Snowball Earth




Suggested reading S"°E”§’r?ﬂ

Fairchild and Kennedy [2007] (more recent and slightly more neutral/contrarian
review)

Hoffman and Schrag [2002] ('pro’ snowball Earth hypothesis review)

Ridgwell and Kennedy [2004] (a different and more carbon cycle focussed view-
point)
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Background Snowball

The Neoproterozoic: Gateway to a metazoan-
dominated, oxygenated, ‘modern-like’ biosphere?¢
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Background - evidence for glaciation
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Bockground — evidence for glaciation SIEel
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Background - biotic changes

Low fixed N supply to the open ocean
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The ‘snowball Earth’ hypothesis
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The ‘snowball Earth’ hypothesis
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The ‘snowball Earth’ hypothesis — ‘feedbacks’
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Global carbon cycling (modern) S“°E”§£E
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Global carbon cycling (long-ferm controls) S“°§”§§‘H

Terrestrial weathering can be (approximately equally) divided into
carbonate (CaCQO,) and calcium-silicate ('CaSiO,’) weathering:

(1) 2CO,,, +H,0 + CaSiO, — Ca™ + 2HCO, + SiO,
(2) CO,,, +H,0+CaCO, —»Ca*+2HCO,

Ultimately, the (alkalinity: Ca®") weathering products must be removed
through carbonate precipitation and burial in marine sediments:

(3)  Ca™+2HCO, — CO,,, + H,0 + CaCO,

It can be seen that in (2) + (3), that the CO, removed (from the
atmosphere) during weathering, is returned upon carbonate precipitation
(and burial). In (1) + (3) (silicate weathering) CO, is permanently removed
to the geological reservoir. This CO, must be balanced by mantle
(/volcanic) out-gassing on the very long term.
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The ‘snowball Earth’ hypothesis S“°E”§’£H

All very well, but ...

No proxy evidence for: (1) >0.1 bar CO, in the
atmosphere, (2) the inferred mean global
surface temperatures of ca. 50°C, or (3)
infense weathering rates in the immediate
aftermath of deglaciation.

No proxy evidence of complete cessation of
weathering on land (required to build up CO,
in the atmosphere).

No direct proxy evidence for a completely
ice-covered ocean.
How does complex life persist?

Some coupled ocean-atmosphere models do
not find an ice-albedo instability.
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The ‘snowball Earth’ hypothesis S“°E”§’£H
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The ‘snowball Earth’ hypothesis S“°E”§’riﬂ

All (numerical climate) models are wrong.
Some may be useful.

Gemmaasmno ||| 1700 pom Gsnowbmn |
crandorangsonoo || B [<40pom [snowoatunibely |
Hyde et al. [2000]; Crowley et al. [2001] ---
Baumand Crowley 200120081 | .| | [<340 ppm |slushball probable |
posson oo oot pounzovs | | [va [rosnowar |
RS NN— | | | TSGR
Godderisetalfpossy | | [130ppm |(nowbal) |
| Goodman and Pierrohumbert(2003) | | | | [130ppm | snowball more ikely
Domnadieuotal200s) |\ | | = [500-990 |slushballunikely |
L [1600ppm [nowan |
comaasvoaomes [ [<149.250 [Growan
| | | [200ppm [(snowoal)

‘ADVANCED’ - ‘INTERMEDIATE’ ‘BASIC’ DECOUPLED
e.g. 3D GCM, e.g. 2D EBM, e.g. 1D EBM,

thermodynamic seasonal mixed slab ocean

sea-ice layer ocean




The enigma of the ‘cap carbonates’
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calcium
carbonate
mineral
surface /0
(caleifying plankton,
e.g. foraminifera)

atmosphere CO, chemistry
& mineral phases

Aragonite: less stable

orthorhombic polymorph (e.g.,
many corals, pteropods)

Calcite: more stable
(and more abundant)

trigonal polymorph (e.g.,
coccolithophorides, foraminifera)




calcium
carbonate
mineral
surface

(calcifying plankfdn;

e.g. foraminifera)

atmosphere

CO, chemistry
& mineral phases

The addition of CO, to
seawater results in a decrease
in carbonate ion (CO.")
concentration and ocean
acidification’. A decrease in
CO.”, in turn, suppresses the
stability of CaCO,, defined by
its saturation state:

Q = [Ca”]x[CO.”] /k

= The thermodynamic
efficiency of precipitating
CaCO, is a function of [CO,”]
(and carbonate ‘saturation’).
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The enigma of the ‘cap carbonates Earth

Aqueous carbonate equilibrium; H,0 + CO,,, + CO,” <> 2HCO,
Stability of CaCO, defined relative to saturation state; Q=[Ca*]x[CO,*]/k

1.0 10.0

Saturation state Q

calcite)
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The enigma of the ‘cap carbonates Earth

See: GEOG ‘World in crisis’ lecture on ‘Ocean Acidification’

(PDF available from www.seao2.org/teaching.html)

(equivalent calcite saturation)
=1 5 ~3.0 ~5.5 ~6.5

aragonite
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Aqueous carbonate equilibrium; H,0 + CO,,, + CO,” <> 2HCO,
Stability of CaCO, defined relative to saturation state; Q=[Ca*]x[CO,*]/k

(Gatuso i a 1198 Il

Leclercq et al. [2000])

1.0 10.0

Saturation state Q

calcite)




The enigma of the ‘cap carbonates’

Aqueous carbonate equilibrium; H,0 + CO,,

o+ COZ > 2HCO,

Stability of CaCO, defined relative to saturation state; Q=[Ca*]x[CO,*]/k

Coral growth

(Gattuso et al. [1998]; I-I""

Leclercq et al. [2000])
Benthic foraminifera _

1.0

Saturation state Q

10.0

calcite)
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The enigma of the ‘cap carbonates’

Aqueous carbonate equilibrium; H,0 + CO,,, + CO,” <> 2HCO,
Stability of CaCO, defined relative to saturation state; Q=[Ca*]x[CO,*]/k

Tufas and carbonate encrustation
(Arp et al. [2001]; Merz-Preiss and Riding [1999]) _ | I"
Coral growth

(Gattuso et al. [1998]; -""

Leclercq et al. [2000])

Benthic foraminifera _
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The enigma of the ‘cap carbonates’

Aqueous carbonate equilibrium; H,0 + CO,,, + CO,” <> 2HCO,
Stability of CaCO, defined relative to saturation state; Q=[Ca*]x[CO,*]/k

Spontaneous (homogeneous) calcite nucleation
(Morse and He [1993]) )]

Tufas and carbonate encrustation
(Arp et al. [2001]; Merz-Preiss and Riding [1999]) _ | I"
Coral growth

(Gattuso et al. [1998]; -""

Leclercq et al. [2000])

Benthic foraminifera _
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The enigma of the ‘cap carbonates’

Aqueous carbonate equilibrium; H,0 + CO,,, + CO,” <> 2HCO,
Stability of CaCO, defined relative to saturation state; Q=[Ca*]x[CO,*]/k

Inorganic-physiochemical ‘whitings’
(Arp et al. [1999])

Spontaneous (homogeneous) calcite nucleation
(Morse and He [1993]) )]

Tufas and carbonate encrustation
(Arp et al. [2001]; Merz-Preiss and Riding [1999]) _ | I"

Coral growth
(Gattuso et al. [1998]; -""

Leclercq et al. [2000])
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The enigma of the ‘cap carbonates’

Inorganic-physiochemical ‘whitings’
(Arp et al. [1999])

Spontaneous (homogeneous) calcite nucleation
(Morse and He [1993]) )]

Tufas and carbonate encrustation
(Arp et al. [2001]; Merz-Preiss and Riding [1999]) _ | I"

Coral growth
(Gattuso et al. [1998];
Leclercq et al. [2000])
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The enigma of the ‘cap carbonates’
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Surface saturation state Q.

NOTE: ocean composition format;
[mean alkalinity, mean DIC] (umol kg™)
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The enigma of the ‘cap carbonates’
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Surface saturation state Q.

NOTE: ocean composition format;
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The enigma of the ‘cap carbonates’
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The time required to reach Q = 20 will
be longer than ca. 30 kyr due to;

(i) decrease in weathering rates as
pCO, falls,

(i) precipitation of CaCO, occurring
well before Q = 20,

BUT will be aided by increased
surface temperatures associated with
deglaciation and changes in [Ca™].
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