
ANDY RIDGWELL

GEO111 – NUMERICAL SKILLS
IN GEOSCIENCE

UNIVERSITY OF CALIFORNIA, RIVERSIDE / DEPARTMENT OF EARTH SCIENCES
2015/6

Copyright © 2016 Andy Ridgwell

http://www.seao2.info/teaching.html

Except where otherwise noted, content of this document is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 license (CC BY-NC-SA 3.0) (http://creativecommons.org/licenses/by-nc-
sa/3.0/)

First printing, June 2016

http://www.seao2.info/teaching.html

Contents

1 MATLAB basics 17

2 Plotting and visualizing data 33

3 MATLAB scripting and programming 49

4 Introduction to numerical modelling 73

5 1- and 2-D numerical modelling 93

Bibliography 111

Index 113

List of Figures

1 weeks 1-5 13
2 weeks 6-10 14

1.1 Direct sea-level data (210 kyr to present) from corals (solid symbols)
and speleothems (gray symbols). July summer solar insolation at 65
degrees north latitude is depicted in the top panel. This is thought
to control the glacial-interglacial variations in the size of the Norther
Hemisphere ice sheets. The vertical gray bars indicate times of high
insolation and the correspondence with minima in ice volume (equiv-
alent to maxima in sea-level). (from; Holland, H. D and K. K. Turekian,
eds, Treatise on Geochemistry, Elsevier, 2004) 28

2.1 Default output of plot. 33
2.2 Past sealevel variability as reconstructed from oxygen isotopes. 34
2.3 proxy reconstructed past variability in atmospheric CO2. 35
2.4 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 36
2.5 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 36
2.6 Proxy reconstructed past variability in atmospheric CO2 (sorted data). 37
2.7 Arrangement of subplots. 37
2.8 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 38
2.9 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 38
2.10 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 39
2.11 Proxy reconstructed past variability in atmospheric CO2 (scatter plot). 40
2.12 Very basic imaging (image) of an array (2D) of data – here, global bathymetry. 44
2.13 Slightly improved very basic imaging (imagesc) of bathymetry data. 44
2.14 Example contour plot. Result of contour(data,20), where the data

file was temp7.tsv. 44
2.15 Example contour plot. Result of contourf(lon,lat,temp7,30), where

the data file was temp7.tsv, with some embellishments. 46

3.1 Output from the plot_some_dull_stuff m-file. 51
3.2 Continental outline (of sorts). 57
3.3 Another continental outline (of sorts). 57
3.4 Another go at the continental outline! 58
3.5 Now continents on top of temperature fields. 60

6

3.6 Ocean topography (blues through red) in the ’GENIE’ Earth system
model. Land is shown in brown. 65

3.7 The ’GENIE’ mode land grid, with land points assigned a sequen-
tial integer (working across and dow the grid – from West to East,
and then North to South). 67

3.8 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier ... almost ... (!) 71

3.9 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier (color). 71

3.10 The ’GENIE’ mode land grid, with land points (almost) assigned a
unique identifier (color). 72

3.11 The ’GENIE’ mode land grid, with land points assigned a unique iden-
tifier (color). 72

4.1 Lake volumes and river flow rates in the Great Lakes system. 77
4.2 Simulated evolution of metal concentration in the Great Lakes sys-

tem with time ... with labels that are far too small to make out :o) 83
4.3 Simulated evolution of metal concentration in the Great Lakes sys-

tem with time ... with labels that are far too small to make out ... and
an integration time-step that is too long. 84

4.4 Simple EBM projection of the evolution of Earth surface tempera-
ture with time. 85

4.5 Evolution of global surface temperature and the two populations of
daisies with time ... but with no change allowed in the daisy pop-
ulations (d’uh!). The fractional coverage of white daisies is shown
by large empty circles, and for black, by small filled black circles. Data
points for mean surface temperature are color-coded by temperature
(color scale not shown). 87

4.6 Evolution of global surface temperature and the two populations of
daisies with time ... but now assuming that the growth of each de-
pends only on the global mean surface temperature. Symbols as per
Figure 4.5. 88

4.7 Evolution of global surface temperature and the two populations of
daisies with time. Symbols as per Figure 4.5. 88

4.8 100 yr spin-up of the basic EBM. 89
4.9 100 yr spin-up of the basic EBM, but with a poor choice of time-step

... 89
4.10 Transient EBM response to observed changes in atmospheric CO2.

For reference, the pre-industrial equilibrium global temperature is
shown as a horizontal black line. 90

4.11 Transient EBM response to (fake) changes in atmospheric CO2. 91

5.1 Basic 1-D EBM with no latitudinal heat transport. 95

7

5.2 Basic 1-D EBM with no latitudinal heat transport (red filled circles).
Overlain is the zonal mean observational data for January (blue cir-
cles). 96

5.3 As per Figure 5.2 but for July. 96
5.4 1D EBM with an initial guess as to the value of . 98
5.5 1D EBM with a larger value of . 98
5.6 Idealized schematic of the soil-CH4 system. 99
5.7 Slightly less idealized schematic of the soil-CH4 system. 99
5.8 Even less idealized and almost realistic, schematic of the soil-CH4

system. 99
5.9 Soil profile of CH4 after 10.0s of simulation. 106
5.10 Soil profile of CH4 after 100.0s of simulation. 106
5.11 Soil profile of CH4 after 100.0s of simulation with an extremely marginal

choice of time-step length. 106
5.12 Soil profile of CH4 after 100.0s of simulation, with CH4 uptake at

the base of the profile with a rate constant of 1.0 per s. 107
5.13 Equilibrium soil profile of CH4, with CH4 uptake throughout the

soil column with a rate constant of 0.1 per s. 108
5.14 Example equilibrium soil profile of CH4 with production at depth. 108

List of Tables

4.1 Pollution input input rates to each of the 5 lakes. 77

Introduction

GEO111 will provide an introduction to computer programming and numerical modelling for Earth and
Environmental Science problems. It will provide a chance to learn a computer programming language and
all the elements that constitute it, including concepts in number bases and types, logical constructs, debug-
ging, etc. The course will develop programming skills step-wise, applying them at each point to practical
questions and outcomes, such as data processing and visualization. How complex environmental processes
can be encapsulated and approximated, and numerical models thereby constructed, will be illustrated.
Guided opportunities will be provided to build a ’DIY’ climate model and in doing so, further develop
programming and modelling skills at the same time as reinforcing basic concepts in climate dynamics
through practice in addition to theory.

The cumulating objectives of the course are to:

1. develop an understanding of how computers and the internet work and hence foster a critical under-
standing of modern technology,
2. provide hands-on training in how computer programs are written and numerical models con-
structed, and
3. develop both general (transferable) as well as specific numerical and analytical skills applicable to the
Earth and Environmental Sciences.

The associated learning goals are firstly; to provide, through hands-on practical exploration, factual knowl-
edge and an understanding of:

• Number bases, how computers work plus computer programs and their basic building blocks.
(Learning Outcome 2).
• Numerical models and the representation of time. Construction and application of a variety of mod-
els spanning box models of biogeochemical cycles and population dynamics, through 1D reaction-
diffusion models of surface Earth processes, to 3D gridded global models. (Learning Outcomes 1 and
2).
• The Greenhouse effect and basic climate feedbacks. (Learning Outcome 1).
• Awareness of different operating systems such as linux; of compiled languages such as FORTRAN,
plus how webpages and the internet work. (Learning Outcome 2).
• The use of numerical models in addressing scientific questions and testing hypotheses as well as the
limitations of numerical models. (Learning Outcomes 2 and 4).

and provide transferable skills in

• Written communication and presentation. (Learning Outcome 3).

12

• Problem solving and quantitative analysis together with logic and fault-finding. (Learning Outcomes
4 and 5).
• Computer programming. (Learning Outcomes 2 and 4).
• Effective internet use and website construction. (Learning Outcomes 2 and 4).

0.1 Course logistics

0.1.1 Format

The weekly format of the Class is: one 1-hour lecture, one 3-hour
computer practical session, plus a 2-hour interactive lecture/dis-
cussion session of worked problems and examples. The computer
practical class is the central element, and will consist of structured
exercises leading step-by-step through the components of computer
programming and numerical model construction, debugging, and
testing, plus applications to common geosciences problems. The lec-
ture starting each week will outline the basics and introduce the key
concepts of the week. The purpose of the 2-hour lecture/discussion
session ending the week is to ensure all the concepts are understood
and misconceptions resolved and will be a mix of presentation and
worked-through examples, plus questions and discussion.

0.1.2 Timetable

0.1.3 Assessment

The course will be assessed as follows:

• Midterm paper – 40%
• Finals paper – 60%

(Part of the intention of the shorter Midterm assessment, being to
provide critical feedback and guidance for the main Finals paper.)

The mid-term paper will consist of a computer model written in
MATLAB to solve a specific problem, with the code to be handed in.
The code will be accompanied by a ’user manual’ for running the
model code and conducting experiments. As part of the assessment,
the code will be run to help judge the overall success of the program,
with additional marking of the code itself (including structure and
commenting). This will together constitute 40% of the total assess-
ment of the course.

The Finals paper will be in the form of a science paper describing
the model, its evaluation, application to a specified science question,
plus discussion of model caveats and suggestions for future improve-
ments. The scope of the model exercise will be somewhat restricted

13

Monday am (1) Monday am (2) Friday pm

Introduction to the course MATLAB basics MATLAB basics

Format and content of the
course. Office hours.
Overview of course
assessment.
Introduction to MATLAB and
the 'command line'.
Numbers, vectors, and
matricies.

MATLAB basics, including
variables and matrixes, data
I/O.
Data processing in MATLAB.
Basic statistics.

Continuation of the Lab
Worked examples

Computer hardware and
software Plotting data in MATLAB Further visualization; Q&A.

Basic constituents and
functioning of computers.
Bases, logic and logic gates.
Computer operating systems,
programs, and software.
Compiled and interpreted
languages.

Data visualization – types of 1-
D plots. 2-D ploting and
interpolation.
Re-gridding. Data binning and
histograms.

Continuation of the Lab
Worked examples

Computer program
fundamentals

Elements of MATLAB
programming Further programming; Q&A

Loops and conditionals.
Subroutines and functions.
Further data processing
techniques.

Algorithms and numerical
techniques.
Search and sort algorithms.
Programming best practice
and debugging.
Functions and subroutines.

Introduction to numerical
models 0-D ('box) modelling Further numerical

modelling; Q&A
Time-stepping and integration
techniques.
Numerical stability and
accuracy.
Model code structure.

Basic geochemical box
modelling and reservoir
dynamics.
Isotopes and fractionation.

Worked and literature
examples of (bio)geochemical
box modlling and how these
are coded.

1-D and reaction-transport
models 1-D modelling Discussion; work on

MIDTERM
Structure and ppplication of
reaction-transport abd other 1-
D models to environmental
problems.

Example models:
(1) gas diffusion and
consumption in soils;
(2) firm enclosure and signal
filtering of records in ice cores.

05 /
25th
April

Lecture A
08:10-09:00
GEOL 1444

Computing lab
09:10-12:00

Watkins 2101

Lecture B
14:10-16:00

Watkins 2101

04 /
18th
April

WEEK

01 /
28th

March

02 /
4th

April

03 /
11th
April

Figure 1: Course schedule: weeks 1
through 5.

14

Monday am (1) Monday am (2) Friday pm

2-D global environmental
models #1 DIY climate model #1 Visualizing 2-D (and 3-D)

models
Fundamental climate system
processes and their
representation in models.

Surface energy budget and
greenhouse gases.
Heat capacity.
Atmsoperhic transport.

2-D global environmental
models #2 DIY climate model #2 Evaluating numerical

models
Ice dynamics and feedbacks. Contorls on ice melt.

Controls on ice flow.
Feedbacks with climate.

Evaluation of numerical
models.
Model-data assessment.
Numerical models in the
literature, the work of the
IPCC, and model 'inter-
comparisons'.

Empirical and biological
models

Marine biogeochemical
modelling Ecological modelling

Derivation and application of
empirical relationships.
Geochemical empirical
models.
Biological empirical models.
Modelling ocean
biogeochemical cycles.

Matrix maths.
Calculation of ocean
circulation by MATLAB matrix
maths.
Creating a basic
biogeochemical cycling model.

Complex models Global carbon cycling
modelling Model dynamics

Resolution and numerics.
Parallelization.

Creating a basic global carbon
cycle model.

Perturbing and analysing
models.

The Internet Basic html scripting Discussion; work on
FINALS

How the internet 'works'.
Computer networks.
TCP/IP and network
communication.

Creating a basic webpage.

WEEK
Lecture A

08:10-09:00
GEOL 1444

Computing lab
09:10-12:00

Watkins 2101

Lecture B
14:10-16:00

Watkins 2101

06 /
2nd
May

07 /
9th
May

08 /
16h
May

10 /
30th
May

09 /
23rd
May

Figure 2: Course schedule: weeks 6
through 10.

15

with a short menu of possible choices, but with considerable flexibil-
ity in terms of exactly what is done and explored with it (i.e. there is
some slightly possibility of actually having fun!). This will constitute
60% of the total assessment of the course.

0.1.4 Office Hours

There are no specific Office Hours, but rather an open invitation to
drop by1 (excluding Thursdays) and/or email2 questions. Part of the 1 My office is in the Geology building,

room 464 (basement floor).
2 andy@seao2.org

purpose of the lab session on Fridays is to provide an opportunity for
further clarification of the course material and to go through worked
examples.

0.1.5 Course text

There is no one (or even two between them) complete course texts
that covers both basic computer programming and numerical mod-
elling at a suitable level, and certainly not in the context of MATLAB.
However, the recommended course textbook; Matlab (Third Edition):
A Practical Introduction to Programming and Problem Solving3, repre- 3 Stormy Attaway. Matlab (Third Edition):

A Practical Introduction to Programming
and Problem Solving. Butterworth-
Heinemann, 2013

sents a good basis for the MATLAB part of the course. For additional
reading, potential texts include:

• The Climate Modelling Primer (4th Edition), by Kendal McGuffie
and Ann Henderson-Sellers. Wiley-Blackwell (2014). ISBN: 978-1-
119-94336-5.
• Introduction to MATLAB (3rd Edition), by Delores M. Etter. Pren-
tice Hall (2014). ISBN: 978-0133770018.

Ultimately, the aim of the course (in future years) is to have a
dedicated (free) text book in downloadable PDF format, of which the
present document is the nucleus ...

1

MATLAB basics

Hello Newbies! This first lab’s porpoise is to start to get you familiar with what MATLAB is all about and
understand how to import and manipulate (array) data in this software environment. If your are clever,
you might find menu items or buttons to click that will do the same thing as typing in boring commands
at the command line. In fact, you would have to be pretty dumb not to notice all that brightly colored
eye-candy in the GUI (Graphical User Interface – i.e., menus, buttons, and stuff) on the screen. However,
you will be much better off in the long run if you stick with the instructions and do everything using the
command line that is asked of you (rather than doing stuff with the GUI instead). You will see why later in
the course. You’ll just have to trust me for now ... We’ll start with the very basics and things that you could
easily do in Excel instead, and build up.

1.1 Using the MATLAB software

1.1.1 Starting MATLAB

To start with: find the MATLAB icon on the desktop; run the pro-
gram. You should see a number of sub-windows arranged within
the main MATLAB window, hopefully including at least: Command
Window. Depending on whether you have used MATLAB before and
it has remembered your settings, windows may also include: Com-
mand History, Workspace, Current Folder. If instead you see; ’Tetris’,
’Grand Theft Auto: San Andreas’, and ’World Championship Pool’,
then you have the wrong software running and are going to find
learning MATLAB rather hard. However, there is big $$$ to be made
in on-line gaming tournaments these days. Would you really rather
be a geologist and spend the rest of your days hitting rocks with a
hammer? If so (you fool), read on ...

1.1.2 The command line

When MATLAB initially starts up, the Command Window1 should 1 Conveniently labelled Command Window

– you cannot possibly fail to identify it
...

display the following text:

18 geo111 – numerical skills in geoscience

Academic License

»

or in order versions of the software:

To get started, select MATLAB Help or Demos from the Help

menu.

»

but in either case, with a vertical blinking line (cursor) following the
double ’greater than’ symbols2. 2 Note that in nerd-speak the » is

called the command ’prompt’ and is
prompting you to type some input
(Commands, swear words, etc.). See Ű
the computer is just sat there waiting
for you to command it to go do some-
thing (stupid?). If one does not appear
at the bottom of whatever is in the Com-
mand Window is means that MATLAB
is busy doing something extremely
important. Or perhaps, MATLAB may
have completely died. Either way, it will
not accept any new/further commands
until it is done calculating/dying.

If you are unfamiliar with using command-line driven software ...
Don’t Panic! Nothing ’bad’ can happen, regardless of what you do.
Well, almost. It is possible to accidently clear MATLAB memory of
the results of calculations and data processing and close plots and
graphs before you have saved them, but MATLAB remembers all the
commands you type, so in theory it is perfectly possible to quickly
reproduce anything lost. But later on we will be placing the sequence
of commands into a file (that is saved) and so ultimately, MATLAB
should turn out to be mostly fool-proof.

1.1.3 MATLAB GUI

There are lots of fancy looking icons and pretty colors and you could
spent all day staring at them and not getting any work done. Or
learn good programming practice. Which is why we mostly will
ignore the eye-candy and little (if any) guidance will be given as to
the functionality of the GUI. Look at this as a lesson for the user (to
read the Help, textbook, on-line documentation, or simple go Google
for an answer3). 3 i.e. Internet fishing

1.1.4 Help(!)

Press F1 or click on the question mark icon on the tool-bar, to bring
up the indexed and searchable MATLAB documentation.4 4 It is also possible to obtain context-

specific help, e.g. on a specific (built-in)
function, which we’ll see in due course.

1.2 Basic concepts

1.2.1 Variables

A variable is , in a sense, a pointer to a location in computer memory
where a piece of information is stored5. A variable is associated a 5 In the bad old days, this pointer was

the actual address in memory.name to make things rather more easy and convenient. The name
can be anything you like in MATLAB, as long as it does not contain
numbers or special characters. So actually, you are only allowed se-
quences of letters (otherwise knows as ’words’). But you can create

matlab basics 19

a variable name based on 2 (or more) words, separated by an under-
score (_). Valid variable names would include:

A

B

cat

derpyhooves

this_is_boring_stuff

BIG

big

Note that MATLAB distinguishes between lower and UPPER case
letters in a variable (i.e. BIG and big would represent two different
and distinct variables).

Variables are entirely useless unless they have some information
assigned to them. In fact, you can type in any of the variable names
above (at the command line) and MATLAB will deny it knows what
you are talking about6. 6 Technically, MATLAB reports:

Undefined function or variable

which tells you it is neither a func-
tion name (more on this later), nor is
defined as having any information
associated with it.

So you need to assign something to it. Which brings us to quite
’what’. Variables can have the following types:

• Integer – An integer number is a counting number, i.e. 1, 2,

3, ... and including zero and negative integers. MATLAB has
different representations for integer numbers, depending on how
large a number you need to represent (and how much memory it
will need to allocated to storing it). This is something of a throw-
back to the days when computers only had 1/10000000th of the
memory of your iPhone and were slower than a lemon.

• Real (floating point) – A real number can have a non-integer
component, e.g. 1.5 or 6.022140857 × 1023. Real numbers also
come in different precisions in MATLAB (also to do with memory
allocation and speed), determining not just the number of decimal
places that can be represented, but also the maximum size.

• String (character) – One or more characters, but now allowing
spaces (unlike in the case of naming variables).

• Complex – MATLAB can also handle complex numbers. We
will not concern ourselves with this further in this course however.

• Object – (We will not worry about objects, which can incorpo-
rate a combination of types. At least, not yet ...)

The first thing to learn is to ideally, not to attempt to mix up (com-
bine) variables of different types. MATLAB is very forgiving when it
comes to combining an integer and a real number in the same calcu-
lation, but in other programming languages, this should be avoided.

20 geo111 – numerical skills in geoscience

The second thing is how to assign a value to a variable (and in
fact, create the variable in the first place). Programming languages
such as FORTRAN require you to define the variable beforehand and
assign it a type. MATLAB allows you to define and assign a value to
a variable all at the same time, and it will kindly work out the correct
type based on the value you assign to it. You assign a value using the
assignment operator =7. For example: 7 This is NOT ’equals’ in MATLAB. We

will see the equality operator shortly. =
assigns the value or variable on its right
the variable on the left.

A = 10

will assign the value 10 to the variable A. If the type this at the com-
mand line, MATLAB will kindly repeat what you have just told it
and report the value of A back to you:

A =

10

Note that you do not need to add a space before and/or after the as-
signment operator (=). This is something of a personal programming
and aesthetics preference, whether to pad things out with spaces or
not.

MATLAB will also report in the Workspace window, the name
and value, type (called Class), etc of all your current variables (just
one currently?). Actually, it is not all quite so simple of you look at
the Class of the variable A – it is double rather than an integer. So by
default, if MATLAB does not know what you really want, it defines A

as a double precision real number8. 8 If you genuinely wanted an integer,
there are ways to do this.The next complication comes when assigning a string (or charac-

ters) to a variable. For example, try

B = apple

and MATLAB is far from happy. Remember, that a string can be a
variable name (or function), and this is what MATLAB looks for (i.e.
a match to apple in the list or variable (and function) names). To
delineate apple as a string, you need to encase it in (single) quotation
marks:

B = ’apple’

Just as MATLAB creates new variables on the fly, you can re-
assigned values to an existing variable, even if this means changing
the type, e.g.

A = ’banana’

has now replaced the real number 10 with the character string ba-
nana for the variable A. This is reflect in the updated variable list
details given in the Workspace window.

matlab basics 21

Finally, it is possible to suppress output to the Command Window
when making assignments – simply an a semi-colon (;) to the end of
the assignment statement, i.e.

A = ’banana’;

1.2.2 Numerical expressions

You can do normal maths in MATLAB. Or at least, something that
looks at least somewhat intuitive.

• exponentiation – ∧ – raises one number of variable to the
power of a second, e.g. ab, a to the power b, which is written in
MATLAB as a∧b.
• multiplication – ×, e.g. a×b, written in MATLAB as a∗b.
• division – / – (written as you would expect).
• addition – + – (guess).
• subtraction – -.

The order in which the numerical operators are written down is
important and MATLAB will execute them in a specific order (opera-
tors executed first at the top):

^

∗,/
+,-

There is also ’negation’, when you change the sign of a variable,
which comes immediately after exponentiation. The assignment
operator (=) comes last. If you are unclear about the order numeri-
cal operators are carried out, then place parentheses () around the
component of the calculation you wish to be carried out first. For
example, consider:

A = 3;

B = 6;

C = 2;

D = C*(A/B+1)

E = C*A/(B+1)

F = C*A/B+1

1.2.3 Relational and logical operators

We will see more of relational and logical operators later. For now, you
only need to know that a relational operator is one of:

• greater than – MATLAB symbol >.
• less than – MATLAB symbol <.
• greater than or equal to – MATLAB symbol >=.

22 geo111 – numerical skills in geoscience

• less than or equal to – MATLAB symbol <=.
• equality – MATLAB symbol ==.
• inequality – MATLAB symbol ∼=.

and hence tests the relationship between 2 variables. For now, note
in particular that the equality symbol is TWO = characters, and
remember that a single = character is the assignment operator.

The outcome of this test is a ’yes’ or a ’no’. Except in MATLAB
(and other languages), the answer is given as the binary (logical)
equivalent where ’yes’ is represented by 1 and ’no’ by 0.

Finally, the logical operators (again, more later) are:

• or – symbol ||.
• and – symbol &&.
• not – symbol ∼.

1.2.4 Functions (built-in)

MATLAB provides numerous built-in functions9. These functions 9 We will be constructing our own
later, at which point it should become
apparent that there is nothing particular
special about them.

are assigned names and so care needs to be take not to give a vari-
able the same name as a function to avoid getting confused further
down the road. Giving an exhaustive list (and brief description) is
outside the scope of this document10. Common functions will be 10 A full list of functions can be found

in the MATLAB Help Documentation
under functions.

progressively introduced as the Chapters progress however. Note
that in addition to the on-line Help documentation, information on
how to use a function and example uses is provided by typing help

and then the function name (separated by a space) at the command
line.

MATLAB also provides several built-in mathematical constants
(saving having to define a variable with the appropriate number).
This are simply variables that have been already defined and as-
signed values, but which you cannot change. For instance, π, which
has the name pi, and whose value you can display by typing its
name at the command line:

» pi

ans =

3.1416

In this example, the function is rather trivial – you need to tell the
pi absolutely nothing, and it spits back the same things each and
every time. In most other functions, you will pass some information,
and the return value will depend on the input.

1.2.5 Miscellaneous commands

Related to what you have seen so far and will see soon, useful miscel-
laneous commands include:

matlab basics 23

• clear – Removes all variables from the workspace.
• clear all – (Removes all information from the workspace.)
• close – Closes the current figure window.
• clear all – (Closes all figure windows.)
• exit – Exits MATLAB and hence enables additional drinking
time in the bar.

Note that a useful trick – if you want to re-use a previously used
command but don’t want to type it in all over again, or want to issue
a command very similar to a previously-used one – is to hit the UP
arrow key until the command you want appears. This can also be
edited (navigate with LEFT and RIGHT arrow keys, and use Delete
and Backspace to get rid of characters) if needs be. Hit Enter to make
it all happen.

[ADD: convert number to string]

1.3 Vectors and arrays

So far, your variables have all be what are known as scalars – i.e.
single numbers (or strings). One of the most powerful things about
MATLAB is its ability to represent vectors (1D columns or rows of
numbers or strings) and arrays – 2D (called matrices) and higher
dimensional regular grids of numbers or strings.

1.3.1 Vectors

Vectors are 1-D arrangements of numbers (or strings). You can enter
them into MATLAB as a list of space-separated value, encased in
(square) brackets, [], e.g.

B = [0.0 1.0 1.5 2.0 2.5]

Values are extracted by specifying the index of the element required
(counting along, left-to-right), e.g.

» B(5)

ans =

2.500000000000000

You can access more than a single
element of a vector at a time, by
means of the colon operator, : to
define a min, max range of indices.
For example:

» B(2:4)

ans =

1.0000

1.5000

2.0000

To select all elements:

» B(:)

ans =

0

1.0000

1.5000

2.0000

2.5000

Equally, you can replace an existing value by assigning the new
value to the appropriate indexed position. e.g. to replace the first
element with a value of 0.5:

B(1) = 0.5

1.3.2 Matrices and arrays

You can enter matrices (2-D arrays) into MATLAB in several different
ways:

24 geo111 – numerical skills in geoscience

1. Enter an explicit list of elements. To enter the elements of a
matrix, there are only a few basic conventions:

• Separate the elements of a row with blanks or commas.
• Use a semicolon, ; , to indicate the end of each row.
• Surround the entire list of elements with brackets, [].

2. Load matrices from external data files.
3. Generate matrices using built-in functions.

As an example, type in the following at the command prompt:

A = [15 7 11 6; 13 1 6 10; 21 17 5 3; 5 15 20 9]

MATLAB then displays the matrix you just entered11: 11 Remember that you can add an ; to
the end would prevent the assignment
being displayed.A =

15 7 11 6

13 1 6 10

21 17 5 3

5 15 20 9

Once you have entered the matrix, it is automatically remembered in
the MATLAB workspace. You can refer to it simply as A.

Now go find the array you have just created in the Workspace win-
dow. Double-click on its name icon and see what goodies appear on
the screen. This is a fancy array editor which looks a bit like one of
those dreadful spreadsheet things. You can see that this might be
handy to edit, view, and keep track of at least moderate quantities
of data. This is a useful facility to have. However, we are going to
concentrate on the command-line operation of MATLAB in the Lab
because that will give you far more power and flexibility in applying
numerical techniques to problem solving, and will form the basis
of scripting (computer programming by another name) that we will
see in a few lectures time. Close down this nice toy to leave just the
original windows.

Elements in the matrix can be addressed using the syntax:

A(i,j)

where i is the row number, and j is the column number. (It is very
very easy to keep forgetting in which order the rows and columns
are indexed. You can always create a test matrix and access a specific
element to check if in doubt!) In the example above:

» A(1,3)

ans =

11

(i.e. the value of the element in the 1st row, 3rd column, is 11).

Similarly as for vectors, you can
access more than a single element
of a matrix by means of the colon

operator, :. For example:
A(:,1) – selects the 1st column
A(3,:) – selects the 3rd row
A(2:3,2:3) – selects the 2×2 ma-

trix of values lying in the centre of A,
while A(1:2,:) selects the top half
(first 2 rows) of the matrix.

matlab basics 25

1.3.3 Matrix manipulation

You can treat vectors and matrices (or parts of vectors and matrices),
mathematically, as you would treat single values (i.e. scalars) but
unlike a scalar, the transformation is applied to all specified elements
of the array. This applies for all the basic numerical operators. For
example, for vector B in the earlier example,

» 2*B

ans =

0 2 3 4 5

and

» B-1.5

ans =

-1.5000 -0.5000 0 0.5000 1.0000

Question: Multiply all the elements of A by the number 17. As-
sign the answer to a 3rd array (C). What is the value of the element
C(2,3)? How would you ask for the 4th row, 2nd column element of
the array C, and what is its value?

Question: What is the sum of the 4th column of C ? (Sure – you

The function sum ... sums things. The
MATLAB Help documentation (help
sum) says:

’If A is a vector, sum(A)

returns the sum of the

elements.’
’If A is a matrix, sum(A)

treats the columns of A as

vectors, returning a row vector

of the sums of each column.’

also do it by using a calculator, but you will not always have such a
small data-set as here. Perhaps you’ll get a much larger data-set in
the assessed exercise ;) So, practice doing it properly.)

Question: What is the sum of the 2nd row of C? sum gives returns
the sums of each column, and so on its own;

» C

C =

255 119 187 102

221 17 102 170

357 289 85 51

85 255 340 153

» sum(C)

ans =

918 680 714 476

gives you a row vector consisting of the sums of the individual
columns of the matrix C above.

This is where the transpose function (’) comes in handy. It flips a
(2D) matrix around its leading diagonal (columns become rows, and
rows, columns)12 .

12 This is almost true. Technically the
function you want is .’, as ’ will
change the sign of any imaginary
components. For real numbers, they are
the same.

In addition to transpose, other
useful array manipulation functions
include:
flipup – flips the matrix in the
up/down direction
fliplr – flips the matrix in the
left/right direction
rotate – rotates the matrix
(As always, refer to the help on
specific functions.)

» C’

ans =

255 221 357 85

26 geo111 – numerical skills in geoscience

119 17 289 255

187 102 85 340

102 170 51 153

(transposing the matrix turns the rows into columns)

» sum(C’)

ans =

663 510 782 833

Now you get a row vector consisting of the sums of the individual
columns of the matrix C, but since you have transposed the matrix C

first, these four values are actually equal to the row sums.
Finally, you could transpose the answer:

» sum(C’)’

ans = 663

510

782

833

now with a row vector gives you a format that looks like the row
sums of the original matrix C.13 13 Note how you can combine multiple

functions in the same statement to
create sum(C’)’. However, to start
with, it is much safer to do each step
separately and hence be sure what you
are doing.

1.3.4 Matrix math

We will not concern ourselves with multiplying vectors and matrices
together ... just yet ...

1.4 Loading and Saving

1.4.1 Loading and importing data

There are a number of different ways to load/import data into the
MATLAB Workspace. Rather than try and tediously list and describe
the commands and syntax and blah blah, we’ll go through a couple
of (hopefully!) slightly-less tedious data-based examples. If nothing
else, you might accidently learn some Science even if nothing much
about MATLAB ...

For the first example, to illustrate loading and importing of data
as well as some basic array manipulation, we are going to transform
a sediment core δ18O time-series into an estimated history of glacial-
interglacial changes in sea-level. The backstory is ...

Throughout the late Neogene14, sea level has risen and fallen as 14 23.03 millions years ago (end of the
Oligocene) to present is the Neogene
Period in Earth history.

continental ice sheets have waned and waxed. The main cause of
sea-level change has been variation in the total volume of continental
ice and resulting change in the fraction of the Earth surface H2O

matlab basics 27

contained in the ocean. Today more than 97% of the Earth surface
H2O is in the ocean and less than 2% is stored as ice in continental
glaciers, with groundwater making up the bulk of the remainder.
Of the total continental ice (ice above sea level), 80% is contained
in the east Antarctic ice sheet, 10% in the west Antarctic ice sheet,
and the final 10% in the Greenland ice sheet. (If all continental ice
were to melt, sea level would rise by 70 m.) During the last glacial
maximum (LGM), sea level was about 125 m lower than present,
equivalent to 3% more surface H2O stored as continental ice. Because
of its relationship to continental ice volume, an accurate late Neogene
sea-level curve has been a long-term goal of scientists interested in
ice-age cycles and their causes.

Glacial ice has a lower 18O/16O isotopic ratio than seawater.

’101’ – Naturally occurring oxygen
is mostly 16O, with some 18O. 18O is
heavier, than thus water containing
18O evaporates very slightly slower
than H2

16O. Water vapour, rainfall,
and thus snow and ice, therefore has
a smaller fraction of 18O compared
to 16O than the sea-water that is left
behind. More ice on land therefore
equals more 18O enriched sea-water.

When ice volume is high, seawater has relatively high 18O/16O ratio.
When ice volume is low, seawater has relatively low 18O/16O ratio. If
the average 18O/16O ratio of glacial ice is constant with time, then the
average 18O/16O ratio of seawater approximates a linear function of
the total volume of ice. Because changes in 18O/16O reflect changes
in global ice volume, they also reflect changes in sea-level.

The 18O/16O ratio of foraminiferal calcite isolated from marine

Foraminifera are little zooplankton
bugs sitting on the ocean floor wait-
ing for a meal to fall on top of them
or swimming around in the surface
ocean looking to make something
into a meal, and make shells out of
calcium carbonate (CaCO3) – the
stuff of limestones (although lime-
stone is usually coral hard parts) and
chalks (although chalks are usual
calcitic phytoplankton rather than
zooplankton shells).

sediments is primarily a function of the 18O/16O ratio of the water
together with the temperature of the water. However, we will not
concern ourselves with temperature corrections here but instead
assume that foraminiferal calcite δ18O only reflect changes in (global)
ice volume and sea-level.

By measuring the 18O/16O value of calcite down-core we are sam-
pling 18O/16O with a progressively older age. In this way we can
reconstruct how ocean 18O/16O has changed over time. These mea-
surements are reported in units of parts per thousand (o/oo) and
written as ’δ18O’. For this tutorial, don’t worry about what exactly it
means or how it is derived.

So, say that I want to run a global vegetation model for the penul-
timate (’second-to-last’) glacial maximum (i.e., at around 141 ka
(thousand years ago)). But I need to know how much land area to
allow plants to grow on. Because a lower sea-level means that some
of the continental shelves currently under the sea will be exposed,
there is more land area available during glacials than at present (al-
though some of the area available today was covered by ice sheets
back then). But just how much? Suppose that I know that I can cal-
culate land area if only I knew the sea-level at the time ... Evidence
from dated coral reef terraces suggest that sea-level was around 117
m lower at the peak of the last glacial (ca. 19 ka). But what about the
glacial before that (at 141 ka), which is the one that I am interested
in? Was it the same; lower, or higher? Unfortunately, we run out of

28 geo111 – numerical skills in geoscience

useful coral terrace data from this time (Figure 1)? Instead, we are
going to use foraminiferal calcite δ18O to extrapolate the sea-level
change we do know (117 m at 19 ka) back in time (see figure 1.1).

Figure 1.1: Direct sea-level data (210 kyr
to present) from corals (solid symbols)
and speleothems (gray symbols). July
summer solar insolation at 65 degrees
north latitude is depicted in the top
panel. This is thought to control the
glacial-interglacial variations in the size
of the Norther Hemisphere ice sheets.
The vertical gray bars indicate times of
high insolation and the correspondence
with minima in ice volume (equivalent
to maxima in sea-level). (from; Holland,
H. D and K. K. Turekian, eds, Treatise
on Geochemistry, Elsevier, 2004)

• You first need the foraminiferal calcite δ18O data. (Unless you
want to go drill a long cylinder of mud from 3000 m down in the
Atlantic Ocean, pick out all the microscopic foraminifera of a sin-
gle species from samples of mud that you have carefully washed,
blah blah blah ...) So, from the course web page; download the file
sediment_core_d18O.txt and save it locally.

• Load this file into MATLAB as follows. The command we
are going to use is load. Go call up the relevant Help page 15 on

15 » help load

this function to find out the correct syntax16 in the use of this

16 The details of any required sets
of parentheses or brackets, passed
parameters, punctuation, etc etc.

command17 . Note that by default, MATLAB looks to a file di-

17 In this example, the file format is
simple plain text, or ’ASCII’. If you
view the contents of the file in a text
editor such as Windows notepad,
you will see that the lines of heading
information in the file start with a %

(the MATALB comment character). This
tells MATLAB to ignore these lines (and
hence jump straight to the 2 columns
of data. The load function is not very
powerful or flexible and we’ll see some
other ways of importing data later.

In addition, to use the load command,
(i) the same number of values must
appear on each line (row), and (ii) the
values on each line must be numbers
(reals or integers) and not strings.
The file delimiter (character between
each element in a row) can be a blank,
comma, semicolon, or tab.

rectory located within its installation directory ($MATLAB/data).
So, where the load command requires a filename to be passed,
you will need to enter either the full location of the file; i.e., start-
ing with the drive letter (e.g. as per displayed in the Windows
filemanger address bar, or the relative path to where the file is
located (e.g. if there is a subdirectory called data, you will pass
data/sediment_core_d18O.txt18. Alternatively, you can change

18 Remember that this is a string type.

the MATLAB directory that you are working in. (This works sim-
ilar to UNIX/LINUX for those of you who are familiar with nav-
igating your way around these operating systems.) You can make
the download directory the default directory for working from by
typing:

» cd DIRECTORY_PATH

where DIRECTORY_PATH is the path to the data directory19, remem-

19 You can view the files that are present
in the directory that you are working in
by typing (more LINUX-speak): ls.

bering that DIRECTORY_PATH is a string (i.e. enclosed in ”). Or ...
you can add a ’search path’ so that MATLAB knows where to look.

The command addpath will add a
search path to the MATLAB workspace.
e.g.
addpath DIRECTORY_PATH

(Note that both these alternative possibilities can be implemented
from the GUI.)

• There is also, of course, the GUI – from the File menu the op-
tion Import Data... will run the data import Wizard – note that
you might have to select All Files (*.*) from the file type op-
tion box in order to find the file. I’ll leave you to work the rest out
for yourselves ... Maybe try importing the data into MATLAB this
way once you have done it successfully using the load function at
the command line.

• If you have successfully loaded in the data-file, you should see
a named icon for the array appear in the Workspace window. Try
viewing the file in the two different ways:

1. At the Command line (»), type in the array name.

matlab basics 29

Because of the length of the data-file we imported, the contents
of the array should have whizzed past you on the screen in a
highly inconvenient fashion. You can use the scroll bar on the
right of the Command Window window to move up and view
the data that you can’t see (the younger age δ18O numbers).
Note that as MATLAB imports data into an array from a file,
it names the array it creates following that of the filename, but
without the extension (the ’.txt’ bit).
2. Double-click on the array’s icon in the Workspace window.
Marvel at the fancy spreadsheet-like things that appear. Note
that you can edit the data, add and delete rows and columns,
and all sorts of stuff in this window, just like you can in Excel.
Amuse yourself by scrolling down to the end of the data-set in
the Array Editor and adding a new piece of data on line 784;
age (column 1); 783 (ka); sea-level (column 2); 0.0 (m).
3. At the command line, list the contents of the array again to
view the change you have at the end of the data-set. Use the up
arrow to bring up the command you want rather than typing
it in again. Now delete this new row . Note that it is easy to

For a n×m array data, the first row
is:
data(1,:).

The last row is:
data(end,:).

To find out the number of rows is:
» length(data).

The total size, in rows×columns, can
be found by:
» size(data)

(and also by referring to the Value
column in the Workspace window)

get confused with which row number you need to address –
although the data starts from year 0, MATLAB always counts
the index (the sequential integer counting of the row or column
number) of a location from 1 (one). (So age 10 ka is on line 11,
and age 200 on line 201, etc.)

• Having reconstructed the sea-level for the past 782 thousand
years, maybe we would like to find out some things about average
conditions on Earth and how things have varied. Work out the
following:

The mean sea-level between 0 and 782 ka20. 20 HINT – try:
» help mean

(and which at the bottom of the help
will provide you with a list of other,
related functions, under See also ...)

• So far everything has been in δ18O units and time as kyr. As a
warm-up, convert the units of time to years, i.e. multiple the first
column of the data array, by 1000.0.

To estimate past changes in sea-level we need to scale the δ18O
values to reflect the equivalent changes in sea-level rather than
changes in isotopic composition. We know that sea-level is 0 m
(relative to modern) at 0 years ago and -117 m at 19,000 years ago.
Try the following:

Scale the δ18O so that it represents changes in sealevel, relative
to modern (0 m)21. 21 HINT – first determine the difference

in δ18O between time zero and 19 ka.
This gives you the range of δ18O that
maps onto a sea-level change of 117 m.
You also might transform the δ18O data
such that it has a value of zero at 0 ka
(but retains the original amplitude of
variability.

• It is interesting to find out what is highest sea-level that we
would predict – there are proxies for paleo-shorelines and coral
reef terraces that could be used to validate (ground-truth or test)
our simple δ18O-scaled sea-level model. Determine the maximum

30 geo111 – numerical skills in geoscience

and minimum sea-levels that have occurred over the last 782,000
years (easy if you have been following properly earlier ...). You
could just go through looking for the highest and lowest values,
but this is not very exciting with only 783 data points. If you had
10,000s of data points, doing stuff by hand is clearly going to use
up all of your beer time.

Related to this, it would be helpful to know *when* the mini-
mum and maximum sea-level heights occurred. This is going to
involve using the find function, to find the data row in which the
minimum and maximum values have occurred. Once you know
the respective data rows, you can then easily pull out the ages.22 22 HINT – if your maximum value was

stored in the variable max_value, you
found find the corresponding row by:
find(data(:,2) == max_value)

What this is saying, is search the 2nd
column (the sea-level values) of the
array data, and look for a match to
the value of max_value. The equality
operator (==) is used in this context.

Find the ages of both minimum and maximum values.

For the second example, to illustrate loading and importing of
data as well as some basic array manipulation, we are going to
process a paleo atmospheric CO2 proxy dataset. The file is called
paleo_CO2_data.dat and is as before, available from the course web-
page. Open the file up (view it) with a text editor (e.g. Windows
notepad) and note the format – there are a bunch of header lines and
moreover, some of the columns are not numbers (but rather strings).
So even if you were to edit out the headers with comments (%), you are
still left with the problem of mis-matched columns. You could edit
the file in Excel to remove the problematic columns ... but now this
seems like a real waste of time to be editing data formats with one
software package just to get it into a second! (Again, you could use
the MATLAB GUI import functionality ... but it will be a healthy life
experience for you to do it at the command line :o))

To start with, you are going to need to know the format of the data
in advance. (You have determined this already by viewing in a text
editor.) Then following these steps:

1. First ’open’ the file – you will be using the function command
fopen, and passing it the filename23 (including the path to the file

23 For convenience, you could assign the
filename (+path) to a (string) variable
and then simply pass the variable name
(no ” needed).

if necessary). So that you can easily refer to the file that you have
opened later, assign the output of fopen24 to a variable, e.g.

24 The output is a simple integer index,
whose value is specific to the file that
you have opened.

» openfile_id = fopen(’paleo_CO2_data.dat’);

2. This is where it gets a little tricky ... the function you are go-
ing to use now is called textscan. Refer to the help function on
textscan, but as a useful minimum, you need to pass 3 pieces of
information:

(a) The ID of the open file (you have assigned this to a handy
variable (openfile_id) already.)

(b) The format of the file (see margin note). (This is where it

According to MATLAB help:
"the format is a string of conver-

sion specifiers enclosed in single
quotation marks. The number of
specifiers determines the number of
cells in the cell array C." Take this
to mean that you need one format
specifier, per column. The specifier
will differ whether the data element
is a number or character (and MAT-
LAB will further enable you to create
specific numerical types).

The format specifiers are all listed
under help textscan. However,
your Dummies Guide to textscan

(and good for most common appli-
cations) is that the following options
exist:
%d - (signed)integers

%f - floating point numbers

%s - strings

matlab basics 31

gets really miserable, but hang in there!) You simply list, space-
separated, and between a single set of quotation marks, one
format option per element of data.

(c) A parameter together with an (integer) value25, to specify 25 The format is of a parameter name,
in ”, followed by (after a comma) an
integer for the number of lines to skip.
The parameter name is Headerlines.

how many rows of the file, assumed to be the header informa-
tion, to skip.

The result of textscan is then assigned to a parameter.
An example is needed here to highlight the path out of the

MATLAB syntax mire ... We are going to load in just the first 2
columns of data which are both integers in this case, and skipping
the first 3 lines of the file. Skipping the first 3 lines is the easy
bit (we pass: ’Headerlines’, 3). Omitting all the information
following the first 2 elements is trickier and something for Google
to help in26. 26 This turns out to be specifying

’%*[
∧\n]’, which in effects sort of

says:
’skip everything (all the fields) (%*)

up until the end of the line is found
([∧\n]).

my_data = textscan(openfile_id, ’%d %d %*[
∧\n]’, ’Headerlines’,

3);

So far, so good! And you can now close the file:

» fclose(openfile_id);

3. Actually, it does get worse before the end of the tunnel ... what
textscan actually returns, i.e. your previous read-in data, is placed
into an odd structure call a cell array. It is not worth our while
worrying about just what the heck this is, and if you view it in
the Variables window (i.e. double click on the cell array name
in the Workspace window), it does not display the simple table
of 2 columns of data you maybe were expecting. For now, we can
transform this format into something that we are more familiar
with using the cell2mat function, e.g.

my_data_array = call2mat(my_data);

And now ... it is done, i.e. there exists a simple array, of 2 columns,
the first being the age (Ma) and the second the CO2 concentration
value (units of ppm). :)

There must be some sort of important life lesson hidden here.
Perhaps about only working with well-behaved data files, or using
the GUI import functionality? But hopefully it does illustrate that
messy files can be dealt with, without the need for laborious editing
or processing in Excel.

We can now actually do something with this data. Perhaps, as a
common way of displaying paleo atmospheric CO2 and O2 concen-
trations is as a concentration unit relative to present-day27. All we 27 known as ’PAL’ – Present Atmo-

spheric Levelneed to do, is divide the paleo CO2 concentration data by the mod-
ern value. However to make it more ’fun’, lets divide the data by the
value in the CO2 concentration dataset closest to modern (i.e. 0 Ma).

32 geo111 – numerical skills in geoscience

So your task is to firstly find28 the data entry with an age closest to 28 CLUE: you are going to use the find

function ...zero, determine the CO2 concentration corresponding to this age, and
divide everything (the CO2 concentrations) by it.

1.4.2 Saving and exporting data

Arrays of numbers can be saved in a plain text (ASCII format) by
means of the save function in a simple reverse of the use of load.

There is also an equivalent textscan also involving explicitly
opening and closing files called fprintf.

1.4.3 Loading and saving the workspace

The entire workspace (including all variables and their values) can be
saved to a file and then later re-opened. The file format is specific to
the MATLAB program and the file-name extension by default is .mat.
This might prove helpful in large modelling projects and particularly
if you do not come back to work at the exact same computer each
time.

2

Plotting and visualizing data

Graphics is one of the important strengths of MATLAB. Although other software packages and scripting
languages exist that perhaps have the edge on MATLAB in terms of visually appealing plots and graphs,
MATLAB is worlds apart from e.g. Excel.

2.1 Introduction to graphics and figures in MATLAB

The command figure creates a figure window, which is where MAT-
LAB displays its graphical output ... but on its own, without any-
thing in it. So ... lets put something in it, with the simplest possible
graphical way of displaying data called plot. But first – create your-
self a dummy dataset to plot. You are going to need to create yourself
an array 1 – this can have any values (all numbers though) in you

1 Refer to the first chapter and the
subsection on matrices if you have
forgotten how.

like, but perhaps aim for 2 columns of data, with the first column
counting up from 1 to 10 – this will form your x-axis, and the 2nd
column ... whatever you like. 2

2 If you find that you have created 2
rows of data rather than 2 columns,
remember that you can swap the rows
and columns with the transpose

function.

You can determine the shape of your
array using the size function. For
a 2D array (matrix), when you pass
it the name of your array, it returns
the number of rows followed by the
number of columns (in that order).

As always, refer to the help on plot before using it. The key infor-
mation that will get you started is at the very top:

PLOT(X,Y) plots vector Y versus vector X.

So, you need to pass it your x-axis data vector3, followed by your y- 3 Again – don’t forget the previous
lesson where selecting a specific column
of a matrix, which is a vector, was
covered.

axis data vector (comma separated). Do this, and depending on just
what or how random your y-axis data was, your should end up with
something like Figure 2.1 in a window captioned "Figure 1".4 4 If you cannot see the figure window

... check that the window is not hidden
behind the main MATLAB program
window!

1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 2.1: Default output of plot.

This ... is easily the least professional plot ever. And one that
breaks all the most basic rules of scientific presentation, such as la-
belling axes (there is also no title, although here I have added a figure
caption in the document and so I can get away with it). But this is the
default state and you’ll need to do a little more work on it. Note that
by default, MATLAB scales both axes to closely match the range of
values. In the example here, the default min and max axes limits are
in fact the min and max values in the x and y-axis data.

34 geo111 – numerical skills in geoscience

However, if the maximum y value was vary slightly larger, you’d
see that MATLAB would adjust the maximum y-axis limit to the
next convenient value so as to preserve a relatively simple series of
labelled tick marks in the axis scale. In fact, try that. Replace your
maximum data value, with a value that is very slightly larger.5 Then 5 If you have created a dummy dataset

in which the value in the last row is
the largest, replacing it is simple –
remember the use of end in addressing
an element in an array. If your dataset
does not monotonically increase and
the largest value falls somewhere in the
middle ... you could cheat’ and open
the array in the variable editor and
discover which row it occurs on. Or
better: use the max function and then
find, as per the previous tutorial.

re-plot and note how it has changed (if at all – it will depend some-
what on what data you invented in the first place).

You have two options for editing the figure and e.g. adding axis
labels. Firstly, you can use the GUI and the series of menu items
and icons at the top of the Figure window to manipulate the figure.
I suspect you’ll prefer this ... but it is not very flexible, or rather it
requires your input each and every time you want to make changes
or additions to a figure. the second possibility is to issue a series of
commands at the command line. The advantage with the latter we’ll
see later when we introduce m-files. For now, I’ll illustrate a few
basic commands:

1. The first, obvious thing to do is to add axis labels. The com-
mands are simple – xlabel and ylabel. They each take a string as
an input, which is the text you would like to appear on the axis. If

When MATLAB displays text, be
aware that there are a bunch of
special characters that may not come
out as the character you want. The
more common ones are:
_ - will make the following

character a subscript, or a

sequence of characters if you

place them within a pair of

curly brackets {}.

∧ - will make the following

character a subscript, or a

sequence of characters if you

place them within a pair of

curly brackets {}.

you change your mind, simply re-issue the command with the text
you would like instead.
2. The command for title, perhaps unsurprisingly, is title. Again,
pass the test you would like to appear as a string (in inverted
commas ”), or pass a the name of variable that contains a string
(no ’’ then needed).
3. You might want to specify the axis limits. The command is
axis and it takes a vector of 4 values as its input – in order: min-
imum x, maximum x, minimum y, and maximum y value. e.g.
axis([0 10 -100 100]) would specify an x-axis running from 0 to
10, and a y-axis from -100 to 100.

As an example, load the oxygen isotope data from the previous tuto-
rial and convert it into sealevel. Using the command line only ... plot
it, label the axes, add a title, and set the age scale from 0 to 800 kyr,
and the sealevel scale from -120 to +20 m (relative to present-day).
At this point it should look something like figure 2.2. (I cheated a
little here and changed the font sizes by passing an additional pair
of parameters to the axis label and title commands, of the form:
’FontSize’,SIZE, where SIZE is the font size (in units of points
(pts)), e.g. 18 for the title and 15 for the axis labels in this example.)

0 100 200 300 400 500 600 700 800
-120

-100

-80

-60

-40

-20

0

20

Time (ka)

S
ea

le
ve

l r
el

at
iv

e
to

 m
od

er
n

(m
)

Reconstructed last sealevel change

Figure 2.2: Past sealevel variability as
reconstructed from oxygen isotopes.

plotting and visualizing data 35

2.1.1 Saving graphics and figures

You might just want to save the figure. (Why create it in the first
place in fact if you are just going to throw it away ... ?) Again, you
can do this via the GUI or at the command line 6. From the GUI, 6 To export a graphic at the command

line, use the print function. To cut a
long story short (see: help print), to
print to a postscript file:
print(’-dpsc2’, FILENAME)

where FILENAME is the filename as a
string or a variable containing a string.

you have the option to save the figure in a way that can be loaded
later and re-edited – this is the .fig format option. Or you can save
(export) in a variety of common graphics formats (although once
saved in this format, the graphics can only be edited later using a
graphics package).

To close the current (active) Figure
window, the command is:
» close

To close all currently open Figure
windows:
» close all

2.2 Fancier 1D plotting

2.2.1 Modifying lines/symbols in plot

We’ll work though an example of some slightly more involved
plotting of traditional 1D (i.e. y values against x) data. To begin, you
be loading in a simplified version of the Phanerozoic CO2 dataset
(see previous tutorial). As paleo_CO2_data.txt you can just import
it into MATLAB using the load function. However, unlike the marine
sediment core oxygen isotope dataset, you now have 4 columns in the
array7. The first column is age (Ma), the second the mean CO2 value, 7 Remember that you can diagnose

its size with ... size (or refer to the
Workspace window)

and the 3d and 4th are the low and high, respectively, uncertainty
limits. To start off: plot the mean paleo CO2 value as a function of
age (in Ma). If you closed the previous Figure window (see earlier),
it is not essential to explicitly open one – when you use the plot

command, if there is no open Figure window, MATLAB will kindly
open one for you. How thoughtful. The result should be something
like 2.3. O dear ...

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.3: proxy reconstructed past
variability in atmospheric CO2.

So ... that was not so successful. What is happening in the default
behaviour of plot, is that each data point is being joined to the pre-
vious one with a line. This was fine for the sealevel example dataset
because time progressed towards older and older values in the first
column, e.g. the data was ordered as a function of age (the progres-
sion of age values in the case is called monotonic). If you view the
CO2 data, this is not the case. (In fact, in the original, full version of
the data, ordering is by proxy type first, and then study citation, and
only then age ...). Your options are then:

1. You could import the data into Excel, then re-order it (sort),
then export it, then re-load it ...

2. You could sort it in MATLAB. How? Well, a reasonable gam-
ble, which actually turns out to be a win, is to try:

36 geo111 – numerical skills in geoscience

» help sort

Well almost. Reading the help text carefully (and you can always
try it out and see what exactly it does if you are not sure), sort
will sort all columns independently of each other, whereas we
want the first column sorted and the remaining columns linked to
this order. As a see also MATLAB suggests sortrows. The help
text on this looks a little more promising. It is still slightly opaque,
so the best thing to do is to try it (and view the results)! This looks
rather better. The resulting of plot-ting this is 2.4. (This is a good
illustration of a guess of a function that was not quite what was
needed, but following up on the help suggestions leads to a more
appropriate function.) At least now the curve is reminiscent of
past changes in global temperature and the geological Wilson cy-
cle, with high values in the Cretaceous and Jurassic and then lower
again in the Carboniferous (roughly matching the progression of
ice and hot house (and then back to recent ice ages) climates).

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.4: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

3. Or you could plot without the line joining the points. Scrolling
a little the way down help plot, it turns out that there are a num-
ber of options for color, line style, and marker symbol that you
list together as a single parameter, straight after the parameters
for x and y vectors. By default, MATLAB plots a solid line in blue
with no marker points. Obviously, we could forego the sorting and
plot a sane graphic (hopefully) by plotting just points and having
no line between them. Hell, you could even be radical and use a
different color ...

The main (i.e. not an exhaustive list)
data display options for the plot

function are:
(1) point style

. – point, o – circle, x – x-mark,
+ – plus, * – star, s – square, d –
diamond, v – triangle (down).

(2) line style
- – solid, : – dotted, - – dashed, and
when specifying a point style, not
specifying a line style results in no
line.

(3) color
b – blue, g – green, r – red, y –
yellow, k – black, w – white.

The 3rd solution then is to specify a symbol and no line. The
choice of colors is your oyster, as they (almost don’t) say. e.g. Fig-
ure 2.5.

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.5: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

2.2.2 Plotting multiple datasets and multiple plot panels

So far, so good. But so boring, although simple marker-only and
joined-by-line plots have their place. For a start, in the dataset was an
estimate of the uncertainty in the CO2 reconstructions in the form of
a min and max plausible value. Excel can make plots incorporating
errors, including non-symmetric errors, relatively easily. What about
in MATLAB? Actually, I have absolutely no idea. This would make
such a good ’exercise for the reader’, as they (do) say.

Personally, I might have been tempted to draw vertical bars along-
side the data (most likely). Or plotted in different symbols, the min
and max values as points. Or plotted min and max lines as a bound-
ing envelope. All of these require sone further little trick in MATLAB,
which involves the command hold. This is nice and simple and can

plotting and visualizing data 37

be on, or off.
» hold on – will enable you to add additional elements to a

graphic,
» hold off – returns to the default in which a new graphic re-

places the current on in a Figure window.

As an example – set » hold on, and then plot the minimum and
maximum CO2 values (columns #3 and #4) in different symbols and
different colors, on top of your existing plot. If you want to then label
what different lines or sets of points are, you can add a legend with
the legend command. For instance you have managed to successfully
plot the mean CO2 values as discrete black circles, and the minimum
and maximum uncertainty limits as blue and red lines, respectively,
you could call:

» legend(’Mean CO_2’,’Lower uncertainty limit’,’Upper uncertainty

limit’);

and it should end up looking like Figure 2.6.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Mean CO
2

Lower uncertainty limit
Upper uncertainty limit

Figure 2.6: Proxy reconstructed past
variability in atmospheric CO2 (sorted
data).

As a different example, create some sine waves using the sin func-
tion over the range 0 < x < 2π:

» x = 0:0.1:2*pi;

» y = sin(x);

» y2 = sin(2*x);

Now create a graph with both plotted. Play about plotting with dif-
ferent symbols and/or line styles and different colors. Add axis
labels, a title, and a legend.

Rather than plotting multiple data in the same plotting panel, it
is possible to place several different plots on the same figure Ű this
is done through the subplot command 8. The subplot command is 8 » help subplot

used as: subplot(m,n,p) where m is the number of rows of plots you
want to have in your figure, n is the number of columns of plots in
your figure, and p is the index of the plot you wish to create (see:
Figure 2.7).

Figure 2.7: Arrangement of subplots.

The basic code then goes something like:

» figure(1);

» subplot(2,2,1);

» plot(x,y);

» subplot(2,2,2);

» plot(x,y2);

» subplot(2,2,3);

» plot(x,-y2,’r’);

» subplot(2,2,4);

» plot(x,-y,’r’);

38 geo111 – numerical skills in geoscience

2.2.3 Scatter plots

Back to the previous (CO2) data, but a different spin on it. We’ll
start with the simplified CO2) dataset that you have already loaded in
(paleo_CO2_data.txt) (unless you have clear-ed the variable list) but
in due course, you’ll need the more complicated version processed in
the 1st tutorial.

Consider ... scatter. In fact, don’t just considered it, help it. The
simplest possible usage is, apparently:

SCATTER(X,Y) draws the markers in the default size and color.

(where X and Y are vectors). This almost could not be more straight-
forward. Make yourself an X and Y vector out of the loaded-in dataset
(or if you are feeling brave, you can pass in directly the appropriate
parts of the dataset array), close the existing Figure window9, and 9 See earlier.

scatter-plot the (mean) CO2 data.

0 50 100 150 200 250 300 350 400 450
-1000

0

1000

2000

3000

4000

5000

6000

7000

Time (Ma)

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
)

Proxy atmospheric CO
2

Figure 2.8: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

Perhaps a little disappointingly, the default (Figure 2.8) (plus
added labels) looks a little like one of the plots before. However,
scatter can plot color-filled symbols, but more powerfully, can scale
the fill color to a 3rd data value (vector), in a sort of pseudo 3D x-y-z
plot. For instance, it will be duplicating information that is already
presented (y-axis), but you could color-code the points, by the y-
value, i.e. the atmospheric CO2 value. e.g.

SCATTER(data(:,1),data(:,2),20,data(:,2))

draws the markers with an (area) size of 20 (points), in different
colors. Coloring just the outlines of the circles is perhaps not ideal
(difficult to see all of the color differences), so the circles can be filled
in instead (and you could make them a little larger too):

SCATTER(data(:,1),data(:,2),40,data(:,2),’filled’)

resulting in (Figure 2.9

0 50 100 150 200 250 300 350 400 450

Time (Ma)

-1000

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 2.9: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

There are a number of variants10 on this theme. For instance, you

10 As always, refer to:
» help scatter

could scale the point size by a data value. We could do with by:

SCATTER(data(:,1),data(:,2),data(:,2))

except ... it turns out that there are atmospheric CO2 values of zero
or less and you cannot have an area (size) of zero or less ...

This leads us to a refresher on the use of find and some basic
data filtering. The simplest thing you could do to ensure no zero
values, would be to add a very small number to all the values. This
would defeat the ’no zero’ parameter restriction, but would not help
if there were negative values and you have slightly modified and
distorted the data which is not very scientific. Substituting a NaN for

plotting and visualizing data 39

problem values is a useful trick, as MATLAB will simply ignore and
not attempt to plot such values. So first, lets replace any zero in the
CO2 column of the data with a NaN. The command you would use is:

data(find(data(:,2)==0),2)=NaN;

As ever – break this down into separate steps and use additional
arrays to store the results of intermediate steps, if it makes it easier to
understand, e.g.

list_of_zero_locations = find(data(:,2)==0);

data(list_of_zero_locations,2) = NaN;

This saying: find all the locations (rows) in the 2nd column of data
which are equivalent (==) to zero. Set the CO2 value in all these rows,
to a NaN (technically speaking: assign a value of NaN to these loca-
tions). You have now filtered out zeros, and replaced the offending
values with a NaN. Alternatively, we could have simply deleted the
entire row containing each offending zero. Breaking it down, this is
similar to before in that you start by identifying the row numbers of
were zeros appear in the 2nd column, but now we set the entire row
to be ’empty’, represented by []:

list_of_zero_locations = find(data(:,2)==0);

data(list_of_zero_locations,:) = [];

If you check the Workspace window11, you should notice that the 11 Or:
» size(data)size of the array data has been reduced (by 4 rows, which was the

number of times a zero appeared in the 2nd column).
We are almost there with this example. It turns out that there is a

CO2 proxy data value less than zero(!!!) We can filter this out, just as
for zeros. I’ll leave this as an exercise for you ... If (’when’, of course!)
successful, the plot should look like Figure 2.10. As another lesson-
ette, given that the circles are insanely large ... try plotting this with
proportionally smaller circles12. 12 HINT: you are going to want to apply

a scaling factor to the vector you passed
as the point size data.

0 50 100 150 200 250 300 350 400 450

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

Figure 2.10: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

As a last exercise on this, see if you can work this out. In the CO2

data, there are min and max uncertainty limit values. One could
color-code the points in a scatter-plot to represent either the min or
the max (perhaps try this first), but one on it sown is not necessarily
much use. One could color-code by the difference, but this is a func-
tion of the absolute value and one would expect large uncertainty
bars if the mean (central) estimate was high, and lower if it were
low. Perhaps we need the relative range in uncertainty? Can you do
this? i.e., scatter-plot the mean CO2 estimate (as a function of time),
but color-coding for the range in uncertainty as a proportion of the
value?

It turns out this is not entirely trivial because as you have seen,
the data is not as well behaved as you might have hoped. In fact, it

40 geo111 – numerical skills in geoscience

is just like real data you might encounter all the time! Before you do
anything – break down into small steps what you need to do with
the data, as this will inform what (if any) additional processing you
might have to carry out on the data. It should be obvious, that to
create a CO2 difference, relative to the mean, you are going to have
to divide by the mean value (column #2 in the array). So first off –
if any of the mean values are zero, it is all going to go pear-shaped.
Actually, equally unhelpful, or at ;east, lacking in any meaning, may
be negative values. If you inspect the data (in the Variable window),
there are both zeros and negative values for mean CO2 proxy esti-
mates. We need to get rid of these. Follow the steps as before. You
may also have to process the min and max values should they turn
out to be the same. Likely you are going to have to delete all the rows
in which (1) column #2 values are zero or below, and (2) column #3
and #4 values are equal (you could also try the NaN substitution and
see if it works out). (If you need a slight hint ... one possible answer
is here 13 , but try and work it out for yourself.) 13 » data=load(’paleo_CO2_data.txt’,

...’-ascii’);
» data(find(data(:,2)<=0),:)=[];
» data(find(data(:,3)==data(:,4)),:)
...=[];
» scatter(data(:,1),data(:,2),40,
...100*(data(:,4)-data(:,3))./data(:,2),
...’filled’);
» xlabel(’Time (Ma)’)
» ylabel(’Atmospheric CO_2 (ppm)’)

» title(’Proxy atmospheric CO_2’)

All that is missing now, is any indication of what the color scale
actually means in terms of values (and of what). MATLAB will add a
colorbar to a plot with the command ... colorbar. Although the color
scale gets automatically plotted with labels for the values, looking
at the plot, we still don’t know what the values are of (e.g. units).
We can label the colorbar, but MATLAB needs to know what we
are labelling. Each graphic object is assigned a unique ID when you
create them and which normally you know nothing about. We can
create a variable to store the ID, and then pass this ID to MATLAB to
tell it to create a title for the colorbar. To cut a long story short:

colorbar_id=colorbar;

title(colorbar_id,’Relative error (%)’;

It should end up looking something like Figure 2.11 in which you
can see the high relative uncertainty (bight colors) prevail at low CO2

values and ’deeper time’ (ca. 200-300 Ma). The colorbar title (label)
is maybe not ideal, nicer would be one aligned vertically rather than
horizontally. We’ll worry about that sort of refinement another time.

0 100 200 300 400 500

Time (Ma)

0

1000

2000

3000

4000

5000

6000

7000

A
tm

os
ph

er
ic

 C
O

2
 (

pp
m

)

Proxy atmospheric CO
2

50

100

150

200

250

300

350

400

450

500
Relative error (%)

Figure 2.11: Proxy reconstructed past
variability in atmospheric CO2 (scatter
plot).

One final example in this section to introduce some new plotting
functions, but also to quickly go back over some basic array manip-
ulation and processing. The data we will be analysing have been
taken from the USGS. The quake data are extracted between -5 and
20 lat, and between 90 and 105 lon, starting Dec 26, 2004 and end-
ing June 30, 2005. The data file can be found on the course webpage
(data_USGS.txt). The columns are: (1) day, (2) latitude, (3) longitude,
(4) depth, and (5) magnitude. Carry out the following:

plotting and visualizing data 41

1. The first earthquake in the list is the Sumatra earthquake of
December 26, 2004. The magnitude of this earthquake has been
revised upward since the data was downloaded. Actually, most
energy released in large earthquakes is in very low frequency
shaking that most seismometers do not record. The real magni-
tude had to come from a special analysis of "normal modes", or
standing waves on the Earth’s surface with periods of up to 54
minutes! When the media said that the Sumatra earthquake made
the Earth ring like a gong, these are the waves they were talking
about. So since we know that the magnitude was really 9.3, first
off, replace the value of the magnitude of the first earthquake in
the array.
2. Identify the smallest magnitude of recorded earthquake. You
should find that the minimum earthquake size on this list is 3.5.
For an earthquake in California, the minimum magnitude would
be more like 1. This is because this particular seismograph net-
work did not have many instruments around Sumatra. Another
problem is that the earthquakes are offshore. If the nearest seis-
mograph is far from a small earthquake, that earthquakes may not
be detected. This means that the data are artificially truncated.
Since everything below 3.5 is missing, some of the M=3.5 to 4
earthquakes may have been missed, too.
3. Identify the minimum and maximum earthquake depths. The
really deep ones (>40 km) are probably in the subducted slab that
goes beneath Sumatra. The zero depth means that it could not
be resolved - most hypocentres are 4 km or deeper. (hypocentre
= like epicentre, but at depth: the point on the fault where the
earthquake rupture starts)
4. How many earth quakes in total were recorded?14 A little 14 Recall how to find the size of an array.

The number of earthquakes is then
simply the number of rows (assuming
that you have not flipped the array
around ...).

harder: How may earth quakes were there bigger than M = 8?
Determine how many quakes occurred bigger than M = 7, 6, 5,
4, and 3. Determine the day on which the magnitude 8.7 shock
occurred.

The number of quakes bigger than
each magnitude should go up by
about a factor of 10 for unit decrease
in magnitude (Gutenberg-Richter
relationship, a power law). This fails
for the hugest quakes (>7 in this
case) and where the catalogue is
incomplete (not many between 3 and
4 due to detection threshold in this
part of the world).

There is only just so much looking at and processing raw data
you can do before your eyes start ... to droop and
... ... Zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz. OK – so now to visualize
what is going on. Plot using the scatter function the locations of all
the quakes from day 0 to day 91 (inclusive), and in a second plot the
locations from day 92 onwards.15 The first area covers the area that

15 Note that to find the position (i.e.,
row number) in the array at which
day 92 data starts, you can either do it
the dumb way and scroll through the
Variables window like some sort of
Excel Muppet, or do something more
clever:

HINT: find the array locations with
day > 91, but then you want to find the
minimum value of the long list of row
locations that MATLAB will spit out
that satisfies this criteria.

ruptured in the M 9.3 quake (1200 km long and 100 km wide) and
the second, to the South, is smaller. This is important because the
aftershock distribution made people very wary of the (low) early
magnitude estimates - the area of dense aftershocks often delineates

42 geo111 – numerical skills in geoscience

the part of the fault that ruptured, and scaling laws relate rupture
length to magnitude.

Create a figure with multiple panels, showing:

• In the top LH corner plot the day 0-91 quakes, and color-code
(or size-code) the markers for their magnitude.
• In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their magnitude.
• In the bottom LH corner plot day 0-91 quakes, and color-code
(or size-code) the markers for their depth.
• In the top RH plot the day 92 onwards quakes, and color-code
(or size-code) the markers for their depth.

2.2.4 Histograms

We could also visually analyse the data as a histogram. Type help

hist in the Command Window for a description of the hist function.
The histogram must be supplied with a vector defining the ’bins’ in
which to sum the data. Here is your chance to use the colon operator
again. O happy day.

1. To plot the frequency distribution of quakes as a function of
their magnitude we need to create a series of bins to define the
different magnitude ranges. How about bins with boundaries at
magnitude; 1.0, 2.0, 3.0, Ě 10.0. One complication is that the values
in the vector M define the middle of the bins in the hist function
and not the boundaries. The mid-points of this will be; 1.5, 2.5,
3.5, Ě 9.5, and this is the vector you need to create and assign to a
vector M (i.e., a vector array starting at 1.5, ending at 9.5, and with
increments of 1.0).
2. Having created M, plot the histogram of quake frequency vs.
quake magnitude by issuing:

» hist(data_USGS(:,5),M);

Question: what is the most frequent magnitude range of ’quake?
3. Now plot the histogram of quake frequency against time (i.e.,
day number) up to day number 186. You will have to assign a
new vector of values to M, one that starts at 0.5 and ends at 185.5.
Omori’s Law says that the number of aftershocks per day should
decrease following a power law – does this look to be the case
(approximately)? (One problem is that the small earthquakes are
missing which makes it appear not to work so well!)
4. Try this again (i.e., frequency of quakes vs. time), but investi-
gate the effect of changing the bin size – try making the bins about
1 month (30 days) in duration. Note that now M must start at 15.0
(the mid-point of the first monthly bin). Sometimes changing the

plotting and visualizing data 43

bin size can help if the data is noisy, but sometimes you lose im-
portant information. Which was better do you think – can you still
see a power-law decay in quake frequency following each major
event with the data in monthly bins? If you want, experiment with
other bin sizes to see how the data comes out. There is not always
a ’right’ answer in plotting data and sometimes you just have to
experiment a little to see what looks good.

Don’t forget that all the plots you make should be appropriately
labelled ... Save them as a fig file if you think you might want to edit
them again, and/or export as an image.

2.3 x,y,z (spatial) plotting

One could regard the previous scatter plotting as a sort of x,y,z plot-
ting, in as much as a 3rd dimension (z data value) was represented
through color and/or symbol shape, although primarily it was an x,y
plot with some fancy extra options. However, MATLAB provides a
wide variety of more formal ways of plotting data spatially, either in
2D (x,y,z) or even with a 3rd spatial dimension and a 4th dimension
representing the data value (x,y,z,zz) (see Box).

x,y,z PLOTTING
MATLAB calls plots of a (z) value

as a function of both x and y, ’3D’.
Strictly, one could look at some of
these functions as 2D, as scatter can
plot a 3rd data (z) value as different
colors/shapes/sizes as a function of
both x and y ... Anyway, the most
commonly used/useful and fortu-
nately simple, functions which create
a 2D (x, y) plot but with contours in
the value of (z), are:

1. contour – Plots a figure with the
data contoured, with a range and
increment between contours that
is fully specifiable, color-coded or
not, and labelled or not. Options
are also provided for specifying
how the contouring is done (and
the data interpolated).

2. contourf – Similar to contour,
except in between the (now sim-
ple black, by default) contours, a
fill color is plotted and scaled to
the data value.

For a genuine 3D plot, with surface
height determined by the data in
the 3rd dimension of the array, col-
ors and/or contours in the data in
the 4th array dimension, suitable
functions include:
surf, surfc, mesh
(but are not considered further here).

The simplest possible way of taking a matrix of data values and
plotting them spatially, as a function of (x,y) location, is the function
image. In effect, this is treating your data as if it were an image – the
data values being the ’color’ of each pixel and the location in the
matrix defining where in the image (row, column) the pixel is.

As an example, load in the (simple format) bathymetric data file

*** basic spatial plotting, the image func-
tion ***

(etopo1deg.dat) from the course webpage. This is the height of the
(solid) surface of the Earth relative to mean sealevel in meters, with
the continents having a positive value and the ocean floor, negative.
The data is conveniently on a 1° (longitude and latitude) grid. You
could view the resulting elements of the 2D array in the Variable
window if you like ... but at 360×180 in size, there may not be much
of use you can glean by visually inspecting the matrix16.

16 More useful then are the summary
details in the Workspace window, such
as the apparent absence of NaNs and
that the Min and Max Earth surface
heights seem plausible.

Try throwing the array into the image function see what happens
(hopefully something like Figure 2.12). It it had happened to come
out displayed upsidedown, then you’d need to flip the matrix upside-
down using the command:

etopo1deg=flipud(etopo1deg);

and if the Earth instead appeared on its side, you need to swap the
rows and columns (x for y axis):

etopo1deg=etopo1deg’;

44 geo111 – numerical skills in geoscience

It is not unusual for a first plotting attempt of spatial data to be in-
correctly orientated and a little trial-and-error to get it straight is
perfectly acceptable!

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 2.12: Very basic imaging (image)
of an array (2D) of data – here, global
bathymetry.

This is not exactly the prettiest of images. You can distinguish
ocean (blue) from land (mostly brown, but other color pixels in
places). Fortunately, MALTAB provides a variant of this plotting
function, imagesc, that calculates the color scale to exactly span the
min/max values in the data. Try it (and get something like Figure
2.13 hopefully).

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

Figure 2.13: Slightly improved very
basic imaging (imagesc) of bathymetry
data.

The function imagesc also enables the range of data values the
colo9r range corresponds to, to be set. Refer to help on this func-
tion and see if you can plot just the above-sealevel, i.e. land surface
heights, spanning zero (sealevel) to the maximum height17.

17 Don’t forget the function max.

For a different example – go to the following webpage. In this

*** (x,y,z) (contour/contourf) plotting,
the meshgrid function ***

data repository you can do things like re-plot with different longi-
tude, latitude, and temperature ranges. Overlay the coastlines, and
other useful things like that. You can also click through the different
months of the year to get a feel for how the surface temperatures on
Earth change with the seasons. Note that the graphic produced from
this particular website is not particularly great, and you can all do
better than this using MATLAB already. Presumably there are some
lazy PhD students out there lacking the skills that you are (hopefully)
learning. Perhaps they should take GEO111 (or maybe you are ...)?

It would be nice to be able to plot this temperature data for our-
selves and have more control over its presentation and hence the
message you are trying to convey with it. Pick one (any one) of the
the monthly global surface temperature data-files on the course web-
page and download it.

Pick one of the MATLAB 3D plotting functions (see Box). Your
choice. Read the relevant help for your chosen function. Plot the
dataset using the simplest usage of the function.

20 40 60 80 100 120 140 160 180

10

20

30

40

50

60

70

80

90

Figure 2.14: Example contour plot.
Result of contour(data,20), where the
data file was temp7.tsv.

You should have got ’something’ (see Figure 2.14). But you’ll note
(hopefully) that you haven’t got any grid information yet; i.e., you
don’t know what the longitude and latitude axes should be and the
default graduation clearly cannot be for a planet. You could guess
that latitude (y-axis) goes from 90°S (-90°N) to 90°N, but be careful –
sometimes you will see global maps only plotted between say 60°N
or 75°N if the highest latitudes are not very interesting or e.g. it is
a satellite product and the satellite cannot observe high latitudes.
You would be safer guessing that there is likely to be the full 360°of
longitude; but starting where? Common longitudes to start plotting
from in the literature are 0°E and -180°E (180°W). The second thing to
note, apart from missing x- and y-axis labels (and title) that you could

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/.MONTHLY/.temp/#nameddest=views

plotting and visualizing data 45

easily add in, is; what do the colours mean? i.e., If you were asked
what the temperature was over the Equatorial Pacific, or what the
coldest temperatures in the northern Arctic were; well, what do the
red and dark blue colours actually mean? 0°C, 50°C, 100°C??? Your
contour or colour contour (depending on which 3D plot you prefer)
is clearly missing critical information and incomplete.

OK – we’ll fix the (lon,lat) information to start with. If the (lon,lat)
grid information was available from the same website where the tem-
perature distribution data came from, then you already know how
to use this (e.g. from help) when calling the contour (or confourf)
function; i.e.

» contour(lon,lat,data)

instead of just supplying the array of data values on its own, i.e.;

» contour(data)

(and similar to Figure 2.14).
But suppose the actual data-files (arrays) of (lon,lat) information

are not available at all. Anywhere. Then what? (In fact, this is the
case with this particular on-line data repository.) The information
that the website did provide (click on the ’data in view’ button on the
webpage you were looking at) is that:

1. The longitude grid runs from 0°E (column #1) with an incre-
ment of 1.875°; i.e., 0.000°E, 1.875°E, 3.750°E, ... up to 358.125°E
(column #192).
2. Latitude runs from 88.54196°S (-88.54196°N) at row #1, to
88.54196°N (row #94) with an increment of about 1.904.

You could create a vector (similar to as per you have done previ-
ously) to try and solve this, by entering something like:

» lon = [0:1.875:358.125];

In fact, type this in at the command line and view what it gives -
is this sufficient longitude information for the 94×192 temperature
distribution data-set (94×192 is the array size of the temp global
temperature distribution data which is displayed in the Workspace
window)? Can you create the appropriate 94×192 array out of this
single 1×192 vector? Maybe. But not easily.18 18 It turns out you could hasve easily ...

but only if you had skipped ahead and
gone through the next Tutorial ...

Helpfully, MATLAB provides a special function called meshgrid.
Spend a few minutes reading about it in help. In particular, look
at the examples given to help you translate the MATLAB-speak
gobbledegook of the function Description. You should be able to
clean from all this that this function allows us to create two a × b
arrays; one with the columns all having the same values, and one

46 geo111 – numerical skills in geoscience

with the rows all having the same values. This is exactly what we
need for defining the (lon,lat) of all the global surface temperature
distribution data points.

As an example of this, suppose you wanted to create the (lon,lat)
grid information for a data-set covering the LA and the Inland Em-
pire, that went from; -120°to -116°(East), and 32°to 36°(North). The
arrays we will use to store the longitude and latitude information in
we will call; lon and lat. Having looked at help, the command you
will issue hopefully is apparent:

» [lon lat] = meshgrid(-120:1:-116, 32:1:36);

A translation of this is: create a pair of matrixes, one for lon values
going from -120 to -116 with a step size of one, and one for latitude
values going from 32 to 36 with a step size of one, and assign them to
a pair of variables, [lon lat]. Type this in at the command line and
view the contents of the lon and lat arrays to convince yourself that
it actually works out.19 19 Note that the latitude numbers in the

lat array count in the opposite direction
(numbers getting larger going down
the rows) to how you would expect
if you were looking down at a map.
Remember that arrays in MATLAB
count from the top left (columns across
from the left, and rows down from the
top) rather than in a map, which is
orientated from the bottom left. If at the
end of the day when you plot your data
you find that you get an up-side-down
map, then you know that you need to
simply just flip the lat array around.
Refer to the earlier Tutorial and/or
Look up help flipdim for one way of
re-orientating the data in an array.

Now go create a suitable pair of (lon,lat) arrays for the global tem-
perature data. You will need to remember to use the colon operator

to increment longitude in 1.875°steps and latitude in 1.904°steps. You
may as well call the arrays that you create lon and lat. Have a look
at the arrays that you have created (in the Variables windows), and
satisfy yourself that for each and every temperature point in the tem-
perature data array (i.e., (row,column) location), the corresponding
locations in the lon and lat arrays gives the full (longtitude, latitude)
location of the temperature value on the Earths surface.

Plot the global temperature distribution on its proper (lon,lat) grid.
Go label the axes if you haven’t already done this.

Now you need to fix the problem of not know what any of the
colours (contours) in your beautiful plot mean ... Note that the tem-
perature of the raw data-sets is in Kelvin (or did you really think that
January temperatures in Socal were around 290°F?). Go change the
dataset to some more sensible units – either a simple conversion to
degrees Celsius, or Google how to convert to Fahrenheit. See if you
can produce something like (or better than!) Figure 2.15.

Longitude

La
tit

ud
e

Climatological July surface air temperature

0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50

Figure 2.15: Example contour plot.
Result of contourf(lon,lat,temp7,30),
where the data file was temp7.tsv, with
some embellishments.

For another contourf example – load the bathymetry data and

*** (x,y,z) (contourf) plotting, the
meshgrid function ***

plot it in solid color contours. The bathymetry data is on a regular
1 degree grid starting at 0° longitude and so the call to the meshgrid

function will have to be adjusted accordingly. By creating and ad-
justing a vector to define the contour intervals, see if you can plot:
(1) ocean floor and land in 1000 m intervals, (2) the land (only), in
500 m intervals, (3) the continental shelf exposed at the last glacial,
which we’ll call ocean floor shallower than 120 m water depth, in 5 m

plotting and visualizing data 47

intervals.

2.3.1 Plotting maps

You can do some nice spatial plotting with this data using the MAT-
LAB Mapping Toolbox. This should be available as part of the MAT-
LAB installation in the Lab (and also if you have downloaded and
installed an academic version on a personal laptop). Refer to the on-
line documentation for the Mapping Toolbox to get you started. The
key function appears to be geoshow. Try plotting the region encom-
passing the ’quake data, with a coastal outline (of land masses), and
the ’quake data overlain. Explore different map projections. Remem-
ber to always ensure appropriate labelling of plots.

3

MATLAB scripting and programming

Nerd. This is what you are now going to become. And lose all your social skills. And sit at home all day in
front of your computer. Which has become your only friend.

You will achieve this higher state of Being by starting to learn to write and use scripts and functions (aka
m-files) in MATLAB. Actually, at this point you are now writing computer programs (of a sort) rather
than endlessly typing stuff at the command line in the forlorn hope that something useful might occur.

3.1 Introduction to scripting in MATLAB

Commands in MATLAB can become very lengthy, and you might
end up with a lot of different lines of stuff to get anything even re-
motely useful done. And as you have noticed, it can take a lot of time
to enter in all these lines of things. And all the while, the clock on the
wall of the bar is ticking. Tick tock, tick tock, tick tock. (The clock is
also tocking.) ... If only there was some way of storing all these com-
mands in such a way that they could be run again with the press of
a button (as a wild guess, how about F5?), without having to enter
them all in, all over again from scratch ...

m-file

A simple text file, in which a series
of one or more MATLAB commands
are written and which via the .m
extension, MATLAB interprets as
(1) a program file that can be edited,
and (2) script or function that can
be executed (or rather, the list of
commands inside, can be executed in
sequential order).

Assume a similar convention to
that for variables in the naming of
m-files.

Your wish is granted. In MATLAB, it is possible to store all of
your commands in a single text file, and execute them all (sequen-
tially) all at one go. MATLAB gives this text file a fancy name (be-
cause it is a very fancy piece of software, after all) – a script1, oth-

1 The conception of a function, will be
introduced later.

erwise known as an m-file. To create a new m-file; from the File
menu, select Script (a common type of m-file)2. You will see a text

2 In order version of MATLAB:
File/New menu, and select: Blank
M-file.

editor (more fancy-ness) appear in front of your very eyes, containing
your requested (but currently empty) m-file. Save the m-file to your
directory of choice. Alternatively, simply create a new (blank) text
file and saving it with the extension .m, rather than e.g. .txt, creates
you a (script) m-file. From an m-file, you can issue all the MATLAB
commands you previously would have entered individually, line-by-
tedious-line, at the command line. Furthermore, having created and
saved a MATLAB script, it can be executed again and as many times

50 geo111 – numerical skills in geoscience

as you like.
You can execute an m-file by typing its name into the Command

window (omitting the .m file extension). Ensure that MATLAB is
operating in the same directory as the directory that you have saved
your m-file3. You can also run the script (m-file) by hitting the big 3 See previous Tutorials for comments

on changing directory vs. adding paths.bright green Run icon button at the top of the m-file editor4. The
4 In order version of MATLAB – select:
Debug/Run from the ’debug’ menu of
the Editor window.

short-cut for running it is to whack your paw down on the Function
Key F5.

A few tips about MATLAB scripting before we go on (and on and
on and on):

Creating help text in an m-file

MATLAB allows you to crete a
’help’ section in the m-file – text
that is outputted too the screen if
you type help on that particular
script (or function). The text is de-
fined by a block of comment lines at
the very top of the script file (or after
the function definition in the case of
a function). The last sequential com-
ment line is taken to be the end of
the help section. Note that the help
section can be a minimum of eon
single line. A typical basic format is:

1. Name of (in capitals), and very
brief summary, of the script
(/function).

2. List and description of the dif-
ferent forms of use (if there are
one or more optional parameters)
including definition of the input
parameters.

3. Examples.
4. A See also section listing similar

or related scripts or functions.

• Choose helpful variable names so that it is clear what each
variable represents, but avoiding *excessively* long names.
• Use comments within your m-file to add explanation and
commentary on your program. Anything after a % on the same line
is a considered a comment, and is ignored by MATLAB.
• Structure the code nicely. You can break the code up into sec-
tions, e.g. by adding a blank line. You might also start each section
with a label summarizing that it is going to do (via the addition of
a comment).
• Always save your changes before running your program (or
you may unknowingly be running the previous version).
• There are quick ways to run just portions of your code;

1. Highlight, and copy, and paste in the command window.
2. Highlight some code, right click, and select Evaluate Selec-
tion (in the current MATLAB version, there is also an icon for
Run Section).
3. Or highlight and hit the F9 key.

• If using the script to do some plotting, sometimes it is conve-
nient to add at the top of the m-file,

close all;

This command close all currently open figures, plots, images, etc.

Your first ’program’ ... inevitably ... has to be to print ’Hello *** scripts ***

World’ to the screen. No, really. (Google it.) Create a new m-file,
calling it e.g. hello_world.m. You need to use the function disp5, 5 » help disp as always, for function

syntax and usage.which will print to the screen, either any text you specify (in in-
verted commas), or the value of a variable (which could also contain
character information). For now, simply pass the text directly. Your
program needs just a single line in the m-file:

disp(’hello, world’)

Save the file. Run it at the command line by typing its name (omit-
ting the .m extension). Your first program is a success! (Surely you

matlab scripting and programming 51

could not screw up a single line program ... ?)

For an example , loosely based on the previous Tutorial – go create *** use of m-files (scripts), use of the colon
operator, code debugging ***a new m-file called: plot_some_dull_stuff.m6. Then add the follow-
6 Remember – you are advised to name
your m-files as something vaguely
descriptive of what the script actually
does (and you do ont have to go with
this choice, although it might turn out
to be perfectly descriptive ;)

ing lines to the file:

% my dull plotting script

% first, initialize variables

clear all;

close all;

x = -2*pi:0.1:2*pi;

y1 = sin(x);

y2 = cos(x);

% open a figure window and plot a sine graph

figure;

plot(x,y1,’r’);

% add a cosine graph

hold on;;

plot(x,y2,k);

and then run it (refer to above for how).
Pretty dull stuff eh? Wait – maybe you didn’t get a figure appear-

ing on the screen with a pair of sines and cosines on. Has MATLAB
given you an error? If you typed in the above ’correctly’, you should
see:

??? Undefined function or variable ’k’.

Error in ==> plot_some_dull_stuff at 11

plot(x,y2,k);

In this situation, the actual error reported might not always mean
that much to you (it doesn’t always mean that much to me, either).
However, the line number at which the problem occurred is gold-
dust. We know from the error reported by MATLAB that we have a
bug in the code at line 11. See if you can de-bug the program. Look
up help plot to remind yourself of the correct syntax on line 11 if it
is not immediately obvious.

Once you have fixed the bug; save and re-run the script. Now you
should see Figure 3.1.

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Output from the
plot_some_dull_stuff m-file.

Perhaps you find that you need to alter something fundamental in
the script; perhaps you forgot that you advisor told you; ’Always plot
from zero to 4 times pi, or you’ll find yourself buried in a shallow
grave.’ Your advisor is 6’7” and 250 lbs with a mean temper, and is
walking your way. Do you: (a) scream and run, or (b) simply edit the
m-file, changing line 5 to x = 0.0:0.1:4*pi, before quickly saving
(don’t forget) the edited file and re-running the script (e.g., pressing
F5). Your bacon is saved by using an m-file. If you had just tried to
type in everything at the command line all over again, you might be
dead by now ...

52 geo111 – numerical skills in geoscience

3.2 Loops

Loops in MATLAB
for

The basic for ... end structure
is:

for n = VAL1:VAL2

CODE

end

where VAL1 and VAL2 are the limits
that n will count between (start-
ing at VAL1 and ending at VAL2),
meaning that STATEMENT(S) will be
executed (VAL2-VAL1)+1 times in
total. STATEMENT(S) can be one or
more lines of code, that will all be
executed on each and every cycle of
the loop.

The loop need not count in in-
crements of one (1), the default,
e.g.:

for n = VAL1:INC:VAL2

CODE

end

counts with an increment of INC.
It is also possible to count down (a
negative value of INC).
while

The basic structure is similar to
that for for ... end:

while STATEMENT (IS TRUE)

CODE

end

while differs from if in that there
are no alternative branches of code
that can be executed. The while ...

end loop cycles and CODE continued
to be executed (for ever) until the
STATEMENT is evaluated to be false.

The first main program construct that you are going to see is the
loop. There are a number of different forms of this in MATLAB (see
Loops Box) (and also in other programming languages), but the basic
premise is the same – a designated block of code (one of more lines
of code7), is repeated, until some condition is met. That condition

7 It is possible to for the block of code to
be only a fragment of a single line and
hence the entire loop plus code block,
to be written on a single line.

might be something as simple as a count having been reached, e.g.
the block of code is always executed n times, or the condition might
be slightly more complex and involve a conditional statement (see
later).

Loops, camera, action! A humongous and ungainly example fol-

*** the for ... end loop, string concate-
nation, comments, the num2str function,
defining (color, contour) plotting scales,
MATLAB movies ***

lows, in which we’ll see the use of loops, recap some on loading in
data files, plotting (and interpolating) 2D data, and see a few new
tricks (aka MATLAB functionality). What we are going to do is (load
and) plot a sequence of monthly data-sets and put them together to
create a movie (animated graphic) to illustrate the seasonality of tem-
perature in global climate. You will hopefully start to appreciate the
value of constructs such as loops in computer programming in saving
you a whole bunch of effort and needless duplication of code.

So, first download all the monthly global surface temperature
data-files on the course webpage (there are 12 files to download).
Then you are going to want to plot them all8. This would get tedious

8 Strictly speaking, you are going to be
doing this, regardless of whether or not
you actually ’want’ to ;)

if you had to do this at the command line 12 times. Think how much
more of your life you would be wasting if we had weekly data. Or
monthly data for 1972 through 2003, some 372 separate data-files ...
You would never have time to drink beer ever again?

Create a new m-file. Call it ... anything you like9. However, as

9 bob_the_builder.m counts as ’any-
thing you like’, but that looks pretty
lame and it certainly won’t help you
remember what the script does if you
came back to it sometime in the future.

well as appropriately naming your script file, add a comment on the
first line of the file as a reminder to yourself of what it is going to do.
Also, for now, it is good practice10 to use the commands: clear all

10 Note that there may be situations
in which you want to run a script file
to process some data that you have
already loaded in – by issuing the
command clear all, you will erase
the MATLAB workspace and any data
already loaded in.

and close all.
To make an animation, we need to make a series of frames, with

each one being a different monthly temperature plot (in sequence;
Jan ? Dec). The files are rather conveniently named: temp1.tsv,
temp2.tsv, ... temp12.tsv. We should start by loading this little lot
in. For the first file we could write:

temp = load(’temp1.tsv’);

or

temp(:,:) = load(’temp1.tsv’);

and hence with a slight-of-hand, we could also write:

matlab scripting and programming 53

temp(:,:,1) = load(’temp1.tsv’);

Can you see that these statements are identical? Run the script with
one, then with the other, just to be sure. The latter form is useful,
because we can now go on and write:

temp(:,:,2) = load(’temp2.tsv’);

What you have done here is to load the January 2D (lon-lat) tempera-
ture distribution into the 1st 2D layer of the temp array, and then we
have gone and created a second 2D layer on top of the first with the
February data in it.

Look at the Workspace window (or type size(temp)) – you now
have a 3D (94×192×2) array. Fancy!

Go on and load in the March and April data in a similar fashion
(check that your array now has dimensions of: 94x192x4). Are you
getting bored yet? No? Then load in the May and June data.11 11 Zzzzzzzzzzzzzzzzzzzz

You should be able to see a pattern forming here. This is some-
thing that a loop could be used for while you go off down the bar.
We first need to construct the loop framework. We’ll call the month
number counter variable, month. Create a loop (with nothing in it yet)
with month going from 1 to 12.12 Refer to the course text (this docu- 12 Don’t forget to suitably comment

what it is that the loop does with a
line (or even 2, but don’t write a whole
essay) beginning with a %.

ment!), and/or the ’Getting Started in MATLAB’ booklet, and/or the
MATLAB documentation, and/or the entirety of the internet, if nec-
essary. The syntax (and examples) is described in full under » help

for. Save the script (m-file) and run it13. What happens? Can you 13 Typing: the m-file filename without
the extension.tell?

One way of following what is going on as MATLAB executes the
commands within a script is to explicitly request that it tells you how
it is getting on. Use the function disp to help you follow what the
program is doing. Within the loop, add the following line:

disp(month)

then save and re-run the script.
Now you can see how the loop progresses. This sort of thing can

be useful in helping to debug a program – it allows you to follow a
program’s progress, and if the program (or MATLAB script) crashes,
then at least you will know at what loop count this happened at,
even if you are not given any more useful information by MATLAB.
ONLY when you are happy that you have constructed a loop that
goes around and around 12 times with the variable month counting
up from 1 to 12; comment out (%) the printing (disp) line14 (unless 14 Note that by commenting out a line

rather than completely deleting it, if
you want to print out the loop count
in the future, all you have to do is to
un-comment the line, rather than type
in the command all over again. This can
be really useful if your debug command
is long, or particularly if you have a
whole series of lines that are required
to report the information you want to
know.

you have grown rather attached to it) and move on.
We can construct filenames to load in by:

1. Converting the number value of a (count) variable to a string
(num2str), and

54 geo111 – numerical skills in geoscience

2. forming a complete filename by concatenating other strings
before and/or after this.

The num2str function is new to you – look it up in help for exactly
what it does and the correct syntax. For the second part of this –
recall that you can concatenate arrays (you have done this before
with numbers in the arrays). The same can be done if your variables
contain strings (i.e., a sequence of characters). For example, you can
probably guess the outcome of (but type it in at the command line
anyway):

» A = [’be’ ’er’]

Note that string information must go within inverted commas; ”. We
can do a similar trick to construct a long filename string. Type in the
following example at the command line:

» filename = [’temp’ ’1’ ’.tsv’]

Now load (at the command line) the data file given by the filename
string contained in the variable filename15. 15 HINT:

» load(filename);You should see that you can construct filename strings from in-
dividual parts of strings (by concatenating), and you can pass the
load command the array containing the filename – note that this is
different to how you have been loading in data before when you have
passed the actual string (which you have had to place between in-
verted commas to tell MATLAB it is a string). If you pass MATLAB
a variable containing a string, then MATLAB will automatically look
to see if the contents of the variable are a string or number, and if it
wants a string input and your variable contains a string, MATLAB
will be very happy indeed.

If you have to write out 12 times a line like filename = [’temp’

’1’ ’.tsv’]; then you still have not managed to save any drinking
time. This is where you can use the loop count number (stored in
the variable month) and convert this number to a string in order to
automatically generate the correct month’s filename each time you go
around the loop.

Now add the following within the loop in your script;

filename = [’temp’ num2str(month) ’.tsv’]; disp(filename)

Save and run the script. Satisfy yourself that you know what it is
doing. Can you see that you are now automatically generating all
the 12 filenames in sequence? And this only takes 3 lines of code
(compared with 12 lines if you had to write it all out long-hand).

Now comment out the disp(filename) line, and add a new line to
load in each dataset from the new filename that is constructed each
time the loop goes around and assign it to the temp array. Remember

matlab scripting and programming 55

that the load line goes inside the loop. (Why? Try writing it outside
the loop (at the end) and see what happens if you like.) Look at the
Workspace window – note that you have an array (temp) that has size
94×192×12. If temp is 94×192×1 then go back a page or so and go
through the bit about loading data into a 3D array. You want to avoid
over-writing the information that is already there, so the line; temp =

load(filename); will not work (and you will only get a 94×92 array
after going 12 times around the loop). Why? (Again, look back a
page-ish.)16 16 If you are still stuck, then stick up a

paw.Now ... before the loop, create the (lon,lat) information arrays
using the meshgrid function. Add the necessary line(s) to the script
(after the workspace initialization but before the loop starts) to create
the (lon,lat) information arrays. Note that you only need 2D arrays
here because the same (lon,lat) can be used to plot the temperature
data for each month.

At the end of (but still within) the loop (i.e., before the loop has
completely finished), create a new figure window on one line, then
plot (contour/contourf) the monthly temperature data on the next
line, and add the essential labelling stuff (lines after that). All within
the loop still. This line should look something like:

contourf(lon(:,:),lat(:,:),temp(:,:,month));

Don’t just type this line in blindly (maybe it doesn’t ’work’ anyway).
Make sure that you understand what you are doing (otherwise why
do GEO111 at all?).

Save and run the script. Do you have 12 different temperature
plots on the computer screen?17 Note that this is where the close all 17 If not, stick you paw up in the air for

help ...command at the start of your script comes in useful. Because if you
re-run the script, you wont then end up with 24 figure windows.
And then 36 the time after that, and ... (There is actually no need to
create a new figure window each time – comment out the command
that creates a new figure window (figure). Save and re-run and note
the difference.) Get the units of the temperature data array into units
of °C or °F rather than °K. Either: assign the temp array data to a new
array and make the appropriate conversion from °K (all within the
loop), or you can do this subtraction on the line that you actually plot
the data (i.e., within the contour/contourf function), for example:

contourf(lon(:,:),lat(:,:),temp(:,:,month)-273.15);

would convert to °C as it plotted the data.
You can get the plotting temperature limits and contouring con-

sistent between months and with greater resolution by adding the
following line (before the loop starts):

v=[-40:2:40];

56 geo111 – numerical skills in geoscience

and then to the contour(...) (or contourf(...)) function, add ,v to
the end of the list of passed parameters. This particular choice for the
vector v tells MATLAB to do the contouring from -40 to 40 (°C), and
at a contour interval of 2 (°C).. Play around with the min and max
limits of the range, and also with the contour interval to see what
gives the clearest and least cluttered plot. For instance, maybe you
don’t want the low temperatures to go ’off’ the scale (the white color
in the filled contour plot).

movie2avi

The function movie2avi converts
an animation encoded in MATLAB’s
movie format to an avi file, which is
a common film format that can then
be played in Windows (or other op-
erating systems) without having to
use MATLAB to display it. It is also
a format that could e.g. be embed-
ded in a Powerpoint presentation. A
typical basic usage is:

» movie2avi(M,’file.avi’);

where file.avi is the output file-
name and M the input MATLAB
movie name.

Finally, finally ... look up MATLAB help on getframe. Then go
back to your global temperature loading/plotting script and add the
following line18:

18 Where to put the line? See the
Example given in the help on this
function. It is exactly what you are
doing here.

M(month)=getframe;

Save and run. When MATLAB is all done, at the commend line
type in:

» movie(M,5,2)

and hopefully ... an animation of the progression of monthly surface
air temperatures globally, should appear19.

19 Note that the active Figure window
may have disappeared behind some
other windows so go rescue it to see
what is happening.

If you want to play some more, just type help movie – there are
controls for not only the number of times you loop through the com-
plete animation, but also for the numbers of frames per second.

Before you clear off to the bar – go look at your script – is it well
commented? Would you be able to tell exactly what it does it by the
end of GEO111? What about next year? Are the loop contents in-
dented? It is important that it is commented and laid out adequately.

Now for a more complicated example but still using the global *** the for ... end loop ***

temperature dataset. It would be nice, to add to the temperature dis-
tribution plot, the continental outline. Currently you are left to some
extent guessing where the land and where the ocean is, although the
temperature contours to delineate the boundaries remarkably well in
some places (depending on how many and hence density of contours
has been specified).

A pair of files are provided (from the website), comprising a series
of lon-lat values that delineate the outline of the continents and all
but the smallest islands:

continental_outline_lat.dat continental_outline_lon.dat

Load these into the MATLAB workspace (in the ’usual way’). You
should now have 2 vectors. Maybe view then in the Variable Win-
dow to get a better idea of what you are dealing with. Also keep an
eye on the entries in the Workspace Window and particular the Min
and Max values – looking out for any indication of NaNs or negative

matlab scripting and programming 57

numbers.20 Try plotting these lon/lat locations. Use the scatter plot- 20 QUESTION: How else (from the
command line) would you determine
whether there were any NaNs in the
vector? Equivalently, how would you
determine whether there were any
values less than zero? Try both.

ting function (which makes it all the easier as your data is in the form
of 2 vectors already). You might need to reduce the size of the plotted
points (refer to the earlier exercises, or help) and additionally, you
might want to fill the points (up to you). Remember you can set the
axis limits, which presumably should be 0 to 360 or -180 to 180, on
the x-axis (longitude), and -90 to +90 on the y-axis (latitude). Font
sizes of labels can also be increased if necessary. You might end up
with something like Figure 3.2.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

Continental outline

la
tit

ud
e

Figure 3.2: Continental outline (of
sorts).

By plotting a dots (points), the coastal outline at higher latitudes
gets increasingly pixelated (why?). So, we might instead plot as lines
between the lon-lat pairs. For this, you could simply use plot. DO
this, and see if you get something like Figure 3.3..

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 3.3: Another continental outline
(of sorts).

Well ... interesting. If you think about it, as one continental outline
is completed, the next lon-lat pair will be for the next continent or
island. What plot does is to join up *all* the points, which is why
you get the straight lines criss-crossing the map and joining each
successive continent and island in the dataset.

The continental outline dataset is not actually that useless. There
are additional files that specify which block of lon-lat pairs belong to
a single shape (i.e. continent or island). Load in the 2 additional files:

continental_outline_start.dat continental_outline_end.dat

These vectors hold information regarding the start row and end row,
or each shape. Again, view the contents of these vectors to get an
idea of what is going on. For example, you’ll see that the first entry is
that the first shape starts on row 1 (continental_outline_start.dat),
and ends on row 100 (continental_outline_end.dat). The 2nd
shape starts on row 101, and ends on row 200. etc etc The simplest
way too start dealing with all this, is to just plot the very first shape,
defined by rows 1-100 of the lon and lat vectors. By now, you hope-
fully will be able to see that to plot rows 1-100 of lon and lat data,
you are going to do:

plot(lon(1:100),lat(1:100));

(here I have named the arrays lon and lat for added convenience).
Well ... this is probably about as unexciting as it gets – a small

piece of the Antarctic coastline. If you did hold on and plotted
the next block (rows 101-200), you get the next chunk of coastline.
(Try this and see.) You could keep going this – manually adding
additional sections of the global continental outline. This could
get tedious ... and it turns out that there are 283 different frag-
ments to plot, all one after another. (This number comes from ask-
ing MATLAB the length of continental_outline_start.dat or

58 geo111 – numerical skills in geoscience

continental_outline_end.dat.) This is, of course, why we need to
get clever with a loop and automatically go through all 283 fragments,
plotting them on on top of another in the same figure.

length

This function could almost not be
simpler – just pass the name of a
vector, and it returns its length (i.e.
the number of rows, or columns,
depending on the shape of the
vector).

How? First you need to have the plot command in a more gen-
eral form – you do not want to have to read the values out of the
(continental_outline_start.dat and (continental_outline_end.dat
files manually. Hopefully, it should be apparent, that you can re-write
the plot statement for the first fragment, as:

plot(lon(line_start:line_end),lat(line_start:line_end));

where for the first fragment, the values of line_start and line_end

are given by lstart(1) and lend(1), respectively (renaming the
original vectors to shorten the variable name)21. Re-writing again: 21 You cannot use the obvious variable

name end – why not?
plot(lon(lstart(1):lend(1)),lat(lstart(1):lend(1)));

Try this and check you still get the single piece of the Antarctic coast-
line.

Really, you should hopefully be making the mental leap to looking
at (1) and thinking that it could be: (n), where n is a loop counter
which can go from 1 to 283 and hence loop through all the line frag-
ments. Yes? For instance, setting n=1, and plot (with n replacing 1 in
the code fragment above) – you should again get that very first frag-
ment. Try setting n=283 and plot. Do you get the last fragment (what
is it of22)? 22 An island at about 20N and -150E if

you have done it correctly.

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

longitude

la
tit

ud
e

Continental outline

Figure 3.4: Another go at the continen-
tal outline!

So ... create yourself an m-file. Load in the lon-lat pairs as vectors
(renaming then to something more manageable if you wish). Load in
the vectors continuing the start and end information. Create a do ...

end loop. Maybe print (disp) the loop count and run the program
(after saving), just to check first that the loop is functioning correctly.
Before the loop, create a Figure window. Set hold on. In the loop
all you need is the plot command, but with the start and end rows
being a function of n (or whatever you call the loop counter). Set axis
dimensions and label nicely (after the loop ends). Run it. Hopefully
... something like Figure 3.4 appears(?)

3.3 Sub-programs (scripts)

An example involving the continental outline and now combining *** sub-programs ***

with the global temperature dataset/plot.
Go back to the script you wrote for creating the global temperature

map animation. Copy it and rename it, and remove the loop and
also the creation of the movie, so that it simply loads in a single
month of data (any one), creates the lon-lat info (meshgrid), plots the

matlab scripting and programming 59

temperature field and makes the plot ’nice’ (labels, and maybe an
optimized number of contours and color scale), i.e. ending up when
you run your script, with something looking like Figure 2.15. (Make
sure you save this before moving on.)

Now lets say that you want to add the continental outline as an
overlay. In fact, you do want to do this! You could certainly add to
your temperature field plotting script:

1. Loading in of the lon-lat, and also start-end, vector data.
2. A hold on after the temperature data has been plotted.
3. A do ... end loop, to plot all the coastline fragments.

In fact, this, itself, is worth trying. Save it with a different filename
and run it. You should end up with a nice outline of the conti-
nents/islands on top of the contoured map. (You could also try
plotting the outline first before the contour function, particularly if
using the filled function (contourf) – what happens?)

But lets imagine that you might be in the habit of plotting lots
of different global datasets, and for each, you want the continental
outline. You would have to put exactly the same code in each and
every script you write. There is a better way of dealing with this
situation (i.e. a block of code that you might want to use again and
again as part of different programs and projects).

You can place a block of code that you want to re-use, in its own
m-file. Go back to the script that you wrote to just plot the temepra-
ture field (no continental outline overlay). Create a new (blank) m-file
and place into it:

1. Loading in of the lon-lat, and also start-end, vector data.
2. A do ... end loop, to plot all the coastline fragments.

Save it.
At this point it is a good idea to test it rather than immediately

trying to combine it with another complex script. Lets say that the
code to load and plot the continental outline is called plot_continents

(filename: plot_continents.m). Test it by opening a figure window,
setting hold on, and then calling (running) the script, e.g.:

figure;

hold on;

plot_continents

and hopefully getting a version of Figure 3.4 but without the fancy
labels etc. The next, trivial but oddly profound step, is to place the
above 3 lines of code in a new m-file, and then run it. Now you have
created a program that calls a sub-program (plot_continents)! (One
might classify the 3-line program a test harness for the sub-program

60 geo111 – numerical skills in geoscience

– i.e. just enough commands to make the sub-program work and
thereby have verified that all seems fine with it.)

Now the last and genuinely trivial step is to call plot_continents
from your temperature field plotting program, either just after the
contouring function and a hold on has been called, or if you prefer,
after the plot has been labelled and the axes limits set.

A little refinement here is to increase the line weighting to e.g. a
1.5 pt width to make them a little more pronounced compared to the
color contoured background, by adjusting the plotting line thickness
(and also ensuring it is black):

plot(lon(lstart(n):lend(n)),lat(lstart(n):lend(n)), ...23

23 Note the ... notation (see Box).

ḱ-’,’LineWidth’,1.5);

...

Three points in a row in MATLAB
– ... — at the end of a line, indi-
cates that the next line should be
treated as a continuation of the cur-
rent line. i.e. it is a way of breaking
an overly long line into two frag-
ments without MATLAB thinking
they are two completely sperate and
independent lines. e.g. trivially one
could write:

hold ...

on

Pointless. But valid.

The only continental-scale fly in the plotting ointment now, is illus-
trated in Figure 3.5. It may be a little hard to se, but the continental
outline has only been plotted from 0 to 180E, despite the plotting
subroutine having been checked (and dutifully plotted a global distri-
bution) earlier. How is this possible?

longitude

la
tit

ud
e

Global temperature distribution

0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

Figure 3.5: Now continents on top of
temperature fields.

If you compare the separate plots – Figure 2.15 vs. Figure 3.4, it is
apparent that the first goes from 0 to 360E, and the latter from -180
to 180E. Hence when combined on a 0 to 360E scale plot, the -180 to
0E portion of the continental outline has been lost. A crude fix for
this is to plot the continental outline *twice*, with one version offset
by 360 in longitude, i.e. you end up with two, side-by-side copies of
the outline, spanning from -180E to 540E (= 360 + 180), which when
restricted to 0 to 360 leaves you with a complete outline (the excess
parts having been clipped by the axes command and not displayed
anywhere). To do this, the key line in plot_continents is duplicated
and 360 added to the longitude values in the 2nd version:

plot(lon(lstart(n):lend(n)),lat(lstart(n):lend(n)), ...

ḱ-’,’LineWidth’,1.5);

plot(lon(lstart(n):lend(n))+360,lat(lstart(n):lend(n)), ...

ḱ-’,’LineWidth’,1.5);

And now it is fixed. Time for beer.

3.4 Conditional statements

Conditional Statements
The principal conditional statement

in MATLAB is: if ... end

The basic if structure is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

end

in which the code CODE is executed
if EXPRESSION is evaluated as true.
No code is executed otherwise (and
STATEMENT is false).

A variant addition – else – which
allows for an alternative block of
code (OTHER STATEMENT(S)) to be
executed if EXPRESSION is instead
evaluated as false, is:

if EXPRESSION (IS TRUE)

STATEMENT(S)

else

OTHER STATEMENT(S)

end

(See help for a further variant
including elseif.)

One of the other main programming constructs is the conditional
statement, in which the outcome (one or more statement(s)) is conditional
on the ’truth’ or otherwise of a given (i.e. it being true or false). This
is embodied in MATLAB (and similarly in most languages) by the if

... end construct (see Conditional Statements Box).
In creating an if ... end construct, the statement tested for

truth can be any one of:

matlab scripting and programming 61

1. A variable having a value of true (1) or false (0). e.g.

if happy

...

where happy is a variable.
2. A MATLAB function returning a true or false, e.g.

if isnan(A)

...

where variable A, may or may not be a NaN.
3. A relational operator (see earlier), i.e. one of e.g.:

>, <, <=, >=, ==, ∼=, &&, ||

and applied to a pair of variables, one variable and one value, or
two values, e.g.:

if A > B

...

where A and B are numbers.

A rather trivial example would be to modify the earlier movie *** the if ... end conditional statement,
test for inequality (∼=) ***generating program, to omit the month of July. July is the 7th month

in the sequence, and hence value of the loop counter when the July
data is loaded and plotted. As an exercise ... add an if ... end

conditional statement construct to your code, such that only when n

is not equal to 7, is a file loaded and the data plotted (and added to
the movie).24

24 HINT: In the if, you need to test for
the month number counter, not being
equal to 7 (July).

A more practical example would be to test for a filename already *** more on the if ... end conditional
statement, test for equality (==), introduc-
ing the exist function ***

existing and if so, automatically modifying the new file name so as
not to over-write the file.25 The relevant function is exist and in 25 Note that while in the m-file Editor,

MATLAB asks you if you want to over-
write an existing file, when saving a
file directly from a program, no such
dialogue box or warning is given.

the case of a test for a file, returns either 0 (the file does not exist in
the MATLAB search path, although that does not rule out it existing
somewhere else entirely), or 2 (the file exists). Clearly(?), before you
save the movie file, you want to test whether the filename that you
have chosen, already exists (i.e. the value returned by exist is 2). If
so (i.e. the file exists), you need to modify the filename by means of
a new concatenation, perhaps appending something like ’_NEW’ to the
end of the string. If not, and the filename has not already been used,
you can proceed as before – the equivalent of ’doing nothing’.26 Go 26 HINT: Before saving the file, test for

the filename existing already in the if.
Then within the if ... end structure,
append something to the filename
string to change it.

ahead – try it (i.e. modify your code to avoid over-writing an existing
filename).

exist

Tests for whether a specified
variable, function, file, or directory
exists, and in generally, which is
these it is.

The general syntax and usage is:

exist(’A’)

to return what A is.
An extended syntax with a second

passed parameter:

exist(’A’,’file’)

returns value of 2 is returned is A if a
file, and for:

exist(’A’,’dir’)

returns a value of 7 is returned is A if
a directory.

3.5 Functions

Creating functions in MATLAB are very much like the subprogram
script from the previous section ... except a function returns one or

62 geo111 – numerical skills in geoscience

more values (see Box). Functions are basically what you have already
been using the entire time whether or not you realized it. For exam-
ple, plot and scatter are in fact a functions, and return the ID of the
plot graphic. We simply have not been asking for the returned value
so far. As per MATLAB help:

H = SCATTER(...) returns handles to the scatter objects

created.

with the handle, H, being an identifier of the graphic which could
prove to be useful if e.g. you would like to modify one of the proper-
ties of an existing graphic.

functions
The script file for a function in

MATLAB has a special header line
at the very top of the m-file. As the
MATLAB on-line documentation
says:

function [y1,...,yN] = ...

myfun(x1,...,xM)

"declares a function named myfun

that accepts inputs x1,...,xM and
returns outputs y1,...,yN. This
declaration statement must be the
first executable line of the function"
(which I already said!).

This general form of description
is not entirely un-contorted. So for
instance, trivially, a the m-file of a
function to calculate the square of a
number and return the value, would
look like:

function [y] = ...

mystupidfunction(x)

y=x∧2;

and called by e.g.:

» mystupidfunction(2)

ans =

4

Functions are named and saved with
the .m extension just as per normal
script files.

As an example, – go re-load the bathymetry data one last time

*** nested loops, functions, meshgrid ***

(unless you already have it in your variable workspace). You have
already plotted just land on its own in a previous Example. How
many land cells are there? You’ll need to use the find function, and
also then obtain the number of locations meeting this criteria27.

27 HINT: The length of the returned
vector.

But what about: what fraction of the Earth’s surface is land? What
(area) fraction of land is within 70 m of the current sealevel? For
these questions, simply counting cell above and below sealevel, or
within a certain band of height, is not enough. Why? Because the
area of each cell shrinks towards the poles as the distance around
the Earth along a line of longitude becomes progressively less. For
any particular cell in your dataset, with Westerly and Easterly lon-
gitudinal limits of lonW and lonE, respectively, and Southerly and
Northerly latitude limits of latS and latN , respectively, its area is:

2 ∙ π ∙ R2 ∙ [sin(latN) − sin(latS)] ∙ (lonE − lonW)/360

where R is the radius of the Earth – assume 6,371 km, or 6.371×106

m.
The first thing to note here is that MATLAB does it calculations of

trig functions such as sin and cos, with the input in units of radians,
not degrees. So if you are working in degrees, convert to radians by
dividing by 180 and multiplying by pi28.

28 Remembering that pi is a built-in con-
stant with a value of 3.141592653589793
...

If you now, using meshgrid, create the longitude and latitude ma-
trices to go with the bathymetry data matrix, you can write out the
formula and pass in any pair of bounding longitudes and latitudes
for a cell. Remember that the cell centers go:

0.5, 1.5, 2.5 ... 359.5

for longitude, and

-89.5, -88.5, -87.5 ... 89.5

for latitude, while you want the edges, which will be ±0.5°from the
centers in both longitude and latitude.

matlab scripting and programming 63

Taking the example of total land surface area – how much is there,
in m2? You could actually write this in just 2 lines of code in MATLAB

if you are clever ... but her we are going to do this via a nested loop.
To start with, you are going to create a nested loop (i.e. one loop
inside the other):

for n=1:360

for m=1:180

end

end

What this is doing is looping through all 360 columns (i.e. longitude),
and for each column, looping through all 180 rows (i.e. latitude),
with the effect that every grid point is passed through. You could
check on what this is going by adding something like:

disp([’(n,m) = ’ num2str(n) ’,’ num2str(m)])

in the inner loop (which simply creates and then displays a string,
telling you the n and m value pair).29 29 Remember that you could test this

nested loop with a smaller range for n

and m first, e.g. 1:36 and 1:18 (or even
smaller).

From this, you can derive the grid point centers (in degrees) by:

lon = n - 0.5

lat = m - 0.5 - 90.0

This should be obvious ... ? Note that latitude starts at -90°N, hence
the need for the -90.0 subtraction. Your cell boundaries are then:

lon_E = lon + 0.5

lon_W = lon - 0.5

lat_N = lat + 0.5

lat_S = lat - 0.5

and hence the area:

2.0 * pi * (6.371E6)∧2 * ...

(sin(pi*lat_N/180.0) - sin(pi*lat_S/180.0)) * ...

(lon_E - lon_W)/360.0

This is a sort of useful calculation and there may be a variety of
instances where you require knowledge of the area of a cell on the
Earth’s surface. So we are going to put this fragment of code into a
function, passing the Westerly and Easterly longitudinal limit, and
Southerly and Northerly latitude limits and returning the calculated
area. For header for the function will look like:

function [area] = calc_area(lon_E, lon_W, lat_N, lat_S)

The line calculating the area is the only essential content of this m-
file (calc_area.m). Note that the result of the calculation must be
assigned to a variable area, matching the function header (or you
will get nothing returned for your trouble), i.e.

64 geo111 – numerical skills in geoscience

area = 2.0 * pi * (6.371E6)∧2 * ...

(sin(pi*lat_N/180.0) - sin(pi*lat_S/180.0)) * ...

(lon_E - lon_W)/360.0

Also note that although this is the minimum content, it is good prac-
tice to adequately comment the code. Also, as a further refinement,
you might define a variable to hold the value of the Earth’s radius so
that the equation becomes easier to interpret, i.e.

earth_radius = 6.371E6;

area = 2.0 * pi * earth_radius∧2 * ...

(sin(pi*lat_N/180.0) - sin(pi*lat_S/180.0)) * ...

(lon_E - lon_W)/360.0

Other possible alternatives include passing just the (cell centre) lon
and lat values, and deriving the cell boundaries from these. This
would necessitate assuming that the grid is 1° in both directions (and
hence make the function less generic and applicable to other prob-
lems). Or one could pass in the lon, lat pair, plus a 3rd parameter for
the resolution (here, 1.0°). There are lots of alternative possibilities,
all ’correct’ for this specific example, more or less complicated and
with more or fewer input parameters, and more or less applicable for
other situations.

So now we are close to determining the total land surface area.
The conditional expression, within the loop, should be obvious ... 30? 30 HINT: You are testing for the topo-

graphic height being > 0.0, or perhaps
>= 0.0.

All that then remains is to sum up the area of each cell that meets the
criteria (of being above sealevel). Again, there are various ways to
accomplish this:

1. You could populate a 2D array, the same size as the bathymetry
data (360×180), and set each cell to its respective area, if the cell
is above sealevel, and to zero if below. If this array was called:
land_area, then the total global area of land would be:

sum(sum(land_area))31 31 If it is not obvious that this is the case,
check on the details of sum in help (and
what it returns if passed a matrix).2. Unless you will need the individual areas again, it is not neces-

sary to save them all explicitly. Instead, we could generate a run-
ning total by adding the cell area to a variable each time a land cell
is found. If the running total variable was called area_sum, then at
each identification of a land cell, in the if ... end structure, we
would write:

area_sum = area_sum + calc_area(lon_E, lon_W, lat_N, lat_S);

What this is saying is: take the existing value of area_sum, and add
the value calculated by calc_area to it.
It is not necessary here (in MATLAB), but it is good practice to
initialize this variable – somewhere before the nested loop, you
would do this by writing:

matlab scripting and programming 65

area_sum = 0.0;

Some programming languages (e.g. FORTRAN) are fussy about
variables being explicitly initialized with something to start with.

Also try modifying your script to the *fraction* of the total land
area potentially threatened by future sea-level rise (assume: 70 m).
You could do this by creating and updating 2 partial sums – one for
land are below 70 m, and one for total land area (as before). Simply
divide one by the other (and maybe multiply by 100 to get a % area
fraction).

3.6 Algorithms and problem-solving

In the example of the bathymetry data – questions such as: ’How *** loops, algorithms ***

many land cells are there? What fraction of the Earths surface is
land?’, ’What (area) fraction of land is within 70 m of the current
sealevel?’, can be answered with 1, or at most, a few lines of code
(and maybe a function call for the calculation of the area of a 1° grid
cell). A more involved question might be: how many distinct land
masses are there?

Jumping straight into the full resolution 1 degree resolution
dataset is probably not such a good idea, so instead to start with,
you are going to use the (modern) topography of a simple Earth sys-
tem model (’GENIE’). Actually, you are only going to be concerned
with the land-sea mask and not even worry about height above, or
below, sea-level.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 3.6: Ocean topography (blues
through red) in the ’GENIE’ Earth
system model. Land is shown in brown.

Load in the file: genietopo.dat in the usual way. Briefly check out
the new array in the Variable window. If you were told that values
1 through 16 represented ocean cells32, and values above 90, land33

32 If you must know (but you don’t need
to know it at all): the lower the value,
the deeper that part of the ocean, with
1 representing the very deepest ocean
floor, and 16 the shallowest.
33 The values: 91, 92, 93, 94, represent
different compass directions of runoff
on land. (another not interesting and
barely useful fact.)

– it is possible to make out the shape of the continents visually in
the pattern of numbers in the array (albeit they are rendered at low
spatial resolution)? The grid of numbers can also be visualized using
the image function (see earlier). See if you can specify the scaling in
such a way that you can render the ocean topography reasonably
well, e.g. as per Figure 3.6.

You are going to count up (and sequentially number) the different
land masses34. Obviously, you could do this by eye for this particular

34 By ’different’ – assume that dis-
tinct land masses (which here may be
continents or just islands) are groups
(or single) of land cells that share no
common edges (excluding diagonal
connections). The isolated block of cells
representing Australia ia an obvious
example.

example (but how about counting the unique land masses in the 1
degree topography dataset?). Think about how you are mentally
’doing’ this – i.e. what processes are going through your brain (other
than how long until the end of class) as you decide what makes any
particular land mass distinct from another one. This may well inform
how you go about coding and creating an algorithm to solve this.

66 geo111 – numerical skills in geoscience

A sensible start might be to loop through all the points in the grid.
As you should have gathered – this can be done as a nested loop.
To make it a littler cleverer: rather than setting in stone a specific
count limit in the loops, which in this example would be 36 (for both
longitude and latitude), you can extract the size of the array and
hence the limits to the 2 dimensions by:

[n_lat n_lon] = size(genietopo);

size

size returns the size of an array, as
a vector of length n, where n is the
number of dimensions of the array.

For a matrix, a 2-element vector is
returned with the values correspond-
ing to the number of rows and the
number of columns (in that order).
These values can be handily saved
by assigning the result of size to a
paid of (scalar) variables:

» [n_rows n_cols] = ...

size(MATRIX)

where MATRIX is the matrix array
name, and [n_ronws n_cols] forms
a 2-element vector to be assigned the
result to.

Here: size returns the number of rows and columns of the array,
corresponding to the number of latitude, and longitude bands, re-
spectively. Your code (which should be placed in an m-file) will the
start to look like:

topo = load(’genietopo.dat’,’-ascii’);

[n_lat n_lon] = size(topo);

lon=n_lon

for lat=n_lat

end

end

but with ... suitable comments added of course ... By all means add
some suitable debug lines and test it (the loop behaviour).

zeros

zeros creates an array of dimen-
sion 2 or higher, consisting entirely
of zeros! Actually, this is not as
useless as it sounds, and represents
a simple way to create a large array
of a particular shape that can have
then have (non zero) values set
subsequently. To generate an n × m
matrix of zeros, you use:

A = zeros(n,m);

There is a short-cut if the 2 dimen-
sions are the same (i.e. n = m), and
you can simply write:

A = zeros(n);

Simply list additional comma-
separated integers (or variables
containing values), to extend to 3 (or
more) dimensions.

You are going to need an array, the same size as the topography
dataset, to store the number assigned to each land mass, i.e. each
grid cell needs to be labelled with a land mass number, and some-
thing distinct from this if it is not land at all (i.e. ocean). You can
create an array of zeros easily with the MATLAB zeros function
(see Box). Then as you raster through the grid (via the nested loop),
you can assign land points a value corresponding to the land mass
number, and leave the ocean points as zeros.

To get your hand in – first add to the code above, the creation
of the array of zeros (this is going to need to come after you have
determined the size of the data array and hence the values of n_lat
and n_lon, but before the loop starts). Then, within the loop, test for
whether or not the grid point is land or ocean (see above for what the
values in the GENIE model topography array mean), and if the point
is land, set the value to 1. Plot the results with imagesc and check
that you get just 2 colors – one for ocean (0) and one for land (1). In
fact, you could keep all this code and resulting array. Then for the
array storing the land mass number, create a second array of zeros.
(Remember to name the arrays something meaningful, not just A, B,
..., and comment the code adequately.)

So how are you going to go about identifying new land masses
and numbering them? You have to start somewhere, that somewhere
will be designated by a 1 (the first land mass). How do you know
that this is the first land point, and not the second? You could count

matlab scripting and programming 67

up, for instance – each time you find a land point, you increment a
counting variable by one, e.g.

n_runningtotal = n_runningtotal + 1

remembering that at the start of the code, you need to initialize the
value of n_runningtotal to zero.

This is not quite what you want, for instance, if you run the fol-
lowing:

topo = load(’genietopo.dat’,’-ascii’);

[n_lat n_lon] = size(topo);

land = zeros(n_lat,n_lon);

land_id = zeros(n_lat,n_lon);

n_runningtotal = 0;

for lat=1:n_lat

lon=1:n_lon

if (topo(lat,lon) > 90)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

end

end

end

you should get all the land points numbered in turn (check this), but
not with land points grouped into continuous regions with different
numbers assigned only the distinct land masses. So ... it is getting
closer, but it is still missing something. 35 (It is quite pretty to plot 35 This is not a bad way of working

in fact – get something of a likely
correct form (e.g. nested loop in this
case, setting up some arrays of zeros,
creating a counter) but not quite getting
the answer going first, then refine to get
it doing what you actually want.

though, as per Figure 3.7. Perhaps also try the 2 loops the other way
around, with the lon loop first and outermost, and see what happens
(/is different about it).)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 3.7: The ’GENIE’ mode land
grid, with land points assigned a
sequential integer (working across and
dow the grid – from West to East, and
then North to South).

As you might imagine, the crux of the algorithm is how to assign
a new identifying land mass number to a land grid point only when
it does not connect to a land point which already has a number –
in this case, the same value for the identifying number needs to be
used. In other words: if a newly found land point connects to a land
point with the identifying value 5, then the new point also needs
to be labelled with a 5. So ... and here is the critical bit ... we need
to ’look around’ each new grid point to see if there is an already
labelled point immediately next to it. Pause and think about this.
Maybe mentally, or on paper, work your way through the start of
the grid, label the first land point you find, and work out what the
mental steps are upon finding the next land point, to see if it needs
to be assigned a new number, or not (and is instead connected to a
point which already has a number). This mental/conceptual step
is important and hopefully will lead you to a suitable and working
algorithm that can be written down in code. In essence, all you are
going to be doing is encoding (in code), using conditional tests and
perhaps further loops, the mental steps that you are going through36. 36 Unless you are just thinking about

icecream.

icecream

There is no icecream function in
MATLAB. I checked. In fact, rather
sadly, MATLAB tell me:

icecream not found.

68 geo111 – numerical skills in geoscience

OK. So how exactly are we going to go about it? There is a really
clever way, but we’ll skip over that :o) And, a crude and simple way,
but one that will still solve the problem (although it will turn out
that we will require additional steps – one to get most of the way
there and then several to make minor corrections to the initial algo-
rithm). We are going to keep the counting variable, but now only
update it (increment it by one) if we need a new land mass number.
So, *in practice* then, how are we going to decide if the counter is
incremented and hence what value to assigned to a particular cell?

First, we need to test whether the current cell is ocean or land:

1. If ocean – do nothing, and leave corresponding value in the
land mass array at zero.
2. Else (if land) – we need to work out what value to assign to the
cell in the land mass array, by:

(a) If an adjoining cell is land and has been assigned a value in
the land mass array, then assign the same value to the current
cell.

(b) If all adjoining cells have a zero value, either because they
are ocean, or because they have not been assigned a (non-zero)
value yet (because the loop has not yet reached that far in the
array), then increment the counter and assigned the cell this
new number.

This simple decision tree is something that you could draw a flow-
chart for if it helps. Also work through in your mind to see if it ap-
pears to ’work’.

The next step is coding the ’look around’ (the current grid cell)
bit. Actually, if you think about it, you need not look at the adjoining
cells in all of the N, S, E, and W directions, because if we are looping
through the grid such that we raster across the grid from left (W) to
right (E), and then from the top (N) to bottom (S), cells to the E and S
of the current grid point have not been reached yet and so must have
a zero value. Hence you only need to interrogate the value of cells to
the W and N of the current position (as defined by (lat,lon)). You
can write the conditional test for the adjoining cells being zero (and
hence ocean, as they must have already been visited and hence left
with a zero value), by37: 37 Not all of these parentheses are

necessary – I have written it like this
to make the conditional (hopefully!)
completely clear.

if ((land_id(lat-1,lon)==0) && (land_id(lat),lon-1)==0))

end

It should be obvious that this is testing for the cell immediately to the
North (lat-1) *and* the cell to the West (lon-1), both being zero.

Naturally, your first attempt does not work! Why? Think through
what happens as you start to make your way through the grid. You

matlab scripting and programming 69

only have to think through what happens at the very first grid point
in fact. The first grid point is (1,1) yet you are testing cells with
indices of lat-1 and lon-1 ... which will be zero and hence not a
valid array index38. So you need to avoid testing for lat-1 if lat==1, 38 MATLAB array indices always start

at one. (Whereas in FORTRAN, it is
possible to start counting the array
rows or columns from zero, or even a
negative number.)

and avoid lon-1 if lon==1. There are a variety of ways of structuring
this, some using more and some less, code. One possibility (and not
necessarily the most optimal one) is:

if ((lat==1) && (lon==1))

% on both Western and Northern edges (top LH grid corner)

CODE BLOCK #1

elseif (lat==1)

% on Northern edge

CODE BLOCK #2

elseif (lon==1)

% on Western edge

CODE BLOCK #3

else

% cell lies neither on Western nor Northern edge

CODE BLOCK #4

end

In ’CODE BLOCK #1’, you will simply need to increment the land
mass counter and assign the cell this value39. ’CODE BLOCK #4’ will 39 This will be executed only once

(assuming that the cell is land) because
there is only one situation in which
both lat and lon can have a value of
one – the top LH corner of the grid.

use the conditional code that you saw earlier:

if ((land_id(lat-1,lon)==0) && (land_id(lat),lon-1)==0))

end

and when this is true, increment the land mass counter and assigned
the cell this value. But as part of this conditional structure, you will
also need to test the values of the cells to the North and the West
individually. If either has a non-zero value, assigned this value to the
current cell (and do not increment the counter).

The remaining 2 pieces of code are sort of half way between #1
and #4, and will be conditionals testing for the situations:

land_id(lat-1,lon)==0

(#2) and having already excluded the possibility of both lon and lat

being equal to one, or:

land_id(lat,lon-1)==0

(#3) (having excluded the possibilities that firstly that lon and lat are
both equal to one, but also that lat is equal to one (and implicitly;
lon is greater than one)). In both cases you only need to test the
value of one adjacent cell (and if zero, increment the counter etc., or
use the adjacent cells value, otherwise).

The code is inherently simple, but there is now lots of it and a big
chunk of code with lots of conditionals can look intimidating and

70 geo111 – numerical skills in geoscience

difficult to debug or understand. The key is to work through it with a
couple of example (lat,lon) loop values and test what it does under
these conditions, verifying that the algorithm is doing what is should.

The complete code that tests the value of the surrounding cells and
on the basis of this result, assigns a land mass value,looks like:

if ((lat==1) && (lon==1))

% on both Western and Northern edges (top LH grid corner)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

elseif (lat==1)

% on Northern edge

if (land_id(lat,lon-1)==0)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

else

land_id(lat,lon) = land_id(lat,lon-1);

end

elseif (lon==1)

% on Western edge

if (land_id(lat-1,lon)==0)

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

else

land_id(lat,lon) = land_id(lat-1,lon);

end

else

% cell lies neither on Western nor Northern edge

if (land_id(lat,lon-1)∼=0)

land_id(lat,lon) = land_id(lat,lon-1);

elseif (land_id(lat-1,lon)∼=0)

land_id(lat,lon) = land_id(lat-1,lon);

else

n_runningtotal = n_runningtotal + 1;

land_id(lat,lon) = n_runningtotal;

end

end

and sits within the double loop and test for a land cell:

for lat=1:n_lat

lon=1:n_lon

if (topo(lat,lon) > 90)

CODE

end

end

end

Really, it is not as bad as it looks! Much of the code is simply dealing
with the special cases of the grid point being on one or other or both,
of the W/N grid boundaries. Without this, the generic code for the

matlab scripting and programming 71

rest of the grid is simple (the block labelled % cell lies neither on

Eastern nor Northern edge).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 3.8: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier ... almost ... (!)

If you complete the code with the file loading and creation of the
arrays of zeros, and then plot using imagesc, you should get Figure
3.8. Soooooo close40. Many of the continuous blocks of land have

40 Note that one could also question
the decision to not count diagonal
connections as representing continuous
land. The result is that the single cell
representing Spain and Portugal, is
assigned a unique identifier. However,
allowing diagonal connections would
have the effect of joining North and
South America.

correctly been assigned a unique identifying number (the different
regions of the same color in the figure). But something ’odd’ happens
in Eurasia, creating those stripes of color when it should be a solid
block. It does not help to change the order of the loop (swapping the
inner, lon loop for the outer, lat one) (Figure 3.9) and similar (but
different – why?) artifacts arise (plus now one cell in Antarctica has a
different color from the rest of the continent).

The way to debug this problem and write the code needed to
adjust the algorithm is to again, work though in your head what hap-
pens when the loop is passing over the top of Eurasia. For instance,
you can see that the first, mid-blue (value 4 in the land_id array) row
is correct. But when the next row starts, because it starts at a lower
longitude with ocean to the North, simply looking to the W and to
the N does not reveal the existence of the row of 4s that start slightly
later (in longitude).

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 3.9: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier (color).

As ever, there are a number of (equally correct) ways of correct-
ing this. Here, we’ll take the approach of post-processing the array,
i.e. we’ll leave the code that generates Figure 3.8 alone, but go back
through the land_id array in a new nested loop, and fix the acci-
dental partitioning of Eurasia into differently numbered strips. One
possible solution is given below:

for lat=2:n_lat

for lon=2:n_lon

if ((land_id(lat,lon)>0) && (land_id(lat-1,lon)>0) ...

&& (land_id(lat,lon) ∼= land_id(lat-1,lon)))

old_id = land_id(lat,lon);

new_id = land_id(lat-1,lon);

land_id(find(land_id(:,:)==old_id)) = new_id;

end

end

end

In this, we skip the first row (Northern-most latitude) and first col-
umn (Western-most longitude) completely, because one might sus-
pect that these grid points cannot be incorrectly labelled (why?),
hence the 2:n_lat and 2:n_lon loop limits. The issue we are having
and why the previous algorithm did not fully succeed, is that some
of the land masses have been split into sperate strips, where adja-
cent cells sharing the same longitude, have different index values.
i.e. we need to look for grid cells which have a different index value
to the cell immediately to the North, as long as neither is ocean (0).

72 geo111 – numerical skills in geoscience

The way I have structured the if statement is to test for both lat and
lat-1 cells not being 0, AND the two cells not being equal (i.e. hav-
ing a different value). The result of applying this corrector code is
shown in Figure 3.10.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 3.10: The ’GENIE’ mode land
grid, with land points (almost) assigned
a unique identifier (color).

Finally ... the longitudinal edge of the domain is also creating a
problem, and land, which should be continuous across the longitudi-
nal domain boundary is instead treated as separated (i.e. the Eastern
edge of Eurasia on the LH edge of the plot is one color, but the rest of
Eurasia (RH side) is another ... We can fix this by adding one further
correction:

for lat=1:n_lat

if ((land_id(lat,1)>0) && (land_id(lat,n_lon)>0) ...

&& (land_id(lat,1) ∼= land_id(lat,n_lon)))

old_id = land_id(lat,n_lon);

new_id = land_id(lat,1);

land_id(find(land_id(:,:)==old_id)) = new_id;

end

end

which works though all the rows (latitude) and checks to see whether
the cell in the 1st column has a different value to the one in the last
(but with neither being zero) and then makes a substitution of all
occurrence of the superfluous label for the correct one, as before. The
result of applying this last adjustment to the code is shown in Figure
3.11 and now represents a complete solution to the problem.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Figure 3.11: The ’GENIE’ mode land
grid, with land points assigned a
unique identifier (color).

Actually ... it doesn’t quite represent the final word and if you
were a perfectionist, there is one last step to take. If you inspect the
contents of the index array you will see that some of the possible
values have been skipped41. The problem left for the reader (i.e. you)

41 Because we re-numbered them earlier,
right?

is to re-number the land masses such that for n land masses, they are
numbered from 1 to n. 42

42 HINT: You could find the highest
land mass index value, loop through
these values, and for each missing
value that is found, renumber the next
existing value to the missing one. Or
something like that.

This entire example actually took more trial-and-error than I have
owned up to. This is no ’bad’ thing per se and the creation of al-
gorithms for solving problems invariably involves adjustment and
refinement of an initial attempt, and sometimes throwing it all away
and trying something completely different instead. the key step is
to get started and formulate a basic structure for the code and ap-
proach. Thus you refine things partly through working through some
simple cases to explore what the code really does. Remember – to
really test the code you may need to invent cases that don’t actually
exist in a particular data set in order to put your algorithm through
its paces.

4

Introduction to numerical modelling

All models are wrong, but some are useful as the saying goes. Which is actually pretty unfair, as nu-
merical models, in deliberately approximating some aspect of the Real World, are in fact a priori designed
to be wrong; just sufficiently not wrong to be useful.

This Lab’s porpoise is to get some familiarity (== play) with computer models. You will see what time-
stepping is in numerical modelling, and where some loops might just come in handy.

4.1 Introduction

As an example, we will consider a simple population model. Mod-
elling animal and plant populations using simple equations gives
insights to the population dynamics (i.e. whether numbers remain
stable, or go up and down slightly from year to year, or oscillate up
and down wildly - almost to extinction one year and increasing to
pest levels the next).

First, consider the simple model:

N(t+1) = λ ∙ N(t)

This defines the number of individuals in the population that there
will be at some point in the near future, based on the number at the
current time, where.

• N(t) ... is the size of the population at time t.
• N(t+1) ... is the size of the population at time (t+1).
• λ ... is the average number of offspring produced, per adult per
year, less mortality.

Don’t get put off by all the Ns and subscripts and things. All
Equation 1 says is that the population size (number of individuals
= N) at some time in the future (time = t+1) is equal to the popula-
tion now (time = t) multiplied by some factor. This factor is given the

74 geo111 – numerical skills in geoscience

Greek letter λ. If the units of λ were per year (yr−1), t would then
represent the time in years since the start (of the model).1 The factor 1 We could equally write this in terms of

the generation number.λ includes both gains due to the production of offspring and losses
from the population due to snowboarding off of a cliff or some other
way of dying or being eaten.

So, we are simply asking; how many individuals will there be next
year (time = t+1)? The answer is; the same number as currently (this
year, or time t), minus the fraction of the population who snowboard
off of a cliff or die of old age, αN(t), plus the number of births in
the population, which is also assumed proportional to the current
number of individuals in the population, βN(t) (we are ignoring
the time between birth and being ready to produce offspring in this
equation).

If there are N(t) individuals at present (time = t), the number next
year (t = t+1) is:

N(t+1) = N(t) + β ∙ N(t) − α ∙ N(t)

Re-arranging this we get:

N(t+1) = (1 + β − α) ∙ N(t)

The only even faintly subversive thing that has happened to te origi-
nal equation, is that all these factors have been included in the value
of λ = (1 + β − α).

Simple, eh? Mostly, that is about all there is to computer mod-
elling. You know how much stuff (rabbits, snowboarders, cloud
water droplets, whatever) there is currently (or at a specific point
in time), and you want to predict how much there will be in the
future, which you take to be one time-step away. You estimate the
change in quantity (rabbits, snowboarders, cloud water droplets) that
occurs over the course of one time-step, and add it to the current
quantity. Because you then know the quantity at time t+1, you can
go calculate the quantity at time t+2. Then, knowing the quantity at
time t+2, you can calculate the quantity at time t+3. Then, etc etc etc.
Zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz (Is this sounding like a mission
for loops, yet?)

This model predicts that as long as λ > 1, the population will
increase exponentially, year by year, without end. Think of bacterial
cells dividing in a petri dish. On each subsequent generation (or
time step) there will be twice as many cells as there are currently
(assuming that all the cells divide into two at the same rate and there
is no mortality of cells). The value of λ in this example would be 2.

So to kick off – create a model of this system. You are going to
need a (single) loop – your choice as to whether you fix the num-
ber of iterations (time-steps) beforehand, or use a while ... end

introduction to numerical modelling 75

construction and ensure the expression evaluates to false when a
set number of cycles of the loop is reached (you’ll need to create a
counter for this), or the model might end when a certain degree of
convergence (on a solution) has been achieved – i.e. when from time-
step to time-step, the change gets smaller and smaller each time and
at some point gets smaller than some pre-determined threshold.2 2 This of course rather depends on the

solution converging and not oscillating
or exponentially growing ...

You might use a variable to govern how many iterations are executed
(however you do this) rather than hard-code in a value. The value
of this variable could be set near the start of the code, or the m-file
could be configured with the number of iterations passed in as an
input parameter. You’ll also need to specify the initial value of the
population.

You’ll probably want to plot the results. 3. And you may want to 3 Your choice of a linear or log y-axis
scale – use the one that enables the
most information to be presented and
in the most useful way

save the data of population number vs. population (2 columns of
data and a number of rows equal to the number of iterations through
the loop plus one (why?)). The save function can be used for this.

save

If you just type save and specify
a filename, the entire MATLAB
variable workspace is saved as a .mat
file called FILENAME.mat.

More useful is the form:

save FILENAME VARIABLE ...

-ASCII

which save the variable VARIABLE

in the file FILENAME, as plain text
(ASCII).

In a variant of this example ... one might consider that most ani-
mal populations do not behave like this – instead they vary around
some average level. This is because birth & death rates vary depend-
ing on the size of the population. For example:

• When the population is large, there may be little food to go
round and the birth rate falls (or death rate increases).
• Or, when the population is very small, all individuals may have
access to as much food as they can eat giving a high birth rate (or
low death rate). For the bacteria in a petri dish, the population
cannot go on expanding for ever – sooner or later the entire sur-
face of the nutrient agar will be covered, leaving no free space for
new cells to sit happily directly on the food. Later, the nutrients
in the agar might start to become depleted. Toxic waste products
might also start to build up, slowing down the rate of growth and
cell doubling in the bacteria.

We can include a density-dependence by modifying Equation 1, to
give:

N(t+1) =
λ∙N(t)

(1+a∙Nt)b

There are two new parameters here:

1. b ... defines the strength of the density dependence and the
dynamics of the population, and
2. a ... is a scaling factor.

Try starting with values of:

76 geo111 – numerical skills in geoscience

• λ = 2.0
• b = 0.1
• a = 0.1

and run for e.g. 100 or 1000 years (/generations). Then systematically
investigate the effect of changing the value of parameter b on the
dynamics of the population, keeping the values of the parameters λ

and a constant.4 Increase the value of the parameter b and investigate 4 This sort of exercise is know as a
sensitivity analysis – i.e. quantifying
the sensitivity of the model behavior or
final result, to the value of a particular
parameter.

how the dynamics change. Try values of b in the range 0.1 to 10. Try
and find the approximate range of values of b that give the following
types of dynamic of the population:

1. Monotonic Damping (smooth approach to a stable equilib-
rium).
2. Damped Oscillations (oscillates to start with then dampens
down to an equilibrium).
3. Stable Limit Cycles (regular pattern of peaks and troughs
with the population repeatedly returning to exactly the same size).
4. Chaos (population bombs about all over the place with no
regular pattern).

Don’t spend too much time playing. I know how much fun you are
having ;)

This is a genuine 24-carat time-dependent (time-stepping) numer-
ical model, although it doesn’t seem that exciting. You can see that
the population value at each subsequent time (t+1) depends directly
on the value at the previous time (t). Could you predict the popu-
lation size far into the future (large t) analytically (i.e., write down
an equation and solve it)? Note the use of parameters, whose values
can be easily updated or passed directly into the script and instantly
affecting the entire model as well as updating the graphical display.
Pretty useful eh?

Here you are using a numerical model to explore how a system
behaves, and how sensitive the behaviour is to a critical parameter
(b in this example). This sort of exploratory investigation can help
you identify critical parameter values that have a profound (and
maybe unexpected) effect – for instance, if parameter b related to
something that was impacted by climate change, you might be able to
determine the point in the future when climate change might make a
population unstable. You might identify a certain population level as
genetically viable (anything below this being un-viable). You might
then be in a position to make recommendations about conserving this
species. And all from just playing around with a computer model!

Actually, some of the behaviour of population size in the model is
probably not real – for certain ranges of parameter value, the model

introduction to numerical modelling 77

is no longer numerically stable. It is this that gives rise to some of the
strange population size behaviour.

4.2 Box models

As an example – consider the Great Lakes – the largest lake system *** matrix maths ***

in the world. They have on their shores some of the greatest cities
... as well as some of North Americas worst hockey teams. More
importantly, much of the region is heavily industrialised and there
is hence an exciting potential for pollution input into the lakes and
hence a contrived numerical modelling exercise.

Figure 4.1: Lake volumes and river flow
rates in the Great Lakes system.

The layout of the lake system is shown schematically in Figure 4.1,
together with the mean volumes of the lakes and the annual flow rate
of water out of them.

A cocktail of heavy metals pours into each lake, the amount de-
pendent largely upon the population within the catchments of the
lake. The input rates to each of the 5 lakes are given below.

Lake Heavy Metal Input (kg yr−1)

Superior 1.0×103

Michigan 4.5×103

Huron 1.0×103

Erie 3.5×103

Ontario 3.0×103

Table 4.1: Pollution input input rates to
each of the 5 lakes.

The steady state concentration of heavy metals in the Great Lake
system (the steady state solution being the state in which none of
the concentrations in any of the lakes is changing) is something that
you can find an analytical solution for. You have 5 unknowns (the
concentration in each of the 5 lakes) and you can write down a series
of 5 equations involving these unknowns. (There is slightly more to it
than this, as there must also exist an inverse for the matrix, which is
not always the case ...)

Lets call the concentrations (kg km−3) of heavy metals in the lakes;
cS, cM, cH, cE, and cO (for; Superior, Michigan, Huron, Erie, and On-
tarion, respectively). At steady-state, the inputs of heavy metals must
exactly balance the outputs from each lake (otherwise, the concen-
tration in the lake would change and the system would not be at
steady-state). We can write a series of mass-balance equations for the
5 lakes. For instance, in Lake Superior, the metal input flux is 1.0×103

kg yr−1 (1000 kg yr−1). This must balance the loss of metals in the
river outflow if the concentration of metals in the lake is to remain
constant. The water outflow rate that is given to you is 63 km3 yr−1.

78 geo111 – numerical skills in geoscience

The metal outflow flux is then just the concentration of metals in the
water (cS), times by the water flow; 63*cS. Thus, for Lake Superior,
we can write 1000 = 63*cS. The other lakes can be similarly anal-
ysed, to give a set of 5 equations:

1000 = 63*cS

4500 = 47*cM

1000 + 63*cS + 47*cM = 157*cH

3500 + 157*cH = 173*cE

3000 + 173*cE = 208*cO

It is not hard to work your way down these, solving first (cS =

1000/63 is not so hard to solve ...) and then the 2nd, which then
allows you to solve the 3rd, before then solving the 4th and 5th in
turn However, the system of equations you might have to solve
could be (and usually is) much more complicated. Fortunately, we
can get MATLAB to do the work. :) It may be far from obvious what
MATLAB has to do with this, so I’ll do a little re-arranging of the 5
equations:

63*cS + 0*cM + 0*cH + 0*cE + 0*cO = 1000

0*cS + 47*cM + 0*cH + 0*cE + 0*cO = 4500

-63*cS + -47*cM + 157*cH + 0*cE + 0*cO = 1000

0*cS + 0*cM - 157*cH + 173*cE + 0*cO = 3500

0*cS + 0*cM + 0*cH - 173*cE + 208*cO = 3000

This is starting to look scarily like some matrix stuff. Satisfy your-
selves that these two sets of equations are the same, and that all I
have done is to write them with the unknowns on the left hand side
(cS, cM, cH, cE, and cO) and the knowns (the metal input fluxes) on
the right hand side. In fact, this can be written in matrix form:

63 0 0 0 0
0 47 0 0 0

−63 −47 157 0 0
0 0 −157 173 0
0 0 0 −173 208

×

cS
cM
cH
cE
cO

=

1000
4500
1000
3500
3000

Brush up on your matrix maths and check that Eq. 5 is exactly
the same as before. It is just the series of 5 separate equations, but
represented in matrix math form. Write out the matrix multiplica-
tion in full to get the 5 separate equations back again if you are not
convinced that this is the case.

In a new MATLAB m-file, create a 5×5 array containing the val-
ues in the matrix on the left hand side of the equation above and
assign it to the variable R (for River flow). Create a 5×1 array con-
taining the vector values on the right hand side of the equation and
assign it to the variable F (for heavy metal Flux). The solution to this
problem is the set of (steady-state) concentrations of heavy metals in
the 5 lakes. (Call this variable C.) We thus have the equation:

introduction to numerical modelling 79

R × C = F

If we could determine the inverse of R, we could write:

R−1 × R × C = R−1 × F

(I have simply multiplied both sides of the equation by R−1.)
Recognizing that a matrix (R) multiplied by its inverse (R−1) is the

Identity matrix (I), and that I leaves everything it multiplies alone,
we have:

I × C = R−1 × F
⇒ C = R−1 × F

We are there! We have R and F, so by multiplying F by the inverse
of R, we get our set of 5 solutions (in the 5×1 vector C). And MAT-
LAB will give you the inverse of R (if it exists) on a plate.5 Sweet 5 At the command line; type:

» help inv

to find out how to get your paws on
the inverse of R. You can also lookup
’inverse of a matrix’ in the Index of
MATLAB Help.

deal!
Now you have everything you need – go solve the steady-state

problem for the unknown metal concentrations in the 5 lakes (the
vector array C) using the inverse of R. You can always plug these
values into the original equations to satisfy yourselves that it all
works out.6 6 Note that the equations above are

written in normal maths language,
e.g. with a × rather than the * that
MATLAB understands.

We can tackle this example in a different way. Instead of looking *** loops ***

at the steady-state solution of the system, you might want to follow
how the concentrations of heavy metals in the 5 lakes changes with
time, perhaps as a result of a change in river flow, or a pollution inci-
dent. There is no analytical solution to the time-dependent response
of the Great Lake system to a perturbation, so you are going to have
to time-step through the simulated lake system, calculating the net
change (i.e., loss or gain) of heavy metals for each of the lakes at each
time-step. This will also illustrate something about what constitutes
an equilibrium situation (or steady state) in a computer model – you
never ever *quite* get there, so some judgement is required as to
where you draw the line and go off down the bar.

To create the time-stepping model of the Great Lakes system:

1. Create a new MATLAB script.
2. Assume initially that each time step represents 1 year. Start
with a relatively short loop so that you can sensibly print stuff out
to the screen (disp) to follow whether things are working and see
what is going on. If you call the loop variable t, then a loop with t

= 1:10 will be sufficient to start with. Remember: start simple so
that you can follow what is going on and debug it, and only later
try and extend the (working) script to its final level of complexity.

80 geo111 – numerical skills in geoscience

3. Before the start of the loop (but after you have commented
what it is all going to do – you weren’t going to forget this were
you ... ?) create 5 sperate variables (or a vector of length 5 if you
are feeling brave) to store the initial concentrations of heavy metals
in the lakes and assign them all a value of zero.7 You might end 7 This is called initializing the variables.

In some programming languages (such
as FORTRAN) it can be very important
to formally set variables you have
created to zero before you start using
them.

up with something like:

cS = 0.0;

cM = 0.0;

...

4. In case we ever need to change the input fluxes of metals to the
lakes, we will use parameters to store the values of these fluxes.
The values are given in Table 4.1. Define the parameters (again,
before the start of the loop) something like:

fS = 1000;

fM = 4500;

...

(or as a vector) and don’t forget to include a comment regarding
what the units of the fluxes are ...
5. Similarly, define the 5 parameters containing the river outflow
rate from each lake:

rS = 63;

rM = 47;

...

6. You need one final piece of model initialization and also define
the volumes of the lakes as parameters. Although the lake vol-
umes might never change much, it is generally neater in computer
code to have parameter names in the equations rather than num-
bers. And if you ever need to use the value again, it is easier to
remember the parameter name, then have to go look up the value
to write down each time (particularly if it is a number with lots
and lots of digits). The volumes of the lakes are given in Figure
4.1, so something like:

vS = 12221;

vM = 4871;

...

You are now ready to start coding the main part of the numerical
model. The first thing to do is to add the heavy metal inputs to each
of the lakes. Because the metal inputs are fluxes (i.e., the input is
continuous), this addition must be done at each and every time step.
(How initial non-zero concentrations gradually decline over time,
even with no further input, is equally a task for numerical simula-
tion.) You should see that the code for making this metal input to the
lakes will need to go inside of the loop structure. Yes? (Each succes-
sive year and each new time around the loop you will want to add a

introduction to numerical modelling 81

new bucket-load of metals pollution into the lakes.) OK, then we will
proceed:

→ We know the concentration of metals in each of the lakes from
the previous time-step t. We want to update the concentration for
time-step t+1.
→ The new (time t+1) concentration of metals in the lakes will
be equal to the previous concentration (time t) PLUS the change
in concentration (Δconcentration) that reflects the addition of
heavy metals from the surrounding urban areas (we’ll worry about
the losses later). Δconcentration is equal to the amount you put
in (Δmass) divided by the volume of the lake (it is as simple as;
Δconcentration = Δmass / volume). Although Δmass is actually
flux × Δtime, because the time step (Δtime) has length of 1 year,
for now you can write; Δmass = flux × 1, or Δmass = flux.
→ For each lake, take the concentration variable, add the increase
in concentration (Δconcentration) to this variable, and assign this
new value back to the concentration variable. The code for Lake
Superior should look something like:

cS = cS + fS/vS;

→ At this point it would be sensible to check on how it is working
so far before adding add any more code. 8 9 The result of your 8 For printing our debugging info to the

screen, you could do this in bits, e.g.:

disp(’year’) disp(t)

or neater would be to convert the
number value to a string, and then
concatenating it with some sort of
informative text label:

disp([’year = ’ num2str(t)])

Equally you could print out concentra-
tions:

disp([’concentration = ’ ...

num2str(cS)])

9 Equally, you could add a breakpoint
within the loop, allowing you to step
through the loop one iteration at a time.

efforts so far, should be a series of lake concentrations that simply
increase year on year.

Your next step could be either: (a) complete the model, or (b)
add some graphical display. Arguably, adding the display first is
more useful as it aids in debugging the model. But to plot how the
metal concentrations evolve with tim, you will need to first store
the information needed for the plot in an array. If the array is called
hello_kitty (but please call it something more useful than this ...)
then at the end of the loop you would write:

hello_kitty(t,1) = t;

hello_kitty(t,2) = cS;

...

All this is saying is that in the first position (column #1) of row t we
assign the time-step number (which is equal to the year since the
start of the model). In the second position (column #2) we will assign
the concentration value, etc.10 10 Make sure that you understand why

the t appears in hello_kitty(t,1) (i.e.,
how we are using the increasing value
of the loop counter variable t to keep
adding new rows to store the newly
updated concentration values).

Go run this. You should notice that an array hello_kitty appears
in the MATLAB Workspace window. It should have size (Value) of
10×6. Look at the array contents in the MATLAB Array Editor (or
type size(hello_kitty)) and check that the concentration values

82 geo111 – numerical skills in geoscience

are the same as you were previously printing out to the screen. Go
debug if it if things are screwed up :(

At the end of the script plot the graph of time (year) against con-
centration. We could plot all the data on the same graph to compare
what is going on. Maybe something like:11: 11 The code to get a continuous black

line for Lake Superior can be passed as
a parameter to the plot function – it is
k- (see MATLAB help on LineSpec).
The 2nd, 3rd, 4th, and 5th lines are
colour-coded – red: Michigan; green:
Huron; blue: Eries; and cyan: Ontario.

hold on

plot(hello_kitty(:,1),hello_kitty(:,2),’k-’)

plot(hello_kitty(:,1),hello_kitty(:,3),’r-’)

plot(hello_kitty(:,1),hello_kitty(:,4),’g-’)

plot(hello_kitty(:,1),hello_kitty(:,5),’b-’)

plot(hello_kitty(:,1),hello_kitty(:,6),’c-’)

Make sure that everything is labelled etc as it should be. There are no
prizes in life for being a lazy muppet.

Be honest – is this not the most boring graph you have ever seen?
Increase the number of time-steps the model runs through to 1000
(i.e., in the for loop definition). Re-run. OK; so it hasn’t got any more
interesting ...

What is missing how pollutants leave the lakes. This is why the
concentrations just rise linearly for ever and ever and ever. Losses to
the lakes occur because the lakes drain out, either into other lakes,
or (in the case of Lake Ontario) to the sea. We need to represent the
losses of heavy metals from each of the lakes due to this drainage.
The flux of metals out of each lake will be equal to the concentration
of metals in the water times the water flow rate. Yes? So for Lake
Superior, the loss of metals from each lake due to drainage will be
equal to rS*cS.

The units of loss are kg yr−1 just like the flux input (units are
kg km−3 × km3 yr−1, which equates to kg yr−1). We can therefore
simply update our equation to take into account drainage loss as well
as flux input, e.g.12: 12 If you wanted to, you could neaten

up this equation by moving a factor of
(/vS) outside of the net flux term (fS -

rS*cS).
cS = cS + fS/vS - rS*cS/vS;

This Example does go on and on and on ... but very very almost
there. There is just one final thing missing. When water flows into
the lakes Huron, Erie, and Ontario, it is carrying with it heavy metal
pollution from the lakes upstream. We need this last component
in the model. For these three lakes we then need to introduce an
additional flux. Fortunately, we have already calculated this flux
– it is equal to the loss rate from the lake upstream. For example,
the additional metal flux via river flow to Lake Ontario is equal to
the river loss flux out of Lake Erie. Look at the diagram of the lake
system to see how the lakes are connected. For Lake Ontario, for
instance, we need to make one final modification to the mass balance
calculation in the loop13: 13 Again, you could shorten the equa-

tion if you want to by taking out com-
mon factors.

introduction to numerical modelling 83

cO = cO + fO/vO - rO*cO/vO + rE*cE/vO;

All this say is that; the concentration of metals in Lake Ontario next
year, will be equal to the concentration this year (cO) PLUS the metal
flux input (fO/vO) MINUS the drainage loss (rO*cO/vO) PLUS the
river input from lake Erie (rE*cE/vO). Also write the code to complete
the mass balance for Lake Erie (gain from Lake Huron) and to Lake
Huron (gains from Lake Michigan AND Lake Superior).

Re-run the script. Note that things are now much more interesting
(ha!), and after 1000 time-steps (1000 years) the concentration of
metals in the lakes levels off, although different lakes take different
amounts of time level off (which takes the longest, and why?) and
hopefully, something like Figure 4.2.

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Time (years)

La
ke

 m
et

al
 c

on
ce

nt
ra

tio
n

(k
g

km
-3

)

Evolution of metal concentrations in the Great Lakes with time

Superior
Michigan
Huron
Erie
Ontario

Figure 4.2: Simulated evolution of metal
concentration in the Great Lakes system
with time ... with labels that are far too
small to make out :o)

Try increasing the number of time-steps to 10000. Now you can
clearly see that the concentration of heavy metals reaching what is
know as steady-state (or it is in equilibrium), where the flux of metals
in is exactly balanced by the flux of metals out and there is no longer
any net change in the quantity (or concentration) of metals in the
lake.14 You should also note that as the system is currently set up 14 Check that the final steady-state (or

close to steady state) metal concentra-
tion values are close to your analytical
solution from before.

there seems to be little point in running the model for more than
1000 or 2000 time-steps, because very little change occurs after that.
It is up to you to decide that any further change that occurs is trivial
and can be ignored – perhaps when 95% of the final change has been
achieved, or 98% or 99%. It will depend on the situation and how
computationally expensive the model is to run. If this model took 10
hours to run 10000 years, you would certainly say that 1000 years was
enough. Whereas it is actually so quick that running out to 2000 or
even 10000 years is not a problem. Obviously another consideration
is whether readers of your pollution report would be at all interested
in a graph that had the interesting change bunched up at the left-
hand end and nothing happening for most of the plot. Just because
you can calculate 100000000s of years doesn’t mean that you need
present it to others. Some thought is required as to what information
you want to get across in a presentation of a model simulation.

Now it is working (I hope) – adjust your script to make it into a
function, and pass in a time-step. You will have to edit the equations
because up until now, they have assumed by default, a time-step
of one year. You will also have to remember that t stands for the
time-step number, and no longer necessarily corresponds to time
(the year). Fortunately, if you have followed the above instructions
without trying to be clever(!) and do anything more efficiently, you
already have a results array (apparently called hello_kitty) that
explicitly stores the time at each time-step (and the value of time
need not be the same as the time-step). Then explore what happens
when you increase the time-step. For instance, you might see the

84 geo111 – numerical skills in geoscience

numerical solution start to get unstable as per in Figure 4.3.

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Time (years)

La
ke

 m
et

al
 c

on
ce

nt
ra

tio
n

(k
g

km
-3

)

Evolution of metal concentrations in the Great Lakes with time

Superior
Michigan
Huron
Erie
Ontario

Figure 4.3: Simulated evolution of metal
concentration in the Great Lakes system
with time ... with labels that are far too
small to make out ... and an integration
time-step that is too long.

As a further refinement, pass in a second parameter for the num-
ber of year the simulation should run for (and scale the plot to the
same number of years). Remember that the total duration of the
model experiment is equal to the time step duration times the to-
tal number of time-steps. Or in terms of setting the loop limit – the
total number of time-steps is equal to the total duration divided by
the time step duration.15 You could also, instead of a maximum du-

15 Here we will ignore that fact that
by dividing one number by another,
particularly if both were reals rather
than integers, we are going to end up
with a real number, whereas the loop
limit should really be an integer. (But
MATLAB does not care and will work
just fine.)

ration, pass in a criteria for the solution having approached steady
state, and loop just enough times until this criteria is met.16

16 A suitable criteria would e.g. be for
the concentration in none of the lakes to
change by more than x% per year.

A final refinement would be to make better use of vectors, and
rather than laboriously write out e.g.

fS = 1000.0;

fM = 4500.0;

fH = 1000.0;

fE = 3500.0;

fO = 3000.0;

you write:

f = [1000.0; 4500.0; 1000.0; 3500.0; 3000.0];

remembering that row #1 == ’S’, row #2 == ’M’, etc. You get much
more compact code this way and it is much more scalable should
there be additional lakes or reservoirs you might wish to include in a
future version of the model.

4.3 Energy-balance climate modelling

Box, or zero-D models need not involve the reservoir of a substance
(e.g. trace metal, carbon, or nutrient concentrations) per se – energy
(heat) will do just fine. Which leads us to the climate system.

A rather less contrived example of a box model, is the global *** loops ***

climate system, or rather, some measure of the (heat) energy in it.

Energy balance modelling (1)
The surface energy budget at the

Earths surface, to a zero-th order
approximation, can be thought of
as a simple balance between in-
coming, sort-wave radiation that is
absorbed, and out-going, infra-red
radiation.

On average (over the Earths sur-
face and annually), the energy flux
received from the sun can be written:

Fin = α∙S0
4

(because the cross-sectional area
of the Earth is 1

4 of its total surface
area).

Net outgoing infrared radiation
proceeds according to black body
emissions:

Fout = ε ∙ σ ∙ T4

where ε is the emissivity (ε=1.0)
for a perfect black body radiator),
σ is the Stefan-Boltzmann constant,
and T the temperature in Kelvin.
At least ... it would if there was no
atmosphere and the Earth radiated
directly from the surface to space.
There is an (absorbing) atmosphere
in the way! A common modifica-
tion is then to reduce the effective
emissivity of the surface to less
than 1.0. A value of 0.62 is given in
Henderson-Sellers [2014]:

Fout = 0.62 ∙ σ ∙ T4

(with albedo: α = 0.3).

To kick off – code up the analytical solution to the basic global
mean energy budget at the surface of the Earth (see Box). (This will
form the basis for subsequent more complex and time-stepping mod-
els.) You will need to find (Internet?) the values of the constants you
need, and will need to be careful with units. Particularly temperature
... :o)

If you found a reasonable value for the solar constant, and did
not screw-up the units on the Stefan-Boltzmann constant, then you
should have an equilibrium (global, annual mean) surface tempera-
ture of around 14°C ...

introduction to numerical modelling 85

Now turn your script into a function so that you can pass in the
value of the solar constant and make it return the estimated global
mean surface temperature for that value. You are going to make
another script and call the function from this script. This new script
is going to calculate the value of the solar constant S0 (see Box), at
100 Myr intervals from 4.0 Gyr (4 billion years) in the past, to 4.0
Gry in the future – spanning approximately the age of the Earth and
much of its potential long-term future. For the value of the solar
constant at each time, you are going to call your function to calculate
the corresponding surface temperature, and then plot mean global
surface temperature vs. time. You’ll need to:

Solar constant
The long-term evolution of solar

luminosity Lt as a function of time t
can be approximated [Gough [1981];
Feulner [2012]) by:

Lt
L0

= 1
1+ 2

5 ∙(1− t
t0

)

where t0 is the age of the sun –
4.57 Gyr (4.57×109 yr) and L0 is
the present-day solar luminosity
(3.85×1026 W). This is equivalent
to a flux (Wm−2) of 1368 Wm−2

incident at the top of the atmosphere
at Earth, which is given the symbol
S0. In the equation, L0 can be substi-
tuted for S0 to give the value of S0 at
ant time, i.e. St (Wm−2).

Note that in the formula, t is
counted (in Gyr) relative to the for-
mation of the Sun (i.e. present-day
would be: t = 4.57).

• Step through time, from -4.0 to 4.0 Gyr, at 0.1 (100 Myr inter-
vals).
• At each time, calculate:

1. The value of the solar constant.
2. The corresponding surface temperature of Earth.

and store the calculated data as time (array column #1) vs. temper-
ture (column #2).
• Plot your projected evolution of Earths surface temperature
with time.

Likely areas of bugs include the units of time (Gyr), and that time is
counted as the age of the Sun. Also be careful with nested parenthe-
ses (()).

Assuming that you have managed something like Figure 4.4 –
what strikes you, in light of (hopefully) what you know about the
past history of climate and evolution of life on this planet, about your
model projection (for the past)? What is ’missing’?

-4 -3 -2 -1 0 1 2 3 4

Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

Evolution of Earths surface temperature with time

Figure 4.4: Simple EBM projection of
the evolution of Earth surface tempera-
ture with time.

Now for daisies. Hell, why not?
So: there is an absolutely classic paper from the early 1980s –

Watson and Lovelock [1983] – that illustrates how simple (biological)
feedback on climate can lead to a close regulation of global climate
over an appreciable span of the Earths past (and future). The premise
for this model is a planet covered in bare soil (essentially, as per in
the earlier EBM), but on which 2 different species of daisies (could
be any pair of plants with contrasting properties) can grow – one
white (high albedo) and one black (low albedo)17. Because the two 17 As pointed out in Watson and Lovelock

[1983], the actual ’colors’ are immaterial
– just tat the albedos differ.

species modify their local (temperature) environment and their net
growth depends on how close the local temperature is to their op-
timum growth temperature, a powerful climate feedback operates
and as the solar constant increases, the abundance of daisies switches

86 geo111 – numerical skills in geoscience

from black to white – driving an increasing cooling tendency of the
planet surface in the face of increasing solar-driven warming. This
regulation emerges as a property of the dynamics of the population
ecology and interaction with climate and does not require an explicit
regulation of climate to be specified. Just dumb daisies doing their
day-to-day stuff.

You are going to take your earlier, equilibrium EBM function, and
develop it piece-by-piece until you have dynamic daisy populations
interacting with climate and regulating the habitability of the planet.
These are the steps (model code variants) you are going to work
through:

1. Add a fixed fraction of two different sorts of daisy that modify
mean global albedo and hence climate.
2. Add population dynamics to the two species of daisy, so they
respond to changes in (global) temperature.
3. Modify the ’local’ temperature of each species of daisy such
that the growth of each differs for any given global mean tempera-
ture.

and for all, you are going to plot a pair of graphs to keep track of
what is (or is not) going on.

To start: read Watson and Lovelock [1983]. You should be able to
take away from this some of the essential information that you need
to specify and keep track of. For now, we’ll just concern ourselves
with defining the albedo of bare ground (soil) and the albedo of each
daisy. We’ll also start to worry about how much area is covered by
each species of daisy.

Then make yourself some parameters for the model:

% define model parameters - daisy albedo

par_a_s = 0.3; % albedo - bare soil

par_a_w = 0.5; % albedo - white daisies

par_a_b = 0.1; % albedo - black daisies

% define model parameters - daisy land fraction

par_f_w = 0.01; % (land) fraction - white daisies

par_f_b = 0.01; % (land) fraction - black daisies

(using whatever parameter names you prefer). Here, the albedo
values are fixed and will be used regardless of what the model does.
The values have been chosen, assuming equal proportions of black
and white daisies, to given an average of 0.3 – the albedo of bare soil
and also the assumed value in the previous EBM. You’ll modify and
play with this value all too soon enough. The surface area fraction
values are just initial values to start the model off.18

18 As you’ll come to see subsequently,
these cannot be zero. Or rather, a daisy
species can start with a fractional area
of zero, but you’ll never ever get any
of that species growing, regardless of
the environmental conditions (because
there are none to start with!).

exit

If you wish your program to end
early, maybe because a parameter
value check has revealed an incon-
sistency or an illegal value, or a
calculation (typically an analytical
solution) has failed or is impossible),
simply add the command:

exit

(Note that in contrast, quit also exits
the entire MATLAB program ...)

Next, you need to replace the fixed and assumed albedo value
from before, with a variable whose value is calculated based on

introduction to numerical modelling 87

the area weighted average of: bare soil, white daisies, black daisies.
The calculation is simple and you already have the areas of the two
species of daisy as fractions (bare soil then being 1.0 minus the com-
bined daisy covered fraction). You weight the contribution to global
albedo by the albedo of each daisy by its fractional area. You just
then need to account for the fraction of the Earths surface that is bare
soil (weighting the specific albedo of soil in the sum).

-4 -3 -2 -1 0 1 2 3 4
Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- fixed daisies

Figure 4.5: Evolution of global surface
temperature and the two populations of
daisies with time ... but with no change
allowed in the daisy populations
(d’uh!). The fractional coverage of
white daisies is shown by large empty
circles, and for black, by small filled
black circles. Data points for mean
surface temperature are color-coded by
temperature (color scale not shown).

Re-run the model with the value of albedo now depending on the
fraction of white and black daisies – it should look identically to be-
fore (it must, because the default parameters above ensure that the
mean albedo is always 0.3 and the daisies don’t even know anything
about growing (or dying) yet). You might play briefly with the pre-
scribed daisy fractions and albedo values and e.g. check that when
you specify a configuration with 100% of land area covered by black
daisies, the climate is much warmer throughout the simulation, and
when white daisies are assigned an initial value of 1.0, the climate is
always much cooler compared to in the default simulation.19 19 Note that it is very easy to accidently

prescribe a total area covered by daisies
of >100%. You should ideally put
a check (if ... end) in the code
before it tries to calculate anything for
whether the total area initially covered
by daisies exceeds what is possible. If
this is the case, your code might spit
out a warning message (a simple disp

command would do). You might also
terminate your program (see exit).

Nothing exciting happening yet ... as per Figure 4.5 – the daisies
stay at their prescribed fractional area and there is little, if any, im-
pact on the gloal planetary temeprature20.

20 Unless you have tested radically
different areas for either white or black
daisies.

OK – step #2, and now for the next modification and one which
will actually make something ’happen’ (i.e. the simulation will be
different to that of the default EBM based simulation of mean global
temperature response to increasing S0. The daisies are going to grow
and die, with their population changing over time until an equilib-
rium is reached (for a particular specified value of S0). Watson and
Lovelock [1983] give a simple population model formulation for the
change in area fraction covered by both sorts of daisy with time (also
see Box) that we will implement here.

Daisy population dynamics (1)
For an area fraction occupied by

white and black daisies of αw and
αb, respectively (note alpha here
is fractional area, not albedo!), the
change in occupied fractional area
with time (t) can be written:

dαw/dt = αw ∙ (x ∙ βw − γ)
dαb/dt = αb ∙ (x ∙ βb − γ)

where x is the free (i.e. not occu-
pied by daisies of any color) area of
(fertile) ground, equal to:

x = 1.0 − αw − αb
(assuming here, unlike the more
general case in Watson and Lovelock
[1983], that all the land area is po-
tentially fertile), β is a temperature-
dependent growth function (one
for each species of daisy), and γ the
mortality rate (as a proportion of
the area covered by that species of
daisy per unit time). The value of γ
given in Watson and Lovelock [1983]
is 0.3, but this could be a parameter
that you could play about with and
investigate its effects.

To simplify things initially,
temperature-dependent growth
is a function only of the global mean
temperature:

βw = 1.0 − 0.003265 ∙ (22.5 − T)2

βb = 1.0 − 0.003265 ∙ (22.5 − T)2

In implementing these equations, note that the unit of population
in Dairy World, is fractional area covered. So each time-step, the
fractional area or each species will grow or shrink, depending on
whether mortality is higher than growth. Both growth and mortality
are formulated as being dependent on the fractional area (at the
previous time-step), i.e. growth in covered area depends on how
much is already covered. Similarly, mortality also depends on how
many daisies are currently there. The growth rate is further modified
by the available fractional area, such as that the area left shrinks, the
growth rate shrinks. (Effectively, this is perhaps trying to account
perhaps for shrinking resources available for further growth. It also
has the effect of adding numerical stability to the model and helps
presents over-shoots where the total fractional area covered by daisies
far exceeds 1.0 ...).

If you have set this daisy population dynamics enabled EBM (a

88 geo111 – numerical skills in geoscience

DPDE-EBM!) up correctly, and drive it with your -4.0 to +4.0 Ga solar
constant calculating script, you should get something like Figure 4.6.

-4 -3 -2 -1 0 1 2 3 4
Time relative to modern (Gyr)

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- identical daisies

Figure 4.6: Evolution of global surface
temperature and the two populations of
daisies with time ... but now assuming
that the growth of each depends only
on the global mean surface tempera-
ture. Symbols as per Figure 4.5.

The last step is given each species of daisy a different environ-
mental preference for growth. We could simply given them different
temperature optima, which is what the value of 22.5°C accomplishes
in the temperature-dependent growth modifier equation. Watson and
Lovelock [1983] take a different approach, and while assuming that
both species of daisy have the same temperature preference, assume
that they modify their local environment differently – white daisies
inducing a local cooling relative to the global mean temperature, and
the presence of black daisies driving a local heating (see Box). The
result is Figure 4.7.

Daisy population dynamics (2)
To make the different species of

daisies interact differently with
the environment, the temperature-
dependent modifiers of growth are
made functions of the local (to the
daisy population or individual),
rather than global, temperature:

βw = 1.0 − 0.003265 ∙ (22.5 − Tw)2

βb = 1.0 − 0.003265 ∙ (22.5 − Tb)2

There are all sorts of says of
defining how the local temperature
deviates form the global mean. In
Watson and Lovelock [1983] this is
simply reduced to a simple deviation
that scales linearly with the differ-
ence between mean global and local
(daisy) albedo:

Tw = T + q ∙ (A − Aw)
Tb = T + q ∙ (A − Ab)

(noting that A is albedo here, not
alpha as was the case in the original
(non daisy enabled) EBM). q is a
simple scaling factor that describes
how strongly the local temperature
deviates from the mean (or con-
versely, how efficiently heat energy
is mixed between differen daisy
fractions) and is assigned a default
value of 10.0.

-4 -3 -2 -1 0 1 2 3 4
Normalized solar constant

-10

0

10

20

30

40

50

G
lo

ba
l m

ea
n

te
m

pe
ra

tu
re

 (
C

)

0

10

20

30

40

50

60

70

80

90

100

D
ai

sy
 fr

ac
tio

n
(%

)

Daisy World -- interactive daisies

Figure 4.7: Evolution of global surface
temperature and the two populations
of daisies with time. Symbols as per
Figure 4.5.

Now the behaviour of the system and the evolution of global mean
surface temperature with time, is very different. Towards the start of
the experiment, and at very low values of S0, the global mean tem-
perature is too cold to support a daisy population (of either type).
As the value of S0 increases, initially global mean temperature fol-
lows the path it did before, in the absence of daisies (or with fixed, or
equal populations). At a certain point, black daisies, because of their
advantage that they absorb more sunlight and drive a locally warmed
climate, take off in population and rise to dominate 70% of the land
surface. The global mean temperature transitions sharply to a much
higher temperature state. As S0 further increases in value, they in-
crease slightly further in dominance (and global temperature climb a
little further in response) until locally they reach their optimal tem-
perature for growth. Past this (optimal temperature) point, white
daisies start to grow and slowly replace the black ones. Global cli-
mate is almost perfectly stabilized during this interval. Beyond this,
there is a short interval where black daisies die out and white daisies
go on to reach their own (local) temperature optimum. Beyond this
again, everything suddenly goes extinct in a rapid warming feedback
of increasing temperatures, declining white daisy numbers, further
solar radiation absorption and warming, etc etc. How everything is
dead and I how you are feeling happy with yourself.

In the final zero-D EBM example, we’ll make the model (very)
slightly more interesting, or at least, (very) slightly more realistic.
The time-dependent behavior of the simple energy balance model is
trivial. In fact: there isn’t any. The system is always in equilibrium
as constructed. Why? No thermal inertia – i.e. nothing in the system
defined so far has any heat capacity. So we need to add an ocean, or
rather: a box (variable) to store the heat content, or temperature, of
the ocean, and update this (temperature) in the event of there being

introduction to numerical modelling 89

any imbalance between gain and loss of energy at the surface of the
Earth. You can relate a temperature change to net energy gain (or
loss) via the specific heat capacity of a substance (assuming water
here).21 You can also assume the following: 21 Once again – be very careful with the

units. Or all will be lost ...

• The average mixed layer depth of the ocean is 70 m.
• The average fraction of the Earths surface that is ocean is 0.7.

(both from Henderson-Sellers [2014]).
Create yourself a new function, taking two parameters as inputs:

(1) the total simulation duration, and (2) the time-step, both in units
of yr.22 You’ll also need some of the constant values from before.

22 So please don’t forget that the energy
flux has units of Jm−2s−1 (Wm−2).

Break the code down into logical sections. Start by defining any
constants you need, as well as parameter values (in addition to the
two you have passed in). Then create a loop, which should repeat
sufficient times to generate the requested simulation duration and
at the requested time-step. Then plot something helpful at the end.
In the loop itself, you firstly need to calculate the energy imbalance
(assuming there is one), then use this flux to update the temperature
of the mixed layer ocean. 23 If successful, you should see something

23 It is much easier and less prone to
bug, if you do this in two stages. You
could even split things into four:

1. Incoming energy flux.
2. Outgoing energy flux.
3. Net energy flux at the Earths

surface.
4. Update surface temperature.

similar to (actually, identical to) Figure 4.8 (assuming a 1 yr time-
step). (Play about with the time-step in the model and note that as
per previously, some care has to be taken with its choice, e.g. Figure
4.9 has a time-step of 3.5 years, which clearly is on the verge of going
doolally).

0 10 20 30 40 50 60 70 80 90 100

Time (yr)

0

5

10

15

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM spin-up

Figure 4.8: 100 yr spin-up of the basic
EBM.

So far, so far from exciting – you have been simply time-stepping
the model to equilibrium, for which there was an analytical solu-
tion anyway (with ocean heat capacity irrelevant to this). However, it
should be apparent that it takes some years (how many) for the sys-
tem to reach equilibrium. This would have important implications for
a (real world) system in which the one of the terms in the radiative
balance equation changes relatively rapidly (or on a time-scale com-
parable to the adjustment time of the system). The concentration of
CO2, and radiative forcing due to the ’greenhouse effect’, is just such
an example.

Doolally
Mad, insane, eccentric.

0 10 20 30 40 50 60 70 80 90 100

Time (yr)

0

5

10

15

20

25

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM spin-up

Figure 4.9: 100 yr spin-up of the basic
EBM, but with a poor choice of time-
step ...

The next example takes the time-stepping simple zero-D EBM that
you created previously, and drives it with a time history of atmo-
spheric CO2 concentration (technically: mixing ratio) data.

First off: check out the CO2 radiative forcing (Greenhouse Effect)
Box. This will guide you as to modifying your energy budget (within
the time-stepping loop). Test the model first with a fixed, assumed
CO2 concentration and check that the mean surface temperature
responds in a reasonable way.24,25

24 What is ’reasonable’? Well, you could
conduct a pair of experiments – one
in which you do not modify CO2, and
one in which your double it. The IPCC
and there (now) five Assessment reports
have much to say about the climate
system response to a doubling of CO2.
So you can conduct a reality check
on your model based on existing and
widely available climate sensitivity
information.
25 By way of reference: assume that the
pre-industrial concentration (mixing ra-
tio) of CO2 in the atmosphere (CO2(0))
is 278 ppm.

90 geo111 – numerical skills in geoscience

You are going to load in a CO2 data-set *externally* to the EBM
function, and pass in an array of time (year) vs. CO2. This is instead
of passing in the experiment duration and time-step. In fact, you are
going to determine the experiment duration and time-step according
to the data ... So:

1. Firstly, get hold of the CO2 data. See:
http://scrippsco2.ucsd.edu/data/atmospheric_co2
and download the spline fit version of the ’Merged Ice-Core
Record Data’. You should get an Excel sheet for your trouble.
Now you can load in Excel format data in MATLAB ... or simply
copy-paste (into a text editor) the column of year and column of
CO2 data together. Load this into your workspace. Perhaps view
the data in the Variable Window or plot it, just to be sure what
you are working with.
2. Adjust the input parameters of your function so that you are
just passing in the CO2 data variable (consisting of n rows by 2
columns).
3. You need to know how many times to iterate through the loop,
so creating a parameter and whose value you then set to the num-
ber of rows of data26, is a good next step. 26 Don’t cheat! Determine the number of

rows of data automatically.4. The time-step is an interesting issue. You could assume one
and keep it at a fixed duration, or you could use the interval be-
tween CO2 data points, as the time-step interval.27 Take as the 27 It happens that the data is evenly

spaced at yearly intervals, but it need
not have been.

duration of each time-step, the time between successive each pair
of data points.
5. The only minor complication is the CO2 value to utilize – in
updating the surface temperature between any two CO2 data
points, on average, the relevant radiative forcing is a function of
the mean CO2, rather than either one or the other of a pair.

(In summary: in calculating the change in temperature between year
n and n + 1, the time-step is the difference between these years, and
the CO2 value to use is the mean of the CO2 values at year n and
n + 1 (because you can assume that CO2 is continually changing).

When you have this working, try restricting the plot of mean an-
nual global surface (air) temperature to year 1800 onwards. And per-
haps restrict the y-axis range too. If you want to be fancy (e.g. Figure
4.10) you can draw on a horizontal line indicating the pre-industrial
equilibrium solution (using the line function).

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

Time (yr)

14

14.2

14.4

14.6

14.8

15

15.2

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM forced with observed CO
2

Figure 4.10: Transient EBM response
to observed changes in atmospheric
CO2. For reference, the pre-industrial
equilibrium global temperature is
shown as a horizontal black line.

line To draw a simple (single) line
on a graphic:

» line([x1 x2],[y1 y2])

where x1 and x2 are the x-
coordinates of the start and end
position of the line, and y1 and y2

are the corresponding y-coordinate
values.

Finally, the lagged behavior of the climate system (as encapsulated
in your EBM) is maybe not obvious as the forcing (CO2) is varying.
Nor would it necessarily help to cross plot the two, or plot both on
the same plot, as radiative forcing has a log relationship with CO2

change and temperature is not a simple function of radiative forcing

http://scrippsco2.ucsd.edu/data/atmospheric_co2

introduction to numerical modelling 91

(even at equilibrium). Common in model experiments and character-
ization, is to create artificial and deliberately simplified forcings and
perturbations, so as to more readily diagnose the response time and
characteristics of a system. Crete an artificial CO2 data-set, spanning
the same time interval as the real data, and at the same frequency,
but substitute an idealized CO2 forcing in which CO2 stays constant
(at 278 ppm) up until year 1999, then at year 2000, increases to 400
ppm, and stays there. This should look like Figure 4.11.

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

Time (yr)

14

14.2

14.4

14.6

14.8

15

15.2

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

0D EBM forced with observed CO
2

Figure 4.11: Transient EBM response to
(fake) changes in atmospheric CO2.

You could go on to test instantaneous doublings, and quadru-
plings of CO2 – both classic and commonly-used perturbations. Also
common are linear ramps (up, and/or down) and compound in-
creases, such as a 1% per year increase in the concentration of CO2

(each and every year) starting ca. 1960.

The Greenhouse Effect
The effect of changing CO2 concen-

trations on the global energy budget
is typically written in terms of a
virtual (long-wave) radiation flux
applied at the top of the atmosphere.
The flux anomaly, ΔF, as a function
of CO2 concentration (technically:
mixing ratio) (CO2) relative to a ref-
erence (pre-industrial) concentration
(CO2(0)) can be approximated:

ΔF = 5.35 ∙ ln(CO2
CO2(0)

)

5

1- and 2-D numerical modelling

5.1 1-D models

Although the Earth is, of course, fundamentally three-dimensional,
there are many situations in Earth, Ocean, and Atmospheric sci-
ences when an environmental system can be approximated with a
model having just one single (length) dimension. For instance, the
structure (e.g. temperature properties) of the atmosphere varies verti-
cally much quicker than it does horizontally (why you can suddenly
get snow 6000 ft up in Idyllwild, but not just by going 2 miles to
the North of downtown Riverside at sea-level (ish)). Similarly, the
changes in the physical, biological, and chemical properties of the
ocean are generally much more pronounced with a change in depth
rather than with latitude or longitude. Because the horizontal gradi-
ents in environmental properties in such systems are often relatively
small, the horizontal fluxes and exchanges of matter and energy will
also be small, particularly compared to vertical transport. The be-
haviour of some processes which are in reality are operating in a
three-dimensional system world can therefore sometimes be analysed
by considering their behaviour in just one dimension.

The simplest possible1 example of a 1-D model is to build on the 1 :o)

EXAMPLE OVERVIEW:

1. Define model grid (latitudes)
2. Calculate zonal surface area
3. Calculate zonal cross-sectional area
4. Calculate incident solar radiation
5. Set up plotting as a function of

latitude

(zero-D) EBM from before. Well ... perhaps not the simplest, but
relatively fun. If you like that sort of thing ...

The idea is, rather than to treat the entire Earths surface as a single
homogeneous surface characterized by a single surface temperature
(and hence single value of outgoing radiation flux), you are going to
split the Earths surface up into latitudinal bands. Why latitude and
not longitude? Simple inspection of global temperature distributions
(or other climate properties such as wind fields) indicate that the
meridional2 gradients are much more pronounced that the zonal3 2 According to the mighty Wikipedia:

"along a meridian" or "in the north-
south direction".
3 "along a latitude circle" or "in the
west-east direction"

gradients. Obviously, a model would be improved by resolving both

94 geo111 – numerical skills in geoscience

meridional and zonal gradients and energy flows, but if you are
going to simplify an energy balance model to just one dimension
– latitude is it. You can also think in terms of how incoming solar
radiation changes most – ignoring day-night changes as the Earth
rotates – the Equator vs. poles has the greatest contrast in incoming
energy, and one might suspect that flow of (heat) energy from the
Equator towards the poles might be about the single most important
transport in the climate system.

We can make a further approximation by noting that the input
of solar radiation is roughly symmetrical about the Equator (and
assuming that we are going to consider only an annual average cli-
mate state of the Earth).4,5 So, for this exercise, you need actually

4 The actual distribution of the conti-
nents on Earth together with how the
ocean then circulates on a large-scale
completely ruins in this assumption
practice, or rather: should a particular
degree of ’realism’ be required.

5 Because of the (non-zero) obliquity of
the Earth, there is a slightly imbalance
in the annual averaged solar radiation
received by each hemisphere – dictated
by which hemisphere is in its summer
when the Earth is closest to the Sun.

only model one hemisphere (and assume that the other one acts
identically and that the resulting temperature distribution can be
copied/mirrored).

#1 Zonal area of the Earths surface
The area of a zonal band of the

Earth surface, from latitude φ1 to
φ2 (in radians), can be found by
integrating the circumference of a
circle: 2 ∙ π ∙ r where r = r0 ∙ cos(φ)
and r0 is the radius of the Earth:

∑
φ2
φ1

2 ∙ π ∙ r0 ∙ cos(φ) ∙ δx
where δx is an increment in length
tangential to the surface equal to
r0 ∙ sin(δφ) and which for small δφ
as can be written as r0 ∙ δφ. Hence, in
the lim δφ → 0:
∫ φ2

φ1
2 ∙ π ∙ r2

0 ∙ cos(φ) dφ

The zonal area between latitude φ1

and φ2 is thus:
2 ∙ π ∙ r2

0 ∙ (sin(φ2) − sin(φ1))
(and which is why when you inte-
grate from -90°to +90°(or -π/2 to
+π/2) you recover the surface area
of a sphere: 4 ∙ π ∙ r2

0).

OK – so the first step is to divide up the Earth (or one hemi-
sphere), into bands, which each band being subject an an energy
budget including an ocean-dominated heat capacity and having its
own characteristic temperature. (Assume for now that each latitude
band is characterized by the same fraction of ocean and mean mixed-
layer depth as before.) You can chose how many bands to make.
Actually, if you do it the ’easy’ way it will not matter how many you
want6 and which, as you might have guessed, uses loops. The hard

6 Within reason, but ... as you’ll find
later, there is a numerical stability
penalty to having too many (but simply
requiring a shorter time-step to fix.)

way is to write out all the equations explicitly7. You are going to do

7 If you are unsure how a loop is going
to pan out in terms of updating the
fluxes and calculating the temperature
of each zonal band, maybe write out
the equations in full initially (for one
hemisphere), e.g. for 3 bands: 0-30°N,
30-60°N., and 60-90°N.

construct something like this:

for n = 1:n_max

% CODE GOES HERE

end

where n_max = 90.0/dlat and dlat is the width of each band8. For

8 If you loop in n (latitudinal bands),
you can pre-define the northern and
southern edge of each band for conve-
nience, and then simply by indexing the
appropriate array with n, recover the
latitude, e.g.

% define model grid - N edge

grid_n = [dlat:dlat:90];

% define model grid - S edge

grid_s = [0:dlat:90-dlat];

where dlat is the increment in latitude
between bands.

each band, you can write exactly the same equations as before. Ex-
cept ... for the in-coming solar radiation. Why? (Spheres have curved
surfaces – who would have guessed? And the surface gets more
oblique with respect to incoming radiation as the latitude increases,
meaning that the same (per unit area) solar flux is spread over an in-
creasing area.) So you need to calculate the surface area of each band,
assuming that each band occupies an equal number of degree of lati-
tude, and how this varies with latitude? A small hint can be found in
Box #1. Or the Internet will, as usual, know all.

The original mean incident solar energy per unit area was S0/4 on
the basis that the total received radiation was π ∙ r2

0 ∙ S0 spread over
(i.e. divided by) a total surface area of 4 ∙ π ∙ r2

0. You already have the
total surface area of a zonal band around the Earth (Box #1) but now
you need the area perpendicular to the incoming solar radiation (i.e.
the cross-sectional area). The area of a complete disk is π ∙ r2

0 and to

1- and 2-d numerical modelling 95

cut a long story short ... and see Box #2 ... the area of a portion of a

#2 Zonal cross-sectional area
The cross-sectional area of a

zonal band ... is a pig to calculate.
You start with the area of a circle
bordered by a cord, which can be
thought of as a line of latitude. This
itself, is derived by calculating the
area of a segment and subtracting
a triangle ... no seriously. I wish I
could be bothered to draw you a
picture. Google is full of hits for a
circular segment.

Inconveniently, this is written in
terms of the angle of the segment, ψ:

A =
r2
0
2 ∙ (ψ − sin(ψ))

Again, you need a picture. If we
re-write ψ in terms of latitude φ:

φ = (π−ψ)
2

then we can reduce this to (recognis-
ing, e.g. that sin(π − 2 ∙ φ) is simply
sin(2 ∙ φ):

A =
r2
0
2 ∙ (π − 2 ∙ φ − sin(2 ∙ φ))

All we need to do then, is to
subtract the smaller, high-latitude
chord-bounded circular segment
from the low-latitude one. Simples.

disk, is:

A = r2
0
2 ∙ (−2 ∙ φ1 + 2 ∙ φ2 − sin(2 ∙ φ1) + sin(2 ∙ φ2))

which is *so* much less fun than before :(Actually, both equations
are so little fun, that, assuming that you defined vectors to hold the
northern and southern edges of the zonal bands (see later), I’ll give
you the necessary code fragment for free:

% calculate zonal surface area (units radius)

loc_sa = 2.0*pi*(...

(sin(pi*grid_n(n)/180)-sin(pi*grid_s(n)/180) ...

);

% calculate cross-sectional area

loc_ca = 0.5*(...

- 2.0*pi*grid_s(n)/180 + 2.0*pi*grid_n(n)/180 - ...

sin(2.0*pi*grid_s(n)/180) + sin(2.0*pi*grid_n(n)/180) ...

);

where loc_sa is the surface area of the zonal band, and loc_ca is
the cross-sectional area (grid_n and grid_s hold the northern and
southern edges, respectively, of the zonal bands). Obviously(!) you
ratio loc_ca by loc_sa to get out the relative change in solar flux
for that latitudinal zone (as you did for a disk/sphere and ended up
with S0/4). Note that MATLAB just hates units of ° for angles – you
need your latitude values, when you calculate the sin of the southern
and northern boundaries of the zonal band, in units of radians.

You are going to to be time-stepping through the simulation (as
per the previous EBM with a heat reservoir), and your time-stepping
loop needs to go outside (around) the latitude band (n) loop. The
’code goes here’9 is going to be similar to the code as before, for up- 9 Along the lines of:

% (1) calculate net radiation

imbalance (W m-2)

% (2) update temperature (of

ocean mixed layer)

(with the results array having a zonal
band number dimension as well as of
time).

dating the temperature of the surface (equivalent to the temperature
of your ocean mixed layer heat reservoir), but obviously you need a
vector to store the temperature of each zonal band.

You are ready to go ... or should be. Probably easiest is to adapt
your function from before (and save under a different m-file name)
and retain the ability to pass in a time-step and also maximum sim-
ulation duration. Amazingly, given the cr*ppy unpleasant trigonom-
etry involved, it seems to work(!) – illustrated in Figure 5.1. As ever,
if you give it a particularly inappropriate time-step, funky and mean-
ingless things can happen (not shown).

0 10 20 30 40 50 60 70 80 90
-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 5.1: Basic 1-D EBM with no
latitudinal heat transport.

In an extension to this Example, we note that although the dis-

EXAMPLE OVERVIEW:

1. Load, process, and overlay observa-
tions

tribution of surface temperatures with latitude looks not entirely
unreasonable (colder at the poles is good!), you really need data10

10 Not the Star Trek, Next Generation,
one.

of some sort to be sure the model projection is not bonkers. You had

96 geo111 – numerical skills in geoscience

a dataset of annual mean global surface air temperature data before
(which you dutifully plotted). You could either eye-ball some num-
bers from and try and guess appropriate or representative values as
a function of latitude and compare to your EBM, or calculate a zonal
mean. Actually, MATLAB makes this obscenely simple for you using
the mean function11. The only things then to watch out for are:

11 A function to calculate the arith-
metic mean, rather than a nasty and
vindictive function.

mean

MATLAB help, helpfully says:

Average or mean value.

S = mean(X) is the mean

value of the elements in X

if X is a vector.

For matrices, S is a row

vector containing the mean

value of each column.

1. If the array is in the wrong orientation, you’ll find yourself
averaging along lines of latitude. This is simple to check as you’ll
get no noticeable latitudinal gradient in temperature. You should
also find in that case that the length of the vector returned by mean

matches the longitude grid rather than latitude.
2. Correcting #1 requires flipping the matrix around with the
transpose operator (’).
3. Units – units of the temperature dataset are K.

Once you have fixed any obvious data problems, you should end
up with something like Figure 5.2 (January) or Figure 5.3 (July).
Still to be done is to create an annual average zonal mean from the
data that can be contrasted directly with the annual average EBM
output, rather than just a single month of data. Fixing this is left as
an exercise for the reader, as they say ... -80 -60 -40 -20 0 20 40 60 80

-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 5.2: Basic 1-D EBM with no
latitudinal heat transport (red filled
circles). Overlain is the zonal mean
observational data for January (blue
circles).

-80 -60 -40 -20 0 20 40 60 80
-100

-80

-60

-40

-20

0

20

40

Latitude

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 5.3: As per Figure 5.2 but for
July.

Irrespective of the month (and this might well hold true for the
annual mean too), the EBM doesn’t exactly provide an ideal fit to the
observations. In particular: the North pole is rather too cold and the
tropics maybe a little on the warm side. Actually, we are only really
looking at half the model-data picture at the moment, and although
in the EBM the Southern Hemisphere is a mirror image of the North,
it would help to actually see this. So in addition to creating a annual
mean zonal temperature profile to plot against the EBM – also (cal-
culate, or mirror, and) plot the corresponding model projection for
the Southern Hemisphere. Something is still missing (in terms of
the model accounting for the observations) – what? Hopefully you
correctly guessed (i.e. scientifically and logically deduced) that it is
meridional heat transport – from the (overly) warm tropics to the
(too) cold poles.12

12 We have also ignored e.g. how surface
albedo increases as incident angle de-
creases – i.e. solar radiation is generally
absorbed more strongly by surface that
are perpendicular to the radiation and
reflected more efficiently if radiation
is glancing at a shallow angle to the
surface. However, this would only exac-
erbate our problem and leave the poles
even colder.

Extending this Example further, we’ll add some meridional trans-

EXAMPLE OVERVIEW:

1. add heat diffusion term
2. (manually (i.e. ’trial-and-error’))

optimize model

port of heat energy (to fix the process missing from the previous
version). We can encapsulate something of the effect of heat transport
along the latitudinal temperature gradient, either by adding a term to
represent eddy diffusion and analogous to Fick’s law, or by analogy
to thermal conductance (albeit with a very poorly conducting atmo-
sphere). They actually both amount to the same thing and will end

1- and 2-d numerical modelling 97

up with similar looking equations. Taking the thermal conductance
approach, the flux of heat energy from one latitudinal band to the
next, J (W), can be written13: 13 The equation is conventionally

written as negative, assuming the point
of reference is the higher temperature,
which loses heat energy.

J = −k ∙ A ∙ ΔT
Δz

where k is the thermal conductivity (Wm−1K−1), ΔT is the difference
between the temperatures of two adjacent zonal bands (T1 − T2), and
Δz the distance between the bands (measured at the mid-point lati-
tude14). This is effectively the same as for the diffusion of CH4 in a 14 Similar to before, if you loop in n

(latitudinal bands), you can pre-define
the central latitude of each band for
convenience:

% define model grid mid-point

grid_mid = ...

[0+dlat/2:dlat:90-dlat/2];

although ... this comes in useful only
for plotting (e.g. temperatures against
the mid-point latitude of the zonal
bands, as the separation in latitude is
always dlat and hence the separation in
distance is always the same(!)).

soil column, with the exception of the addition of an explicit area (A)
term here, which we did not worry about before because the model
was constructed on a unit area (1 cm2) basis and hence area did not
appear explicitly in the equations. The area that heat diffuses across
can be simply approximated as the height of the atmosphere over
which heat transport takes place, multiplied by the distance around
the Earth at that latitude (taking the latitude at the boundary be-
tween zonal bands, rather than the mid-point). We’ll further assume
that for height, the atmosphere can be approximated by equivalent
thickness of constant pressure, which would make it 8.5 km (8.5E6
m) in height (and then suddenly space beyond that).

Distance between 2 latitudes
Really, you don’t need a Box for

this. It is embarrassing to make one
in fact. But just in case ...

The average distance between
zonal bands can be estimated from
the difference in latitude between
the two mid-points of the zones, and
divide up the circumference of the
Earth proportionally, i.e.

Δz = Δlat
360 ∙ ztotal

where ztotal = 2 ∙ π ∙ R (the circumfer-
ence of the Earth at the Equator).

Circumference at a specific latitude
This is even more embarrassing to

write than the last one. The distance,
z, around a particular latitude, φ
(a Greek character was really not
necessary, but it looks way more
fancy this way), is:

z = 2 ∙ π ∙ sin(φ) ∙ R
(sin(φ) ∙ R being the radius of the cir-
cle at that latitude).

Based on your understanding(!) of the CH4 model – add a heat
diffusion (/conductance) term to your 1D zonal EBM. Note that
you do not a priori know the value of k. This is not a problem per se,
indeed, there may be no simple answer or first principals derivation
because the processes that govern meridional heat transport in the
real atmosphere ... and ocean, may be legion and non-linear. The
advantage of a model is that you can find a value of k that most
closely fits the observed data and thus best represents the missing
process. Informally, you can simply play with the model and by trial-
and-error find a value that seems to fit the observations best.

The key here is to recognise that there are now additional terms
in calculating the energy balance for any particular zone. Whereas
previously we could write:

ΔF(n) = Fsolar_in (n) − Flongwave_out (n)

now we need:

ΔF(n) = Fsolar_in (n) − Flongwave_out (n) + Fdi f f usion_in (n) − Fdi f f usion_out (n)

(This is all going to very much end up looking quite like the CH4

diffusion model, in that we have special boundary conditions to
consider for the zone bordering the Equator and the zone bordering
the pole, because the polar zone only gains heat by diffusion from
lower latitudes and there is no higher latitude zone than it to diffuse
heat to. For the lowest latitude zone, if we are assuming that the

98 geo111 – numerical skills in geoscience

Earth is symmetrical about the Equator, then it only loses heat to a
higher latitude zone and does not gain heat from anywhere.)15 15 As before, if you are not entirely

confident in what you are doing – write
out the equations long-hand for the
simplest possible comparable case –
that of 3 zonal bands: one from 0-30°N,
one 30-60°N, and one from 60-90°N.
You have two flux calculations in this
case – the transfer of heat energy from
the low to the mid latitude box, and
from the mid to the high latitude zone.
See if you can see the pattern, which
will then help you generalize it to n.

The structure of your model, within the (outer) time-stepping look,
should then look like:

1. Loop through all n latitude bands and calculate the in-coming
and out-going radiation.16

16 Don’t update any temperatures yet!

2. Loop through (n − 1) latitude bands (i.e. omitting the highest
latitude box, n), and calculate the diffusion of heat from the band
n to the one adjacent at higher latitude (n + 1). Populate 2 (length
n) vectors – one to store the diffusive heat gain (presumably from
a lower latitude), which will have non-zero values for indices 2
through n, and one to store the diffusive heat loss (presumably to
a higher latitude), which will have non-zero values for indices 1
through (n − 1).
3. Loop through all n latitude bands, calculate the net energy in-
put ΔF(n) and update the surface temperature accordingly (based
on the heat capacity of the ocean mixed layer and the time-step, as
before).

What about the value of k? You are going to have to guess it to
begin with17 ... and adjust your guess if the model fits the data worse

17 If you see nothing plotted, your
guess might be too large and you have
numerical instability. You could try
reducing the time-step. But also start
with the lowest conceivable value and
work higher.

than before.
As an illustration – Figure 5.4 shows the effect of specifying

a value of heat conductivity of k = 0.1 Wm−1K−1, while k =
1.0 Wm−1K−1, as shown in Figure 5.5, is clearly compete overkill, and
much of the pole-to-Equator temperature gradient has been wiped
out by over-aggressive heat transport between the bands. (Note that
here I have simply mirrored the modelling temperature profile for the
Northern hemisphere, to the other (with a hold on). This could have
been done much better by combining the vectors and hence obtaining
a continuous curve from Souther to North.)

-80 -60 -40 -20 0 20 40 60 80
Latitude

-100

-80

-60

-40

-20

0

20

40

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 5.4: 1D EBM with an initial
guess as to the value of k.

-80 -60 -40 -20 0 20 40 60 80
Latitude

-100

-80

-60

-40

-20

0

20

40

M
ea

n
su

rf
ac

e
te

m
ep

ra
tu

re
 (

C
)

1D EBM spin-up

Figure 5.5: 1D EBM with a x10 larger
value of k.

A rather scientifically different, but conceptually somewhat
similar example, consider diffusion of a gas through a porous

EXAMPLE OVERVIEW:

1. create function
2. create arrays and initialize model

parameters
3. set up plotting (useful for later)
4. create time-stepping loop frame-

work
5. add code to calculate fluxes:

(I): flux into surface layer
(II): flux into the (9) interior layers
in a loop

6. add code to update concentrations
based on fluxes:
(I): updating of first 9 layer concen-
trations in a loop
(II): updating of bottom-most layer

medium. We will take the example of methane (CH4) diffusion into
soils, but there are many other situations in the Earth, Ocean, and
Atmospheric sciences where (diffusive) transport in 1-D is critical to
understand (such as the supply of solutes to the interface of a grow-
ing mineral crystal). At its simplest, we have a concentration of CH4

in the atmosphere, which we will assume does not change with time
(i.e., the reservoir is in effect infinite). We will call this concentration
C0. Because we are not going to allow the value of C0 be affected
by whatever happens in our 1-D soil column (we are not concerned

1- and 2-d numerical modelling 99

in this exercise in any role that the soil methane sink might play in
controlling the concentration of CH4 in the atmosphere itself), it is a
condition imposed on the model. This is known as a boundary con-
dition (and because it is at the top of the soil column, it is an upper
boundary condition).

In the soil we have a population of methane-consuming bacte-
ria (’methanotrophs’) who are taking up and metabolizing the CH4

(there will also thus also be a return of CO2, the metabolic product of
CH4 oxidation, from the soil to the atmosphere). Because CH4 is be-
ing depleted at depth, there will be a gradient in CH4 concentrations
along which CH4 there will be net diffusive transport, illustrated in
Figure 5.6. The scientific question is thus; what is the flux of CH4 into
soils? This is important (no, really!) because methane is a powerful
greenhouse gas and (aerobic) soils might constitute an important sink
of this gas. 18

18 In reality the system looks more like
Figure 5.7, and actually, even more
like Figure 5.8 ... adding considerable
complexity (and dynamics).

Figure 5.6: Idealized schematic of the
soil-CH4 system.

Figure 5.7: Slightly less idealized
schematic of the soil-CH4 system.

Figure 5.8: Even less idealized and
almost realistic, schematic of the soil-
CH4 system.

If all CH4 in the pore space was entirely consumed at some known
depth, z, then we would have a gradient of C0 − 0 (C0 being the
imposed upper boundary condition, and zero being the concentration
at depth) in methane concentration, and diffusion would be taking
place over a depth z. If D is the diffusivity of CH4 (in soil), with units
of cm2s−1, then we can easily calculate the initial flux, J, of methane
into the soil by Fick’s law (as cm3 CH4 per second (s−1) per unit
cross-sectional area (cm−2)):

J = D ∙ C0−0
z

or, more generally we can write that at any point in the soil that the
following condition must be satisfied:

J = D ∙ ΔC
Δz

where ΔC
Δz is the gradient in CH4 concentration (i.e., the change in

concentration divided by the change in depth).
If all there was to the soil methane system was consumption to

zero at known depth, we could simply use an analytical solution
to calculate the CH4 flux into the soil. Unfortunately, life is rarely
as kind, and there are a number of complications (see background
material). For instance, the bugs do not all live at the same depth in
the soil column (although that is the assumption made in Ridgwell
et al. [1999]), nor have a constant activity throughout the year. Also,
soil properties vary with depth, which affects the porosity and tor-
tuosity of the soil (basically, how interconnected soil pore spaces are,
and thus in effect how conductive the soil is to gaseous diffusion)
and thus the diffusivity (D) of CH4 in the soil column, illustrated in
Figure 5.7. We will assume an initial value for D of 0.186 cm2 s−1.

Because we would quite like a general model for soil CH4 uptake
that was capable of accounting for these sorts of complications if nec-

100 geo111 – numerical skills in geoscience

essary, we will solve the system numerically rather than restricting
us to a simple analytical solution. This is what we will be doing in
this exercise – constructing the basic model of atmospheric CH4 dif-
fusion into the soil, although there is not time in this exercise to go
on and consider the metabolic consumption of atmospheric CH4 by
methanotrophic bacteria.

If we divide up the soil profile into 10 equally-spaced (equal thick-
ness) layers19, the basics of the model will be an array with 10 rows, 19 It need not be 10 – choosing 10 layers

of 1 cm thickness each, just simplifies
things.

one (row) location in the array representing the CH4 concentration
in the pore space corresponding to each 1 cm thick interval of soil
(see Figure 1). Thus, row #1 corresponds to the concentration in the
0-1 cm depth interval, C1, #2 corresponds to the 0-1 cm depth inter-
val, C2, ... , and #10 corresponds to the 9-10 cm depth interval, C10.
We will also need to create an array to store the average depth, zn at
which each of the CH4 concentrations is measured. These depths will
be; 0.5 (z1), 1.5 (z2), 2.5 (z3), ... , and 9.5 cm (z10).

We are now ready to calculate the diffusion of CH4 down the soil
column. From the earlier equation, you know that you can relate the
methane flux to the gradient in the soil, and the gradient between
any two successive soil layers is equal to:

Cn−Cn+1
zn+1−zn

This is just to say, the difference between the concentration in any
layer n and the concentration in the layer immediately below it
(which will be number n + 1) divided by the depth interval between
the mid-points of the same two layers, which is the depth (from the
surface) of the deeper layer (zn+1) minus the depth of the layer imme-
diately above (which is layer n).

Putting this all together, the downwards flux of CH4 between
layers is given by:

J = D ∙ Cn−Cn+1
zn+1−zn

You can think of this system as analogous to the Great Lake model
system20,21,22 – there we had a series of reservoirs storing stuff 20 Except less wet.

21 And smaller.
22 And in the soil ... OK, so not so much
like the Great Lakes system ...

(heavy metals), and there was a flow of material from one lake to the
next. Here we have gaseous CH4 in soil pore spaces rather than met-
als in solution in a lake, and we have diffusion of CH4 from one soil
level to another rather than a flow of water from one lake to another.
The only real difference is that in the Lake Model more of the work
was done for you and you were given the flow rates between lakes,
whereas here you have to calculate the transport (diffusion) rate of
CH4. The strategy for simulating the behavior of this system through
time will be very similar though – stepping through time, and during
each time step calculating the mass fluxes of CH4 between layers and

1- and 2-d numerical modelling 101

adding this to the pre-existing concentrations in each layer. The other
difference with the Lake Model is that all the soil layers in an indexed
array rather than being given different (lake) names, allowing you to
use a loop.

OK – now for the to-do stuff ...

1. Create a new m-file function. Pass in the run length (in units of
seconds) of the model simulation as a parameter, and e.g. call it
maxtime. See the blurb from previously for how to define a func-
tion. If you want to be tidy: add a close all statement near the
start of the function.23 23 Note that because the variables

created in a function are private (and
not seen by the rest of the MATLAB
workspace), there is no need to issue a
clear all. In fact: if you add a clear

all at the start, you’ll clear the (run
length) variable that you have just
passed in ... :(

2. Create a 10×1 vector array call conc and initialized with all
zeros24. This is the variable array for storing the concentration

24 To save time – use the MATLAB
function zeros.

of CH4 in each 1 cm interval of the soil profile. Note that we are
assuming no methane is present in the soil to start with (zero soil
CH4 concentrations is the initial condition of the model).

Also create a 10×1 vector array called J, again initialized with
all zeros, to store the fluxes of CH4 into each of the 10 soil layers
from the one above (analogous to how you had the series of river
fluxes associated with the various lakes in a previous exercise).

Then create a 10×1 vector array z_mid to store all the soil mid-
layer depths (0.5, 1.5, 2.5, ... , 9.5). (This is a parameter array for
helping in the plotting of soil CH4 concentration against depth,
later on.) Note that you need to create an array of 10 values, start-
ing at 0.5, ending at 9.5, and with a step interval of 1.0. Go dust off
the colon operator to create this vector array.

Also create a parameter (conc_atm) to store the concentration of
CH4 in the atmosphere. To keep things as simple as possible, you
will be assuming units of cm3 cm−3, so that the atmospheric CH4

concentration becomes 1.7×10−6 cm3 CH4 cm−3 (equivalent to 1.7
ppm), i.e.,:

conc_atm = 1.7E-6;

Also, just for completeness, define a constant to store the depth at
which the soil surface meets the atmosphere:

z_atm = 0.0;

Finally, define a parameter to store the value of the diffusivity
constant D (0.186 cm2 s−1):

D = 0.186;

3. Create a basic time stepping loop. Define a time-step length
(dt) to take – this is the amount of time that going around the
loop each time represents. Call the time-step length parameter dt

and assign it a value of 0.1 (s) (do this somewhere before the loop
starts in the m-file but after the function definition line at the very

102 geo111 – numerical skills in geoscience

top of the script). The model simulation length you want is given
by the (passed) parameter maxtime, and each time around the loop
lasts dt in model time, so how many counts around the loop do
you need to take ... ? If you call the loop counter tstep, then it
should be obvious :o) that the start of the loop will look something
like:

for tstep = 1:(maxtime/dt)

Yes? Before you do anything else, play with the function and check
that the time-stepping loop is working and that you understand
what it is doing. Try printing out (disp()25) the current loop value 25 The display line(s) should go inside

the loop, of course.of tstep as well as the time elapsed in the model.26 One way of
26 Equal to the loop count multiplied by
the time-step length:

tstep*dt

displaying what is happening in the loop is to add a debug line
such as:

disp([’time-step number = ’ num2str(tstep) ’, ...

time elapsed = ’ num2str(tstep*dt) ’ seconds’]);

(All I am doing here is concatenating several strings together –
a description of what is being written out followed by a value (a
number variable converted to a string using num2str), then another
description of what is being written out followed by a value, and
finally the units of the second number.) If your function was called
ch4model (for instance) and you type:

» ch4model(1.0)

you should now get something like:

time-step number = 1, time elapsed = 0.1

time-step number = 2, time elapsed = 0.2

time-step number = 3, time elapsed = 0.3

time-step number = 4, time elapsed = 0.4

time-step number = 5, time elapsed = 0.5

time-step number = 6, time elapsed = 0.6

time-step number = 7, time elapsed = 0.7

time-step number = 8, time elapsed = 0.8

time-step number = 9, time elapsed = 0.9

time-step number = 10, time elapsed = 1

The loop has gone around 10 times because you asked for 1.0 s
worth of model simulation (the passed parameter maxtime) and the
time-step (dt) is defined as 0.1 s. Happy? (:o))

4. Run what you have so far and make sure that it works.27

27 Note that because the variables in
a MATLAB function are private (and
are thus not listed in the Workspace
window), if you want to check the
values in this array you could first leave
off the semi-colon from the end of the
line so that MATLAB prints the array
contents to the screen. Or, explicitly add
in a disp() line. Or ... add a breakpoint
somewhere in the code and view the
variable values when the program
pauses.

Remember: build up a piece of computer code piece-by-piece,
testing at each step before moving on. Believe me, there’ll be more
time for beers at the end compared to trying to write it all in one
go and then not having a clue as to why it is not working ...

5. At the end of the function (i.e., after the loop has ended), plot
the concentration profile of CH4 in the soil column – you will

1- and 2-d numerical modelling 103

want depth (cm) on the y-axis and concentration on the x-axis.
Depth should run from 0 cm at the top to 10 cm at the bottom.
Scale the x-axis so that concentration runs from 0 to 2.0×10−6 cm3

cm−3. Also plot on the same graph as a point the atmospheric
CH4 concentration at the surface of the soil, whose value is held in
the parameter conc_atm.28,29,30 28 hold on and then using the scatter

function is probably the easiest way.
29 Note that MATLAB does not like
you trying to plot the y-axis with the
numbers getting more negative as you
go up the axis. One way around this is
to plot the negative of the depth on the
y-axis; e.g.:

plot(conc(1:10),-z_mid(1:10));

axis([0 2.0E-6 -10 0]);

so you really have the y-axis scale going
from 0 cm at the top, to minus 10 cm at
the bottom. (If you are clever, there are
ways around this involving explicitly
specifying the labeling of the y-axis ...)
30 Also note that if you want your
concentration scale in more friendly
units, such as ppm, then you will need
to scale the values you are plotting to
make them 106 times bigger; i.e.:

plot(1.0E6*conc(1:10),-z_mid(1:10));

axis([0 2.0 -10 0]);

6. Call the function from the command line and check again that
everything is working OK. There should be no crashes (check for
bugs and typos if not) and you should get a graph which has a
vertical line running from almost the top (-0.5 cm) to almost the
bottom (-9.5 cm) at a concentration of 0 cm3 cm−3, together with
a point at the top (depth = 0.0) marking the atmospheric CH4

concentration of 1.7×10−6 cm3 CH4 cm−3 (or 1.7 ppm if you have
re-scaled the x-axis values). Check that you have this. Note that
the CH4 soil profile line can be hard to see because it runs along
the axis. You can make the line thicker in the plot command by:

plot(conc(1:10),-z_mid(1:10),’LineWidth’,3);

You can also fill in the atmospheric CH4 point by passing the
optional parameter filled to the scatter function..

7. So far this is not exactly very exciting (*yawn*). In effect, you
have a model for a soil system in which the soil is capped by an
impermeable layer at the surface (preventing any entry of atmo-
spheric CH4 into the soil) and nothing happens.

8. So now get model actually calculating something. Within the
time-stepping loop you are going to calculate the flux of CH4

between each layer. The concentration units of CH4 are cm3 CH4

cm−3. The length scale is cm. The diffusivity of CH4, D has units
of cm2 s−1. So if we apply dimensionality analysis (basically, just
working out the net units) we get:

J = cm−2 × cm3 CH4 cm−3/cm

which comes out to give J in units of cm CH4 s−1! This looks a bit
screwed up. However, what area of soil (the cross-section of the
column) is the diffusion occurring across? The vertical length-scale
of the 1D model has been defined, but what about whether the
soil column is a nano-meter across or the area of the whole Earth?
Assume that the cross sectional area of the 1D model is 1 cm2 (i.e.,
1cm × 1 cm). Therefore, the flux of CH4 is occurring in a 1 cm2

unit cross sectional area model, with units of:

J = cm−2 × cm3 CH4 cm−3/cm × cm2

or cm3 CH4 s−1. This is much more reasonable (and cm3 of CH4

can easily be converted into units of moles or g of CH4 if you
needed to).

104 geo111 – numerical skills in geoscience

9. Before adding in the meat of the model (the calculation the
fluxes of CH4 between the pairs of 1 cm layers in the soil column),
it is easiest to calculate separately the special case of the flux from
the atmosphere into the first layer. The average distance (Δz) over
which diffusion occurs is only 0.5 cm in this case (measuring from
the surface (zero height) to mid-depth of the first 1 cm thick layer).
Referring to the equations previously, but recognizing that the n =
0 layer doesn’t exist because it is the atmosphere31 (so conc(0) and 31 And also because you cannot start

indexing a vector in MATLAB at zero.z_mid(0) have been replaced by conc_atm and z_atm, respectively)
you should see that the flux of CH4 into the first soil layer from
above is:

J(1) = D*(conc_atm - conc(1))/(z_mid(1) - z_atm);

10. Now for the main course of your modelling feast. It should be
obvious(!) that what happens for layers 2 through 10 is basically
identical – i.e., for each of the layers n = 2 through n = 10, the flux
of CH4 into layer n from the layer above (n − 1) can be written:

J(n) = D * (conc(n-1) - conc(n)) / (z_mid(n) - z_mid(n-1));

So, you could write a little loop, going from n = 2:10, and calcu-
late the value of J(n) within the loop.32 32 Don’t forget that you have just calcu-

lated the first n = 1 layer flux (J(1))
already.11. Make sure that you are happy with what you have done so far.

You have calculated the CH4 flux from the atmosphere into the
first soil layer (n = 1). You have done this on its own because it
is a special case – there is no soil layer immediately above, only
the atmosphere. Then you have calculated the fluxes into each
soil layer (n from 2 to 10) from the layer above within an n loop
(because it is easier than writing out the same equation 9 times!).

Although you are not yet updating the concentration of CH4 in
the soil layers, it is worth running the model again to check that
that all the new things that have been added to the model work.
Do this, and check that you can still call the function without
MATLAB errors appearing (although this does not guarantee that
you have not made a mistake ...).

12. So, all that is left to do now is to update the concentration of
CH4 in each soil layer and see what happens ... To keep it sim-
ple, assume that the soil has a porosity of 1 cm3 cm−3 (i.e., all air
space and no actual soil!!!) – see Ridgwell et al. [1999] to get a feel
for how complicated gas diffusion in a real soil becomes and how
you must modify the diffusion coefficient to take into account dif-
ferent factors (such as soil type and moisture content). To update
the CH4 concentration in soil layer n due to the flux of CH4 from
above (layer n − 1) you must add a volume of CH4, given by the
calculated Jn value (in cm3 of CH4 per second) multiplied by the
time-step interval (in s). You must also take into account the loss

1- and 2-d numerical modelling 105

of CH4 from each soil layer n as CH4 diffuses into the layer below
(n + 1). So, just like you calculated the new metal pollution con-
centrations in the lakes by taking account what was there to start
with, plus any gain, minus any losses, the concentration change
for layer n = 1 for instance (but don’t write this in), is simply;

conc(1) = conc(1) + dt*J(1) - dt*J(2);

This is saying that the new CH4 concentration in layer n = 1
is equal to the concentration at the previous time-step, plus the
CH4 that diffuses into the later from above (J(1)), minus the CH4

that diffuses out of the layer at the bottom (J(2)). Does this make
sense? You need to exercise your paw if not.

13. You could write out 10 equations to update the 10 soil layer
CH4 concentrations, or ... use another loop! You will have to be
careful, because when you get to layer n = 10, there is no flux
downwards because it is the bottom of the model. The bottom
boundary condition of the model is then that there is no down-
wards flux. (We could have defined the soil column to be deeper
than this, but it is always better to keep any model you are con-
structing as simple as possible to start with.) You will therefore
have to treat the bottom-most (n = 10) layer separately, but you
can still loop through from n = 1 to 9, and use the same equation.
So, create a new loop, just after the n=2:10 one, and set its counter
(you can re-use the name n) going from n=1:9. Within this second
n loop, update the CH4 concentrations for layers n = 1 through 9:

conc(n) = conc(n) + dt*J(n) - dt*J(n+1);

Now add in the code to update the n = 10 layer CH4 concentra-
tion (i.e., adding just the flux from above (J(10)) to the current
conc(10) concentration value).

Now you are done. Hopefully. The overall structure of loops and
things should now look something like (NOTE: not necessarily ex-
actly like):

function ...

% (1) initialize model variables and set model parameters

...

%

% (2) start of time-stepping loop

for tstep = 1:(maxtime/dt),

% calculate the CH4 flux from the atmosphere into the first

% soil layer

J(1) = ...

% calculate the CH4 fluxes from one soil layer to the next

% (n=2:10)

for n = 2:10

106 geo111 – numerical skills in geoscience

J(n) = ...

end

% update the concentration of CH4 in each of the soil layers

% (n=1:9)

for n = 1:9

conc(n) = ...

end

% and finally update the concentration for the special case

% of n=10

conc(10) = ...

end

% (end of time-stepping loop)

%

% (3) plot results

...

end

Run it for 10s (»ch4model(10.0)) and see. You should see a profile
of decreasing CH4 concentrations as you go down deeper into the
soil, looking something like Figure 5.9.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 10 s

Figure 5.9: Soil profile of CH4 after
10.0s of simulation.

Now try a longer model run (100 s) (»ch4model(100.0)) and see
what happens. You should get something like Figure 5.10.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 5.10: Soil profile of CH4 after
100.0s of simulation.

Go find out when the system (approximately) reaches equilibrium
(i.e., the profile stops changing with time). You will need to judge
when any further changes are so small they could not possibly really
matter.

Keeping with the same Example33 and having constructed the basic 33 OVERVIEW:

1. adapt model and explore choice of
time-step

2. adapt model and explore choice
of layer thickness / number of soil
layers

3. add methanotrophs (CH4 sinks)
4. play!

diffusion framework for the model, we can explore what happens if
consumption of CH4 (by methanotrophs) occurs within the soil (as
well as exploring the numerical stability and hence choice of time-
step duration and grid resolution, of the model).

First, take the ch4model (or whatever named) function and add a
second input parameter to set the time-step length. You should then
have two input parameters (maxtime and dt).34 By calling the func- 34 Note that you will have to comment

out (or delete) the line in the code
where previously you defined the time-
step length as fixed with a value of 0.1
s.

tion from the command line, with a model simulation duration of 100
s, play around with the time-step length. Approximately, what is the
longest time-step you can take before the model becomes numerically
unstable? What are the characteristics of the soil CH4 profile that
lead you to suspect instability occurring in the numerical solution?
The onset of instability might look something like Figure 5.11.

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 5.11: Soil profile of CH4 after
100.0s of simulation with an extremely
marginal choice of time-step length.

Now ... it just so happens that some top profs (me!?) have told you
that there are some bugs – methanotrophs (see Ridgwell et al. [1999])
that live deep down in the soil. From this, you assume that they will
be present only in the deepest (n = 10) soil layer in the model. They
just sit there, munching away on CH4 that diffuses down from the

1- and 2-d numerical modelling 107

atmosphere into the soil pore-space. A bit like idle grad students
living on a diet of pizzas.35 The bugs consume the CH4 present in 35 Except students mostly don’t live in

the cold damp dirty ground.the soil pore space at a rate that is proportional to the concentration
of CH4 in the soil (makes sense – the more CH4 food source there is
to metabolize, the more than they will remove per second). Call this
rate constant e.g. munch_rate. It has units of fractional removal per
second. In other words, if the concentration of CH4 in layer n = 10 is
conc(10), then in one second:

munch_rate * conc(10)

cm3 CH4 cm−1 will be lost from the soil pore space. So, if you had
a rate constant (munch_rate) of 0.5 s−1, then each second, half of the
CH4 in layer n = 10 would be removed. Of course, the time-step in
the loop might not be 1.0s – if you had dt=0.1, for instance, then the
loss of CH4 each time around the loop would be:

0.1 * munch_rate * conc(10)

cm3 CH4 cm−1. Are you following so far ... ?
Now, add a third parameter that is passed into the soil CH4 model

function for the rate constant. Modify your equation for the updating
of the CH4 concentration in the deepest (n=10) soil layer to reflect the
presence of the methanotrophs. Call the soil CH4 model function;
pass a time-step of 0.1 s and a methanotroph CH4 consumption rate
constant of 1.0 s-1. Your function call should look something like this
at the command line;

» ch4model(xxx,0.1,1.0)

where xxx is the duration of the simulation36,37. How many seconds 36 Not your favourite website address.
37 e.g. for 100s, giving a plot looking
(hopefully) like Figure 5.12.

(approximately) does it take for an equilibrium profile to be estab-
lished (i.e., what was the simulation duration that you used to create
your plot?). What, ultimately, is the shape of the soil profile of CH4

concentration, and why?

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 100 s

Figure 5.12: Soil profile of CH4 after
100.0s of simulation, with CH4 uptake
at the base of the profile with a rate
constant of 1.0 per s.

Now ... lets say that you then go out into the field and take sam-
ples from each 1 cm thick interval of a 10 cm soil profile. You incu-
bate the soil samples in sealed flasks with CH4 initially present in the
headspace (a fancy word for the air or gas above a sample in a con-
tainer). Hey – you observe that CH4 is removed in all flasks, equally.
Someone screwed up(!) – these bugs live throughout the soil column,
not just at the bottom. You’d better update your model in light of
these new scientific findings.

Add a term (within the 2nd n loop in which you update the CH4

concentrations) to reflect the consumption of CH4 in the layers n = 1
through 9. (You can keep the term for consumption in the n = 10
layer.) Since the bugs are spread out through 10 layers rather than be-
ing concentrated in one (at the bottom), presumably the consumption

108 geo111 – numerical skills in geoscience

rate is only 1/10 of your previous rate value. So use munch_rate =
0.1 (i.e., a rate constant of 0.1 s−1, rather than the value of 1.0 s−1 that
you used before) for all subsequent calculations. Call the soil CH4

model function with a time-step length of 0.1 s and determine the
steady state soil (equilibrium) CH4 profile (Figure 5.13). What shape
does this remind you of ... and why?38 38 There is in fact an analytical solution

to this profile – can you derive it?

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 1000 s

Figure 5.13: Equilibrium soil profile of
CH4, with CH4 uptake throughout the
soil column with a rate constant of 0.1
per s.

A couple of slightly more challenging modifications to try now:

1. Alter the model so that you can also pass into the function, the
number of soil layers that are represented in the upper 10 cm –
equivalent to altering the thickness of each layer. This change is a
little more involved than simply altering the time-step duration.
For instance, now, rather than n (the number of layers) going from
1 to 10, they are now counted from 1 to nmax

39 (the number of

39 For which you might call the variable,
e.g. n_max).

model layers you pass into the function)

2. Add in a parameter controlling the maximum depth of the soil
column represented (replacing the fixed 10 cm assumption from
previously).

3. Try adding a source of CH4 at the base of the soil column.40

40 This is quite physically plausible and
might reflect (in order of decreasing
likelihood): a water-logged, anoxic
layer at depth, thawing permafrost, or a
natural gas seep.

41 Units should be: cm3 CH4 cm−3 s−1. But now much (i.e. what

41 Note that now you have 2 different
boundary conditions in the model – a
fixed concentration in the atmosphere
at the surface, and a fixed flux at depth.

rate of methane production would be reasonable)? You could
play about, trying different values until finding one that did not
produce anything insane. Not a very satisfying approach. You
could certainly look up in the literature measured soil production
values (a much better approach). You could also get a feel for a
possible order-of-magnitude by contrasting with the previous
consumption flux (from the atmosphere). Actually, you have not
looked at this so far (the total atmospheric CH4 consumption
flux) and maybe should have as it is what matters in terms of the
soil being an effective sink, or not, for atmospheric CH4. To do
this – you need to extract from the model, the CH4 flux from the
atmosphere into the first soil layer (why?). Do this and make it
the returned values from the function. Now set the production
(at depth) rate similar to the net (from atmosphere) consumption
flux from before (with methanotrophic activity throughout the
soil profile). You should obtain a profile (at steady state) that is
approximately symmetrical in depth42 – e.g. Figure 5.13. 42 But not quite symmetrical – why?

0 0.5 1 1.5 2
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

CH4 concentration (ppm)

he
ig

ht
 (

cm
)

Soil CH4 profile after 1000 s

Figure 5.14: Example equilibrium soil
profile of CH4 with production at
depth.

4. Finally ... there should be (there is!) a value for the production
rate at depth, at which the flux into the atmosphere is zero. (There
are certainly some very large production rates at depth for which
the flux from the atmosphere is negative, i.e. there are net emis-
sions of CH4 *to* the atmosphere. Can you find this value (which
makes the net exchange zero) ... *without* trial-and-error?43 43 Your function returns the net flux and

you need to search for the production
rate value that minimizes this net flux.
Meaning you need to construct a search
algorithm, testing a larger production
rate of the net flux is positive, and
a smaller value if the net flux it is
negative.

1- and 2-d numerical modelling 109

Search algorithms
Lets assume that you have a

function:
y = f (x)

There are two common cases that
you might want to solve (or approxi-
mate):

1. The value of x such that
the value of f (x) is minimized
(y ' 0).
2. The value of x such that the

value of dy
dx is minimized (first

derivative ' 0.

Lets further assume that you
can place some initial limits on
x : xmin ≤ x ≤ xmax .

A good place to start in both ex-
amples is to test the mid-point of
the limits: f (xmin+xmax

2) (In some
cases you might instead take the
log-weighted mean.)

In case #1 and assuming that dy
dx is

positive, if:
f (xmin+xmax

2) > 0

you replace xmax with xmin+xmax
2 (the

current tested value of x) and if:
f (xmin+xmax

2) < 0

you replace xmin with xmin+xmax
2 .

Keep repeating until the differ-
ence y and zero falls beneath some
specified tolerance.

In case #2, you need to test the
value of f (x) infinitesimally away
from f (xmin+xmax

2) to determine
whether the gradient is positive or
negative (assuming that you do not a
priori know the derivative function).
The idea here is to ensure that the
values of xmin and xmax correspond
to positive and negative (or negative
and positive) gradients. i.e. xmin+xmax

2
replaces xmin or xmax according to
which has the same sign of gradient.

Bibliography

Stormy Attaway. Matlab (Third Edition): A Practical Introduction to
Programming and Problem Solving. Butterworth-Heinemann, 2013.

Index

... environment, 60

.mat environment, 32
; environment, 21
= environment, 20, 21

addition environment, 21
addpath environment, 28
and environment, 22
assignment operator environment,

22
axis environment, 34

cell array environment, 31
cell2mat environment, 31
clear all environment, 23
clear environment, 23, 38
close environment, 23
colon operator environment, 23, 24
colorbar environment, 40
Command Window, 17
comment environment, 28
comments environment, 30
contour environment, 43
contourf environment, 43

disp environment, 50, 53
division environment, 21

else environment, 60
elseif environment, 60
environments
..., 60
.mat, 32
;, 21
=, 20, 21
addition, 21
addpath, 28
and, 22
assignment operator, 22

axis, 34
cell array, 31
cell2mat, 31
clear, 23, 38
clear all, 23
close, 23
colon operator, 23, 24
colorbar, 40
comment, 28
comments, 30
contour, 43
contourf, 43
disp, 50, 53
division, 21
else, 60
elseif, 60
equality, 22
exist, 61
exit, 23, 86, 87
exponentiation, 21
figure, 33
find, 38
fliplr, 25
flipup, 25
fopen, 30
for, 52
fprintf, 32
functions, 22
geoshow, 47
getframe, 56
greater than, 21
greater than or equal to, 21
Headerlines, 31
hist, 42
hold, 36
icecream, 67
if ... end, 60
image, 43
inequality, 22

legend, 37
length, 58
less than, 21
less than or equal to, 22
line, 90
load, 28, 32, 35
ls, 28
m-file, 49
m-files, 34
mean, 96
meshgrid, 45
movie2avi, 56
multiplication, 21
NaN, 38
not, 22
num2str, 53, 54
or, 22
pi, 22
plot, 33
print, 35
quit, 86
rotate, 25
save, 32, 75
scatter, 38
sin, 37
size, 33, 66
sort, 36
sortrows, 36
subplot, 37
subtraction, 21
sum, 25
textscan, 30, 31
title, 34
transpose, 25, 33
while, 52
xlabel, 34
ylabel, 34
zeros, 66

equality environment, 22

114 geo111 – numerical skills in geoscience

exist environment, 61
exit environment, 23, 86, 87
exponentiation environment, 21

figure environment, 33
find environment, 38
fliplr environment, 25
flipup environment, 25
fopen environment, 30
for environment, 52
fprintf environment, 32
functions environment, 22

geoshow environment, 47
getframe environment, 56
greater than environment, 21
greater than or equal to environ-

ment, 21

Headerlines environment, 31
hist environment, 42
hold environment, 36

icecream environment, 67
if ... end environment, 60
image environment, 43
inequality environment, 22

legend environment, 37
length environment, 58
less than environment, 21
less than or equal to environment,

22
license, 2
line environment, 90
load environment, 28, 32, 35
ls environment, 28

m-file environment, 49
m-files environment, 34
mean environment, 96
meshgrid environment, 45
movie2avi environment, 56
multiplication environment, 21

NaN environment, 38
not environment, 22
num2str environment, 53, 54

or environment, 22

pi environment, 22
plot environment, 33
print environment, 35

quit environment, 86

rotate environment, 25

save environment, 32, 75
scatter environment, 38
sin environment, 37
size environment, 33, 66
sort environment, 36
sortrows environment, 36
subplot environment, 37
subtraction environment, 21
sum environment, 25

textscan environment, 30, 31
The command line, 17
title environment, 34
transpose environment, 25, 33
typefaces

sizes, 77

variable, 18

while environment, 52

xlabel environment, 34

ylabel environment, 34

zeros environment, 66

	Course logistics
	MATLAB basics
	Using the MATLAB software
	Basic concepts
	Vectors and arrays
	Loading and Saving

	Plotting and visualizing data
	Introduction to graphics and figures in MATLAB
	Fancier 1D plotting
	x,y,z (spatial) plotting

	MATLAB scripting and programming
	Introduction to scripting in MATLAB
	Loops
	Sub-programs (scripts)
	Conditional statements
	Functions
	Algorithms and problem-solving

	Introduction to numerical modelling
	Introduction
	Box models
	Energy-balance climate modelling

	1- and 2-D numerical modelling
	1-D models

	Bibliography
	Index

