
textscan, 7678

title, 26

transpose, 30

transpose operator, 23

while, 58

xlabel, 26

xlsread, 8o

ylabel, 26

zeros, 128
equality environment, 19
exist environment, 67, 70
exit environment, 20, 134
exponentiation environment, 18

fclose environment, 76
figure environment, 25
find environment, 94, 95, 97
fliplr environment, 23, 30
flipud environment, 23
flipup environment, 30
fopen environment, 76—78
for environment, 58
fprintf environment, 33
functions environment, 20

geoshow environment, 91

getframe environment, 65

greater than environment, 19
greater than or equal to environ-

str="do you like bananas?’ [exam version]

ment, 19

hist environment, 41
hold environment, 38

if ... end environment, 52
image environment, 42, 84
imagesc environment, 84
imread environment, 42
inequality environment, 19
input environment, 52, 53, 70

legend environment, 38

length environment, 23, 72

less than environment, 19

less than or equal to environment,
19

license, 2

line environment, 132, 152

load environment, 32-34

1s environment, 32

m-file environment, 44

m-files environment, 26
meshgrid environment, 88

mod environment, 129

movie2avi environment, 65
multiplication environment, 18

NaN environment, 97
not environment, 19
num2str environment, 64

or environment, 19

pause environment, 147
pcolor environment, 42, 71

pi environment, 20
plot environment, 25
print environment, 27

rocker environment, 129
rotate environment, 30

save environment, 33
scatter environment, 25, 39
set environment, 107
sin environment, 26
size environment, 23, 29
sort environment, 34
sortrows environment, 34
strcmp environment, 53
subplot environment, 27
subtraction environment, 18
sum environment, 30
switch case
ment, 57

end environ-

textscan environment, 76-78

The command line, 14

title environment, 26

transpose environment, 30
transpose operator environment, 23
variable, 16

while environment, 58

xlabel environment, 26
xlsread environment, 80

ylabel environment, 26

zeros environment, 128

	Elements of ... MATLAB and data visualization
	Using the MATLAB software
	Basic concepts
	Vectors and arrays #1
	Basic graphing (aka. 'data visualization')
	Vectors and arrays #2
	Loading and saving data
	Basic data processing
	Yet more graphing

	Elements of ... programming
	Introduction to scripting (programming!) in MATLAB
	Functions
	Conditionals '101'
	Loops '101'
	Loops and conditionals ... together(!)
	Even more (and loopier) loops

	Further ... MATLAB and data visualization
	Further data input
	Further (spatial / (x,y,z)) plotting

	Further ... Programming
	find!

	Graphical User Interfaces (GUIs)
	MATLAB GUI basics
	GUI Pokemon game

	zero-D / equilibrium modelling
	A zero-D Energy-balance model of the climate system
	'Daisy World'

	Dynamic (time-stepping) modelling
	Catch the ball (ballistics and simulating trajectories)
	Dynamics in the zero-D Energy-balance climate model

	Bibliography
	Index

